VoicePop: A Pop Noise based Anti-spoofing System
for Voice Authentication on Smartphones

Qian Wang', Xiu Linf, Man Zhou!, Yanjiao Chen*, Cong Wang?, Qi Li$, Xiangyang Luo
School of Cyber Science and Engineering, Wuhan University, P. R. China.
*School of Computer Science, Wuhan University, P. R. China.
iDepartment of Computer Science, City University of Hong Kong, Hong Kong, P. R. China.
SInstitute for Network Sciences and Cyberspace, Tsinghua University, P. R. China.
YThe State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, P. R. China.

Abstract—Voice biometrics is widely adopted for identity
authentication in mobile devices. However, voice authentication
is vulnerable to spoofing attacks, where an adversary may
deceive the voice authentication system with pre-recorded or
synthesized samples from the legitimate user or by impersonating
the speaking style of the targeted user. In this paper, we design
and implement VoicePop, a robust software-only anti-spoofing
system on smartphones. VoicePop leverages the pop noise, which
is produced by the user breathing while speaking close to the
microphone. The pop noise is delicate and subject to user
diversity, making it hard to record by replay attacks beyond
a certain distance and to imitate precisely by impersonators.
We design a novel pop noise detection scheme to pinpoint pop
noises at the phonemic level, based on which we establish indi-
vidually unique relationship between phonemes and pop noises
to identify legitimate users and defend against spoofing attacks.
Our experimental results with 18 participants and three types of
smartphones show that VoicePop achieves over 93.5% detection
accuracy at around 5.4% equal error rate. VoicePop requires
no additional hardware but only the built-in microphones in
virtually all smartphones, which can be readily integrated in
existing voice authentication systems for mobile devices.

1. INTRODUCTION

Compared with password-based authentication, voice au-
thentication is more convenient since it is hands-free and users
do not need to memorize passwords. In recent years, the rapid
growth of mobile communications has boosted the use of voice
authentication in mobile devices, including smartphone login,
mobile banking and e-commerce. For example, Google allows
users to unlock their phones of Android operating systems by
voice biometrics [1]. Say Tec uses voice biometric solution to
support mobile financial services such as online payment and
banking [2].

However, since the sound transmits through an open and
public channel, the voice authentication system is highly vul-
nerable to spoofing attacks [3]—[5]. There are two major types
of spoofing attacks, namely replay attacks and impersonation
attacks [6]. In replay attacks, the adversary pre-records and
playbacks the voice sample of the passphrase of a legal user
to deceive the authentication system [7]. An adversary can
also mimic the voice characteristics and style of a legal user
to conduct impersonation attacks [8]. Spoofing attacks may
greatly harm the users as the adversary may gain access to the

victim’s smartphone to steal private information and perform
malicious operations.

Traditional methods to defend against replay attacks and
impersonation attacks are liveness detection and automatic
speaker verification (ASV) system. Liveness detection exam-
ines whether the voice is produced by a live user or a speaker,
and ASV leverages unique spectral and prosodic features of the
user’s voice for identity authentication. For example, Zhang et
al. [9] proposed to capture time-difference-of-arrival (TDoA)
changes to the two microphones of the phone in a sequence
of phoneme sounds to differentiate the voice from a live user
and a replay device, but the user has to hold the phone at a
specific position. In [10], the smartphone served as a Doppler
radar to transmit a high-frequency acoustic sound from the
built-in speaker and monitor the reflections of articulators
at the microphone for liveness detection. Unfortunately, the
extent of articulatory movements affects the effectiveness of
this countermeasure. Chen et al. [11] explored the magnetic
field emitted from loudspeakers to detect voice replay attacks.
However, users need to move the smartphone with a predefined
trajectory around the mouth while speaking the passphrase.
M Sahidullah et al. [12] developed an ASV system against
impersonation attacks using the throat microphone which is
not available in most smartphones.

In this paper, we propose and implement VoicePop, a novel
and practical anti-spoofing system based on pop noise that is
induced by the user breathing while speaking the passphrase
close to the microphone. The recorded voice samples hardly
contain the pop noise since the sound of breath is gentle
compared to the speech and will die out beyond a certain
distance. The pop noise is also subject to user diversity and it
is very difficult for attackers to imitate the way of breathing
of the legal user. These ideal properties of the pop noise
enable our proposed VoicePop system to resist spoofing attacks
in voice authentication. To begin with, we conduct phoneme
segmentation on the collected voice sample according to spec-
trogram characteristics. We design a novel pop noise detection
algorithm to locate pop noises at the phonemic level. A lack of
pop noise is deemed as a replay attack, however, environmental
noise and hardware noise may also be wrongly detected as pop
noises in the replayed voice samples. To address this problem,
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we extract the Gammatone Frequency Cepstral Coefficients
(GFCC) features of the detected pop noises for classification
to distinguish a genuine voice sample and a replayed one.
To defend against impersonation attacks, we leverage the
individually unique relationship between phonemes and pop
noises to construct a phoneme-pop sequence. A legal user is
accepted if the phoneme-pop sequence of the voice sample is
similar to that stored in the user profile upon registration, and
an impersonation attack is declared otherwise.

VoicePop requires no additional hardware but only the
built-in microphones that are available on almost all mobile
devices. VoicePop also demands no extra efforts from users
except to speak the passphrase as required by current voice
authentication systems. As far as we are concerned, we are
the first to use the features of pop noise to defend both replay
attacks and impersonation attacks. We implement VoicePop on
3 types of smartphones and evaluate its performance with 18
volunteers under different experimental settings. The results
verify the effectiveness of VoicePop that achieves over 93.5%
detection accuracy at around 5.4% equal error rate. The main
contributions of this work are summarized as follows:

o We propose VoicePop, a practical and effective software-
only anti-spoofing system for voice authentication based
on pop noise, which can be easily integrated in commer-
cial off-the-shelf smartphones.

o« We design a novel pop noise detection scheme to de-
fend against replay spoofing attacks, and leverage the
individually unique relationship between phonemes and
pop noises to generate a phoneme-pop sequence to resist
impersonation spoofing attacks.

e« We build a fully-functional VoicePop prototype using
off-the-shelf smartphones. Extensive evaluation results
demonstrate that VoicePop can detect both replay and
impersonation spoofing attacks with a high accuracy and
a low equal error rate.

II. PRELIMINARIES
A. Attack Model

Voice authentication system can be text-dependent (requires
the same password for enrolment and verification) or text-
independent (accept arbitrary utterances from speakers). We
primarily focus on the text-dependent authentication system,
which is currently the most widely adopted and commercially
viable method with a high authentication accuracy [13]. Fig. 1
displays a typical voice authentication system. For the attack
model, we consider replay spoofing attacks and impersonation
spoofing attacks.

Replay attacks. Replay attacks leverage computers and
other peripheral devices (e.g., loudspeaker) to perform voice
playback to the microphone of the smartphone. The replay
samples that involve the information of the victim’s passphrase
can be produced by stealthily recording, voice synthesis,
and voice conversion. In this paper, we mainly focus on
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Fig. 1. A typical voice authentication system.

replay attacks by pre-recording since they retain more user
characteristics than those generated by synthesis or conversion.
Impersonation attacks. Impersonation attacks can be con-
ducted in two ways. The first is simply to imitate the legitimate
user’s voice and speaking habit without the help of other de-
vices. The second is more advanced where we consider that the
attacker knows the key rationale of our anti-spoofing system
and observes how the target user pronounces the passphrase.
To perform this type of attacks, we assume that the adversary
uses a loudspeaker to replay the pre-recorded voice sample
near the microphone while simultaneously impersonating the
victim’s breathing pattern closely to the microphone.

B. Pop Noise

The human voice is produced through several stages. Air
is first expelled from the lung to form an airflow, which then
enters the throat, passes through the vocal cords into the vocal
tract, and finally bursts out of the mouth to form the sound
wave. When the resulting airflow reaches the microphone,
if the user’s mouth is close enough to the microphone, the
captured sound signals will not only contain the speech
information but also the plosive burst as the friction between
the lips and the airflow, known as the pop noise. In contrast,
an attacker who tries to launch a replay attack usually cannot
put the microphone of the recording device very close to
the user’s mouth, thus the recorded voice contains no pop
noise. Therefore, by detecting the pop noise, we are able to
distinguish the real speech from a live user and the recorded
speech from a loudspeaker.

To detect pop noise, we compare the spectrograms of speech
signals with and without a pop noise filter using three different
smartphones, as shown in Fig. 2. It can be found that pop noise
has a high energy in the low frequency (typically 0~100 Hz),
which has been discussed in the prior study [14]. Moreover,
the duration of pop noise varies in the range 20~100 msec
based on the way people speak and breathe. Our detection
algorithm is based on these observations.

C. Phoneme and Pop Noise

A phoneme is the smallest distinctive unit sound of a
language in the human speech production system.There are
two categories of phonemes, the vowel and the consonant.
A vowel is a sound produced by the airflow through the
mouth without hindrance, while a consonant is produced by
obstructing the airflow out of the mouth with the teeth, tongue,
lips or palate. Since each phoneme features unique physical
origin in the human vocal tract system and has its own manner
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Fig. 2. Spectrogram comparison of samples without (left) and with (right) a
pop noise filter using three different smartphones.

TABLE I
PHONEMES RANK CORRESPONDING TO POP NOISE.

[consonant] articulator| manner [ratioconsonant]articulator| manner _[ratio|

p bilabial stop  |0.79 h glottal fricative [0.38
t alveolar stop |0.69 v labiodental| fricative [0.35
i) palatal stop |0.68 w velar  |approximate|0.29
tr alveolar | affricate |0.68| k.,g velar stop 0.26
b bilabial stop  |0.67 dz alveolar | affricate [0.22
ts alveolar | affricate |0.67 d alveolar stop 0.17
) palatal | affricate |0.65 3 palatal stop 0.11
4] dental | fricative [0.57 n alveolar nasal  |0.10
& palatal | affricate |{0.50 i} velar nasal  |0.08
dr alveolar | affricate |0.50 ] palatal |approximate|0.05
0 dental | fricative |0.43 m bilabial nasal  |0.04
S,z alveolar | fricative [0.40 r alveolar thrill 0.02
f labiodental| fricative [0.39 1 alveolar lateral  [0.02
[ vowel [articulator| manner [ratio] vowel [articulator] manner [ratio|
3 back |near-close|0.67 IE) tongue centering |0.16
av tongue | closing |0.39 i front close |0.16
2 back open [0.28| orou tongue closing |0.15
eo tongue | centering |0.23 u: back near-close [0.14
ar tongue | closing |0.23 3: central | open-mid [0.13
A central |open-mid|0.21| a:p back open 0.11
1 front  |near-close|0.20 e front close-mid [0.08
® front  |near-open|0.19 er front closing [0.07
9 central mid |0.17 &) tongue | centering [0.06

of pronunciation, the probability of the existence of pop noise
when pronouncing different phonemes is different. We conduct
an experiment on all 48 phonemes to explore the relationship
between the phoneme and the pop noise. We collect speech
data from 18 volunteers and rank the phonemes according to
the existence probability of pop noise. The existence ratio
of pop noise of phoneme X is calculated as £ ](\),P X where
Nx is the occurrences of phoneme X and POPx is the
occurrences of the pop noise of phoneme X in all sentences for
all people. As shown in Table I, some phonemes require more
breathing while some phonemes hardly require any breathing.
The existence probability of pop noise in consonants is higher
than that in vowels. We find that the phoneme ranking of the
existence probability of pop noise is different among users due
to their unique vocal systems and utterance styles. Therefore,
we can extract and store such information upon registration
for user identification.
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Fig. 3. The architecture of VoicePop.

III. VOICEPOP: DESIGN DETAILS
A. Overview

The key idea of our anti-spoofing system is to identify
a legal user based on the extracted pop noise features and
phoneme-pop sequence from the voice sample when the user
says the passphrase near the microphone. Fig. 3 depicts
the system architecture of VoicePop, which consists of four
phases: data collection, data process, replay attacks detection,
and impersonation attacks detection.

In the first phase, when a user performs an authentication,
the built-in microphone captures the user’s speech, which is
then fed into an automatic speech recognition (ASR) system
to obtain the words of the passphrase. If the passphrase is
not correct, the user will be rejected directly; otherwise, the
recorded sample and text are transmitted to the server in real-
time for spoofing attacks detection.

In data process phase, the original sample is first segmented
into phoneme units and non-speech periods. In particular,
VoicePop partitions and labels the voice sample into phonemes
leveraging the forced alignment method, which recognizes the
spoken words according to a given text of phoneme sequence
using Hidden Markov Models (HMM). Meanwhile, a pop
noise detection algorithm is proposed to locate explosive sound
periods caused by strong breathing during speaking, which are
refined and screened according to the phoneme segmentation
result and the predefined user-dependent ranking.

If the pop noise is detected, it conducts replay attacks
detection. In this phase, we extract its GFCC feature vectors as
input to the Support Vector Machine (SVM) for classification.
If the classification result is positive, VoicePop will enter
impersonation attacks detection phase, otherwise, a replay
spoofing attack is declared.

In the impersonation attacks detection phase, a binary
phoneme-pop sequence is generated according to the seg-
mented phonetic units and the located pop noise, which is
then compared with that stored in the user profile to compute
a similarity score. The user will be accepted only if the
score is greater than a threshold. The detection result can be
integrated into general voice authentication systems for user
identification.

2064



alarm | for: [ six
1 A
ol

|

<p:>

sle|t|e[n]| ol a:
1 15

r| 8|k er | m | <p:>
2 25 3 35

Fig. 4. An example of phoneme segmentation.

B. Phoneme Segmentation

A phoneme is made up of a number of distinctive overtone
pitches, which are known as formants. Formants refer to the
areas of the sound spectrum where the energy is concentrated.
Formants not only determine the sound quality but also reflect
the physical characteristics of the vocal tract. Phonemes can
be uniquely identified by formants.

To attain phoneme segmentation, we first generate the spec-
trogram of the voice sample using a spectrum analyzer, then
adopt HMM to perform a forced alignment for the obtained
voice spectrogram and the pre-defined spectrogram. Given the
text of the input speech acquired by an ASR system, the
phoneme segmentation tool MAUS [15] first transforms the
words into canonical pronunciations according to a standard
pronunciation model. Then, a probabilistic graph including
all possible results and the corresponding probabilities is
produced based on the expected pronunciation of the input
words and millions of potential accents. By searching the
space of phonemic units, the path of the unit with the highest
probability is selected. Finally, the input speech is segmented
and labeled at the phonemic level. Fig. 4 illustrates an example
of phoneme segmentation for the voice sample of a user saying
the passphrase. It is shown that each word and phoneme can
be accurately separated.

C. Pop Noise Detection

As we have discussed in Section II-B and Section II-C, pop
noise has high energy in low frequencies of the voice sample
(comparing the spectrograms in Fig. 2 before and after a pop
noise filter), and different phonemes feature different existence
probability of the pop noise, while subjecting to user diversity.
Based on these observations and prior work [14], we design a
novel detection scheme, and the details (illustrated in Fig. 5)
are described as follows. The suggested parameters below are
mostly empirically determined according to our dataset.

1) Non-speech components removal: The phoneme seg-
mentation not only partitions phonemes but also separates
the speech (phases containing phonemes) and the non-speech
components (the silent phases), as shown in Fig. 4. We first
remove the non-speech components to improve the accuracy
of locating the pop noise since the non-speech components are
usually noises or predefined events in the speech that may be
wrongly detected as pop noise.

2) Short-Time Fourier Transform: We use the Short-
Time Fourier Transform (STFT) to acquire the time domain
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Fig. 5. Pop noise detection.

information such as the frequency distribution changes over
time.The STFT divides a long time-domain signal into frames
using a fixed window size and then computes the Fourier trans-
formation separately on each frame. The results of each frame
along the time dimension are stacked up to reveal the Fourier
spectrum for each segment over time. The two-dimensional
signal obtained by the STFT expansion is called a sound
spectrum diagram. For STFT analysis, we use a Hamming
window with a size of 4096 points and an overlapping of
2048 points.

3) Potential pop noise location: After STFT, we get the
frequency distribution of each frame. We first compute the
energy within the frequency range 0~93 Hz (the pop noise
energy concentrates on low frequencies) for each frame, de-
noted as F(i), where ¢ is the index of each frame. This range
is selected according to extensive analysis of spectrograms of
genuine speech data samples. Then we calculate the standard
deviation of the energy for all frames (donated as Fg;4). We
determine that potential pop noise exists in the ith frame
(donated as Loc(j), where j is the index of selected frames)
if E(i) > 3 Egq.

4) Derivation calculation: The previous step pinpoints the
peaks of potential pop noises and we need to locate the bound-
aries to obtain the whole pop noises. To achieve this goal, we
take the derivative of the window energy function obtained by
polynomial fitting. Specifically, we perform polynomial fitting
on discrete energy values E(i) for every eight-point chunk,
then we take the derivative of the fitting function to obtain the
absolute value of the differential coefficient of every point ¢,
denoted as D(i).

5) Boundary determination: We find the boundaries of pop
noises by searching the vicinity of Loc(j) up to 3 points. If
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the nearby point k (Loc(j) —3 < k < Loc(j) + 3) satisfies
the conditions that E(k) < 0.45 - E(Loc(j)) and D(k) >
0.45 - D(Loc(j)), we deem that there is a drop near the peak
and include point k as part of the pop noise.

6) Phoneme-based correction & duration check: We con-
duct phoneme-based correction and duration check for all
potential pop noises. Pop noise happens for certain phonemes
with a high probability, and everyone’s particular phonemes
are not the same. Therefore, we only select potential pop
noises in the presence of these high-probability phonemes as
real pop noises according to personal phoneme probability
rank. We also observe that the pop noise typically has a
duration within the range 20~100 msec. Hence, we check the
duration of potential pop noises and abandon those out of this
range.

D. Replay Attacks Detection

With the above pop noise detection scheme, we can reject
most samples of replay attacks that contain no pop noise.
Nevertheless, some samples of replay attacks also exhibit “pop
noise”, which may be caused by speaker-microphone channel
noise or environmental noise. Therefore, we further analyze
features of pop noises to distinguish samples from genuine
users and replay devices. We adopt GFCC features which yield
a high accuracy and robustness [16].

We first generate a 64-gammatone filterbank, each filter is
defined by a bandwidth B and a center frequency f.. The
center frequencies are distributed in proportion to their band-
widths through the Equivalent Rectangular Bandwidth (ERB)
scale. The bandwidth B is calculated as 1.019 - ERB, where
ERB is given as 24.7-(4.37-0.001- f.+1) [17]. The frequency
spectrum of each pop noise frame is divided into several
overlapping bands (filters) by the filterbank, and we calculate
the weighted sum of the FFT magnitudes (log energy) for each
filter. Finally, the Discrete Cosine Transformation (DCT) is
applied to each log energy to calculate the cepstral coefficients.
The number of cepstral coefficients is equivalent to the number
of filters. Particularly, We only use the filters of which the
center frequencies range from 0 Hz to 104 Hz, because pop
noise usually appears in this frequency band.

To address the problem that pop noise may be wrongly
detected in some attack samples, we use GFCC features of

Fig. 7. Phoneme-pop sequence similarity between
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Fig. 8. A typical application of VoicePop.

pop noises to distinguish genuine and attack samples by a
two-class SVM classifier. Fig. 6 shows the feature vectors of
the genuine samples and the replay samples after applying
the Principal Component Analysis (PCA), demonstrating that
their feature points are easy to be separated, and thus we can
effectively defend replay attacks.

E. Impersonation Attacks Detection

To resist impersonation spoofing attacks, we propose a
phoneme-pop sequence generation algorithm (shown in Algo-
rithm 1) to identify the unique relationship between phonemes
and pop noises for each individual user. Through extensive
experiments, we find that the positions of pop noises are
different for different people. This is because each person
has his/her own speaking style and special vocal system.
Therefore, we build a binary phoneme-pop sequence for the
passphrase of each user upon registration and store them (one
authentication trail produces one sequence) in the user profile.
This sequence describes which phonemes of the passphrase
pop noises appear along with. When a user performs identity
authentication using VoicePop, we compute the sequence and
leverage a combined-scheme using two similarity scores to
make a comparison.

We use two methods for similarity calculation. The first is
the Pearson correlation coefficient [18], which is used to mea-
sure the degree of linear correlation between two sequences.
The coefficient value is within the range [-1, 1], with an
absolute value near 1 indicating a strong linear correlation,
while a value near O indicating a lack of linear correlation.
Fig.7 shows the similarity (Pearson correlation coefficients) of
the computed phoneme-pop sequences for the same passphrase
spoken by four different users. Each user speaks the passphrase
for 10 times. We observe that the correlation coefficients for
the same user under different trials are very high (around 0.8),
while the correlation coefficients are below 0.5 between differ-
ent users. This confirms the individual diversity in phoneme-
pop sequences. Particularly, we calculate the average value of
the correlation coefficients between the sequence of the input
sample and each sequence in the user profile.

The second method is the contact ratio (the ratio of the
number of same elements to that of all elements). We build
a sequence of existence probability of pop noise for all m
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Algorithm 1 Phoneme-Pop Sequence Generation Algorithm.

Require: The number of located pop noises n, number of seg-
mented phonemes m, the set of start and end boundaries
of pop noises {ST_pop;}?_, and {ET _pop;}_,, the set
of start and end boundaries of phonemes {ST_pho;}7"
and {ET_pho;} .

Ensure: Binary phoneme-pop sequence {S;};.

1: Initial S; =0, 7 =1,2,...,m;
2:7=1;
3: fori=1—ndo

4 /*Find corresponding phoneme index of ST_pop,*/
5 while (j < m) A (ST _pop; < ST_pho,) do

6 J++

7: end while

8 /*If the pop noise only exists in current phoneme™/
9: if (j <m) A (ET_pop; < ST_pho;,) then

10: S; =1

11 else

12: /*Find all remaining phonemes*/

13: while (j < m) A (ET_pop; > ST_pho,; ) do
14: Sj = Sj+1 =1;

15: J++

16: end while

17: j—=;

18: end if

19: end for

20: return S

TABLE II
EXPERIMENTAL DEVICES.

maker | model |authenticate|record|replay| maker | model |record|replay
Mi Mi6 N v/ | v/ |Huawei| Matel0 VA
Samsung| C9 pro Vv v | +/ |Earse| Al-101 Vv
Samsung|S7 edge v Vv Sony |Ied-ux565f| +/ | /
Huawei | Mate8 Vv Hivi |[M200mkIII v

phonemes in the passphrase of the user upon registration,
denoted as {P;}7",, and store it in the user profile. To
calculate the similarity score between P; of the user profile
and the phoneme-pop sequence of the input sample, we first
process the sequence P; by resetting P; = 0 if P; < 0.2 and
resetting P; = 1 if P; > 0.8. We neglect phonemes whose
P; is between 0.2 and 0.8 as they are less reliable. We then
check the contact ratio for elements of P; being 0 or 1.
Finally, we develop an impersonation attack detection
scheme by combining the similarity scores of the Pearson
correlation and the contact ratio. We set thresholds for the
two similarity scores respectively, and accept the user only
if both scores are higher than their corresponding thresholds,
otherwise, the user will be denied access to the system and an
impersonation spoofing attack will be declared.

IV. EVALUATION

We implement a prototype of VoicePop with the typical
client-server architecture: a mobile application running on
Android and a processing server running on a ThinkPad server

with Intel(R) Core(TM) i7-7500U 2.70 GHz CPU and 8 GB
RAM. The mobile application is designed to record user voice
samples, recognize the words of speech, and upload the raw
voice data and the corresponding text to the server in real
time. The sampling rate of the speech signals on smartphones
is 44.1 kHz. We use three different smartphone models running
Android 6.0 KitKat for authentication, as shown in Table II.
At the server side, the received data is fed into a processing
pipeline as described in Section II. Since VoicePop detects pop
noises caused by user breathing while speaking, we require
the users to speak close to the microphone, but do not request
them to hold the phone at a specific place or distance. Fig. 8
shows a typical use case, and the effective distance will be
discussed in Section IV-D.

Data collection. We recruit 18 volunteers (13 males and 5
females) with the age ranging from 20 to 27 to participate in
the experiments. The participants are undergraduate and gradu-
ate students who are instructed to perform voice authentication
with VoicePop. To build the user profile, including GFCC fea-
tures of genuine pop noises, phoneme-pop sequences, and pop
noise existence probability sequences, we ask each participant
to speak a passphrase five times upon registration. Then, each
participant performs legitimate authentications for 10 times
for testing. The passphrase of each participant is randomly
selected from a pre-defined set of commands and the lengths
of the passphrases range from 3 to 10 words.

Attacks. We evaluate our system under replay attacks and
impersonation attacks. For replay attacks, we first employ
six microphone models, including the professional recorder
and the built-in microphones of mobile devices, to pre-record
the passphrase when a legitimate user is performing voice
authentication. Then, we use five speaker models, includ-
ing the standalone speakers and built-in speakers of mobile
devices, to playback the recorded voice samples in front
of the smartphone for voice authentication. The models of
microphones and speakers are listed in Table II. Each speaker
conducts 10 trials for each participant and each passphrase.

For impersonation attacks, we allow adversaries to listen
to the voice samples of legitimate users in order to imitate
the speed of talking, the breath style and so on. We recruit 5
volunteers as adversaries and each impersonates 3 participants
for 10 trails for each passphrase. In addition, an attacker
may replay a participant’s voice sample and impersonate the
breathing in front of the speaker.

Metrics. We adopt six metrics to evaluate the performance
of our system. False Accept Rate (FAR) is the likelihood that
the system wrongly accepts a spoofing attack as a legitimate
user. True Accept Rate (TAR) is the probability that the system
correctly identifies a legitimate user. Receiver Operating Char-
acteristic (ROC) curve explains the relationship between TAR
and FAR under various detection threshold. False Reject Rate
(FRR) is the probability that the system mistakenly declares a
legitimate user as a spoofing attack. Equal Error Rate (EER)
defines the rate when FAR equals FRR. Accuracy measures the
likelihood that the system accepts legitimate users and rejects
attacks.
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Fig. 9. Overall ROC curves.

A. Overall Performance

We confirm the effectiveness of our system against replay
attacks and impersonation attacks by comparing with the
baseline according to [19]. In [19], Sayaka Shiota et al.
proposed the pop noise detector combined with the phoneme
information to detect the existence of pop noises but did not
use the features of pop noises for further classification. We
construct the baseline by using VLD in [19] to detect pop
noises, then extract features to detect spoofing attacks. Fig. 9
shows the ROC curves under both attacks. We observe that our
system achieves more than 93% TAR with less than 2% FAR,
which confirms the effectiveness of our system in defending
against spoofing attacks. Moreover, Fig. 10 demonstrates the
overall accuracy and EER under both attacks. It is shown
that our system attains an overall accuracy of 93.5% and
an EER of 5.4% under replay and impersonation attacks, far
outperforming VLD that has an accuracy of merely 52.2% and
an EER as high as 25.4%. These results verify that VoicePop is
highly effective against both replay and impersonation attacks.

Replay attacks. We take a closer look at the performance
of VoicePop under different replay devices as listed in Table II.
As shown in Fig. 11, the accuracy of VoicePop is relatively
stable under different replay devices, and it is always more
effective in replay detection than VLD. These results demon-
strate the robustness of VoicePop against replay spoofing
attacks.

Impersonation attacks. We also dig deeper into imper-
sonation attacks. We consider three ways of attacks: pure
impersonation attack, playback with random breath, and play-
back with breath impersonation. Fig. 12 shows that VoicePop
has a superior performance over the baseline under all three
ways of attacks while the baseline is quite vulnerable to
impersonation spoofing attacks. This is because VLD only
detects the existence of pop noise without extracting indi-
vidually unique features. We leverage the unique relationship
between phonemes and pop noises of each individual to extract
location sequence features. This feature is user-dependent, and
the attacker can hardly impersonate the breathing in precise
synchronization at the phonemic level.

B. Impact of Authentication Distance

Since the pop noise caused by breathing while speaking
is mild and directional compared with speech, we study the
impact of the distance between the microphone and the user’s

Replay Impersonation Overall c9

Fig. 10. Overvall accuracy and EER.

11 i 1
Mi6 A-101  Icd-ux565f M200mkill
Replay Devices

Matersb
Attack Types

Fig. 11. Accuracy under different replay devices.

mouth to find the effective distance range. We ask 3 volunteers
to perform 10 trails at different distances. Fig. 13 presents the
accuracy of three different phones. In particular, the accuracy
is satisfactory when the distance ranges from 2 cm to 6 cm
for all phones but decreases sharply beyond 6 cm. When the
distance is larger than 12 cm, the accuracy drops to below
20%, which means the microphone cannot capture the pop
noise information. This is because the breath while speaking
is gentle and its power decreases as the distance increases,
thus the microphone can hardly capture it. In addition, the
accuracy is also be degraded when the distance is too short
since a strong breath will affect the stability of phoneme-pop
sequence.

C. Impact of Authentication Phone

As we know, the microphones of different smartphones
have diverse frequency selectivity [20]. A user may register
in VoicePop using one phone but perform authentication with
another one. Thus we study the performance of our system
on different smartphones. Specifically, we use one phone to
record the information for registration and use the other two
phones for authentication. As shown in Fig. 14, we observe
that VoicePop can resist spoofing attacks with an accuracy of
94.7%, 87.7%, and 88.1% when using Mi6, S7, and C9 as
the phone for registration while the other two for authentica-
tion. Although the performance of VoicePop will inevitably
be worse when using different phones for registration and
authentication, it still produces relatively accurate detection
results. This result demonstrates that VoicePop is robust and
compatible with different phone models.

D. Impact of Passphrase Length

Generally, a longer passphrase provides a stronger secu-
rity but increases the authentication time. We categorize all
passphrases into three types according to the length of words
(2~4, 5~7 and 8~10). Fig. 15 illustrates the accuracy for
different lengths of passphrases for three phones. We observe
that for each smartphone, the accuracy is improved with the
increase in passphrase length. The overall accuracy of three
phones of the longest passphrase is 94.3% , while the shortest
passphrase gets an average accuracy of 91.4%. This is because
that a longer passphrase contains more pop noises and more
distinctions in the phoneme-pop sequence. It is also shown
that VoicePop is able to achieve a very high anti-spoofing
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effectiveness even when the length of the passphrase is less
than 5.

E. Impact of Ambient Noise

The ambient noise usually has high energy at low fre-
quencies [21], [22], which may interfere with the pop noise
detection, thus we evaluate the impact of ambient noise on the
performance of VoicePop. We use three types of smartphones
in four different environments (anechoic chamber, office, road,
and canteen) with various degrees of ambient noise. As shown
in Fig. 16, we can see that the overall accuracy of VoicePop of
three phones in four different environments is all above 89%,
and is as high as 95.1% in the anechoic chamber. The main
reason is that the features of pop noise are different from those
of ambient noise, and can be leveraged for differentiation by
the SVM classifier. This demonstrates that VoicePop is robust
to ambient noise.

V. RELATED WORK

Voice spoofing attacks. The voice biometrics systems have
been adopted by a large number of mobile devices for user
authentication. However, numerous studies have shown that
voice authentication is vulnerable to spoofing attacks [3]-[5].
There are mainly two types of attacks: replay attacks and
impersonation attacks. Replay samples can be produced by
stealthily recording, voice synthesis, and voice conversion. T.
Kinnunen et al. [7] discovered that the EER of voice authenti-
cation systems increased from 1.76% to 30.71% under replay
attacks. Voice synthesis techniques concatenate voice segments
from multiple samples to reconstruct the passphrase of the
legitimate user [23]. Recently, Adobe developed a system
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VoCo [24] to enable users to edit texts and synthesize cor-
responding speeches of a given speaker with only 20 minutes
of voice samples, which may pose severe potential threats to
voice authentication systems Voice conversion attacks convert
the attacker’s voice sample into the victim’s based on the
known acoustic model of the victim using voice morphing
techniques [25], [26]. Impersonation attacks are launched by
attackers who mimic the voice characteristics and speaking
behavior of the victim [S5]. Wu et al. [6] showed that pure
impersonation may produce similar speaking pattern and rate
of the victim, but it’s nearly impossible for the impersonators
to fake the spectral characteristics like formants.

Voice anti-spoofing. The traditional method of defending
against replay attacks are liveness detection [3], [9]-[11], [27],
[28], which examines whether the voice is produced by a live
user or a speaker. For example, VoiceLive [9] measured the
time-difference-of-arrival (TDoA) changes to the two micro-
phones of the smartphone to pinpoint the sound origins within
a live user’s vocal tract for liveness detection, but the user has
to hold the phone at a specific position. In [10], the smartphone
was used as a Doppler radar to transmit a high-frequency
acoustic sound and monitor the reflections of articulators at the
microphone, but the extent of articulatory movements affects
the effectiveness of this countermeasure. Chen er al. [11]
checked the magnetic field emitted from loudspeakers to detect
machine-based spoofing attacks, whereas users need to move
the smartphone with a predefined trajectory around the mouth
while speaking the passphrase. As far as we are concerned,
we are the first to use the features of pop noise to defend
both replay attacks and impersonation attacks. Sayaka Shiota
et al. [14] proposed the pop noise detector, which combines
the single- and the double-channel to detect pop noise. They
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further incorporated the phoneme information for pop noise
detection in [19]. However, their studies rely on the specific
microphone model and can not be applied to mobile devices. In
contrast, our pop noise detection scheme is designed for voice
authentication in mobile devices. We specifically address the
problem that pop noise may be wrongly detected in the replay
audio. The experiment results also confirm that our pop noise
based authentication system is effective against various ways
of attacks and is robust to different phone models and ambient
noises.

VI. CONCLUSION

We presented VoicePop, a practical and effective software-
only anti-spoofing system for voice authentication on smart-
phones. VoicePop identifies a live user by detecting pop noise
naturally incurred by user breathing while speaking close to
the microphone. We leveraged the individually unique relation-
ship between phonemes and pop noises to detect both replay
and impersonation spoofing attacks. Extensive experiments
confirmed that VoicePop is robust in resisting various types
of voice spoofing attacks with different smartphones under
diversified environments. VoicePop can be readily integrated
into existing voice authentication systems on smartphones with
no additional hardware modification, and we believe it has a
promising future application.
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