Malin Daase

Malin Daase
UiT The Arctic University of Norway, Tromsø, Norway · Department for Arctic and Marine Biology

PhD

About

70
Publications
26,094
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,526
Citations
Citations since 2017
42 Research Items
1975 Citations
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
Additional affiliations
May 2009 - March 2014
Norwegian Polar Institute
Position
  • PostDoc Position

Publications

Publications (70)
Article
The copepod Calanus finmarchicus , a key species in the North Atlantic, generally spends the non-productive season by descending into deep waters and entering diapause, a physiological state characterized by reduced metabolism and arrested development. In the open ocean, overwintering depths are below 600 m, where temperature and light conditions a...
Article
Full-text available
Seasonal patterns in mesozooplankton composition, vertical distribution, and timing of reproduction are challenging to study in the open sea due to ocean currents and mix of populations of different origins. Sill fjords, on the other hand, with restricted water exchange, are ideal locations for studying taxa- and community-specific adaptations to t...
Article
Full-text available
The calanoid copepod Calanus glacialis dominates the mesozooplankton biomass in the Arctic shelf seas, but its smaller North Atlantic sibling Calanus finmarchicus is expanding northwards and may potentially replace it if the climate continues to warm. Here we studied the population structure, overwintering strategies, gonad maturation and egg produ...
Article
Full-text available
Throughout all oceans, aggregations of zooplankton and ichthyoplankton appear as horizontal sound scattering layers (SSLs) when detected with active acoustic techniques. Quantifying the composition and density of these layers is prone to sampling biases. We conducted a net and trawl survey of the epipelagic fauna in northern Norway (70˚N) in June 2...
Article
Full-text available
Measures of biological diversity (biodiversity) are important for monitoring the state of ecosystems. Several indices and methods are used to describe biodiversity from field observations. Marine faunal biodiversity is often quantified based on analysis of samples collected using a trawl during research surveys. To monitor spatial and temporal chan...
Article
Full-text available
The traditional view is that the Arctic polar night is a quiescent period for marine life, but recent reports of high levels of feeding and reproduction in both pelagic and benthic taxa have challenged this. We examined the zooplankton community present in Svalbard fjords, coastal waters, and the shelf break north of Svalbard, during the polar nigh...
Article
Full-text available
While marine ecosystems in polar areas were thought to be mostly inactive during the polar night, recent observations in the Arctic highlight that dynamic biological interactions occur across all trophic levels. One particularly interesting observation made repeatedly is the occurrence of Calanus finmarchicus, a key species at the base of the food...
Data
Supplementary table for the article Barth-Jensen et al. (2022). High abundances of small copepods early developmental stages and nauplii strengthen the perception of a non-dormant Arctic winter. Polar Biology
Article
Full-text available
The changing Arctic environment is affecting zooplankton that support its abundant wildlife. We examined how these changes are influencing a key zooplankton species, Calanus finmarchicus, principally found in the North Atlantic but expatriated to the Arctic. Close to the ice-edge in the Fram Strait, we identified areas that, since the 1980s, are in...
Article
Full-text available
Light plays a fundamental role in the ecology of organisms in nearly all habitats on Earth and is central for processes such as vision and the entrainment of the circadian clock. The poles represent extreme light regimes with an annual light cycle including periods of Midnight Sun and Polar Night. The Arctic Ocean extends to the North Pole, and mar...
Article
Full-text available
Effective ocean management requires integrated and sustainable ocean observing systems enabling us to map and understand ecosystem properties and the effects of human activities. Autonomous subsurface and surface vehicles, here collectively referred to as “gliders”, are part of such ocean observing systems providing high spatiotemporal resolution....
Article
Full-text available
Sea-ice macrofauna includes ice amphipods and benthic amphipods, as well as mysids. Amphipods are important components of the sympagic food web, which is fuelled by the production of ice algae. Data on the diversity of sea-ice biota have been collected as a part of scientific expeditions over decades, and here we present a pan-Arctic analysis of da...
Article
Full-text available
Phyto- and zooplankton in Arctic and sub-Arctic seas show very strong seasonal changes in diversity and biomass. Here we document the seasonal variability in the mesozooplankton community structure in a sub-Arctic fjord in Northern Norway based on monthly sampling between November 2018 and February 2020. We combined traditional morphological zoopla...
Article
Full-text available
In situ observations of pelagic fish and zooplankton with optical instruments usually rely on external light sources. However, artificial light may attract or repulse marine organisms, which results in biased measurements. It is often assumed that most pelagic organisms do not perceive the red part of the visible spectrum and that red light can be...
Article
Full-text available
Recent observations from high-latitude marine ecosystems indicate that non-consumptive mortality may be particularly high in Arctic zooplankton during the polar night. Here we have estimated the contribution of dead organisms to the mesozooplankton community in the high Arctic (Svalbard 78–81oN) during the polar night (January), in spring (May) and...
Chapter
Full-text available
The marine pelagic primary production is an important energy source for most Arctic ecosystems, both marine and terrestrial. Single‐celled algae in the water column and in sea ice are at the base of the food web. There are two main drift patterns for sea ice and the upper polar mixed layer in the Arctic Ocean: the Beaufort Gyre (BG) and the Transpo...
Article
Full-text available
Copepods of the genus Calanus have adapted to high levels of seasonality in prey availability by entering a period of hibernation during winter known as diapause, but repeated observations of active Calanus spp. have been made in January in high latitude fjords which suggests plasticity in over-wintering strategies. During the last decade, the peri...
Chapter
Full-text available
Pelagic communities play a key role in Arctic ecosystems. Although zooplankton occupy several different trophic levels in the food chain, their primary niche is often considered that of a link between pelagic and ice-associated primary production on one side and higher trophic levels on the other. In fact, most of the biological energy (organic car...
Article
Full-text available
For organisms that remain active in one of the last undisturbed and pristine dark environments on the planet—the Arctic Polar Night—the moon, stars and aurora borealis may provide important cues to guide distribution and behaviours, including predator-prey interactions. With a changing climate and increased human activities in the Arctic, such natu...
Article
Full-text available
Apherusa glacialis is a common, sea ice-associated amphipod found throughout the Arctic Ocean and has long been considered permanently associated with the sea ice habitat. However, pelagic occurrences of A. glacialis have also been reported. It was recently suggested that A. glacialis overwinters at depth within the Atlantic-water inflow near Svalb...
Article
Full-text available
Mesopelagic fish and zooplankton are consistently found in the high Arctic, but their assemblage and trophic relationships change between summer and winter.
Chapter
Zooplankton in Kongsfjorden, Svalbard, is shaped by irregular advection of seawater from the West Spitsbergen Current as well as input of freshwater of glacial and riverine origin. The zooplankton community reflects contributions of Arctic vs. Atlantic water masses in the fjord, and is changing with increasing tem- perature and declining sea ice. H...
Article
Full-text available
The northern coast of Svalbard contains high-arctic fjords, such as Rijpfjorden (80°N 22°30'E). This area has experienced higher sea and air temperatures and less sea ice in recent years, and models predict increasing temperatures in this region. Part of the West Spitsbergen Current (WSC), which transports relatively warm Atlantic water along the c...
Article
Full-text available
Zooplankton provide the key link between primary production and higher levels of the marine food web and they play an important role in mediating carbon sequestration in the ocean. All commercially harvested fish species depend on zooplankton populations. However, spatio-temporal distributions of zooplankton are notoriously difficult to quantify fr...
Article
Full-text available
Adult males of Calanus copepods in the Arctic are mainly observed between late autumn and late spring, and are seldom recorded during summer. Due to logistical constraints, there are still relatively few studies on zooplankton in high-latitude regions during the winter, and subsequently, little is known about Calanus males. Here, we present data on...
Article
Due to retreating sea ice and predictions of undiscovered oil and gas resources, increased activity in Arctic shelf sea areas associated with shipping and oil and gas exploration is expected. Such activities may accidentally lead to oil spills in partly ice-covered ocean areas, which raises issues related to oil spill response. Net Environmental Be...
Article
Full-text available
Arctic marine ecosystems support fisheries of significant and increasing economic and nutritional value. Commercial stocks are sustained by pelagic food webs with relatively few keystone taxa mediating energy transfer to higher trophic levels, and it remains largely unknown how these taxa will be affected by changing climate and the influx of borea...
Article
Full-text available
Copepods of the genus Calanus play a key role in marine food webs as consumers of primary producers and as prey for many commercially important marine species. Within the genus, Calanus glacialis and Calanus finmarchicus are considered indicator species for Arctic and Atlantic waters, respectively, and changes in their distributions are frequently...
Article
Full-text available
Light is a major cue for nearly all life on Earth. However, most of our knowledge concerning the importance of light is based on organisms’ response to light during daytime, including the dusk and dawn phase. When it is dark, light is most often considered as pollution, with increasing appreciation of its negative ecological effects. Using an Auton...
Article
Full-text available
Planktonic copepods of the genus Calanus play a central role in North Atlantic/Arctic marine food webs. Here, using molecular markers, we redrew the distributional ranges of Calanus species inhabiting the North Atlantic and Arctic Oceans and revealed much wider and more broadly overlapping distributions than previously described. The Arctic shelf s...
Article
Full-text available
Zooplankton vertical migration enhances the efficiency of the ocean biological pump by translocating carbon (C) and nitrogen (N) below the mixed layer through respiration and excretion at depth. We measured C and N active transport due to diel vertical migration (DVM) in a Svalbard fjord at 79°N. Multifrequency analysis of backscatter data from an...
Article
Full-text available
The polar night in the Arctic is characterized by up to six months of darkness, low temperatures and limited food availability. Biological data on species composition and abundance during this period are scarce due to the logistical challenges posed when sampling these regions. Here, we characterize the plankton community composition during the pol...
Article
We compare and contrast the ecological impacts of atmospheric and oceanic circulation patterns on polar and sub-polar marine ecosystems. Circulation patterns differ strikingly between the north and south. Meridional circulation in the north provides connections between the sub-Arctic and Arctic despite the presence of encircling continental landmas...
Article
Full-text available
Diel vertical migration (DVM) of zooplankton is considered less prominent at high latitudes where diel changes in irradiance are minimal during periods of midnight sun and polar night, leaving zooplankton without a temporal refuge and thus eliminating a key advantage of DVM. One of the shortcomings of previous DVM studies of zooplankton based on ne...
Article
Full-text available
The current understanding of Arctic ecosystems is deeply rooted in the classical view of a bottom-up controlled system with strong physical forcing and seasonality in primary-production regimes. Consequently, the Arctic polar night is commonly disregarded as a time of year when biological activities are reduced to a minimum due to a reduced food su...
Article
Full-text available
The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean-sea ice-atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underly...
Article
Full-text available
Several recent lines of evidence indicate that the polar night is key to understanding Arctic marine ecosystems. First, the polar night is not a period void of biological activity even though primary production is close to zero, but is rather characterized by a number of processes and interactions yet to be fully understood, including unanticipated...
Article
Full-text available
A gigantic light experiment is taking place in the Arctic. Climate change has led to substantial reductions in sea ice extent and thickness in the Arctic Ocean. Sea ice, particularly when snow covered, acts as a lid hindering light to reach the waters underneath. Less ice will therefore mean more light entering the water column, with profound effec...
Article
Full-text available
The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime thro...
Data
The increasing CO2 concentration in the atmosphere caused by burning fossil fuels leads to increasing pCO2 and decreasing pH in the world ocean. These changes may have severe consequences for marine biota, especially in cold-water ecosystems due to higher solubility of CO2. However, studies on the response of mesozooplankton communities to elevated...
Article
Full-text available
During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded wi...
Article
Full-text available
The timing of reproductive events of Calanus glacialis is closely coupled to the two major marine primary production events in the Arctic: the ice algal and phytoplankton blooms. Reproductive strategies vary between different physical and biological environments of the European and Canadian Arctic. In the Canadian Beaufort Sea and the high Arctic R...
Article
Full-text available
The increasing CO2 concentration in the atmosphere caused by burning fossil fuels leads to increasing pCO2 and decreasing pH in the world oceans. These changes may have severe consequences for marine biota, especially in cold-water ecosystems due to higher solubility of CO2. However, studies on the response of mesozooplankton communities to elevate...
Article
Full-text available
The effect of ocean acidification on the fatty acid composition of a natural plankton community in the Arctic was studied in a large-scale mesocosm experiment, carried out in Kongsfjorden (Svalbard, Norway) at 79°N. Nine mesocosms of �50m3 each were exposed to 8 different pCO2 levels (from natural background conditions to �1420 μatm), yielding pH v...
Article
The effect of ocean acidification on the fatty acid composition of a natural plankton community in the Arctic was studied in a large-scale mesocosm experiment, carried out in Kongsfjorden (Svalbard, Norway) at 79° N. Nine mesocosms of ~50 m<sup>3</sup> each were exposed to 8 different p CO<sub>2</sub> levels (from natural background conditions to ~...
Article
Full-text available
During a research cruise to the Arctic Ocean in January 2012, we observed high occurrence of carcasses of Calanus spp. We analysed live samples to separate living from dead individuals. In Rijpfjorden, an Arctic fjord in north-eastern Svalbard, 9-14% of the Calanus population were observed to be dead. At Sofiadjupet, an oceanic basin located at 81....
Article
Full-text available
Recent studies predict that the Arctic Ocean will have ice-free summers within the next 30 years. This poses a significant challenge for the marine organisms associated with the Arctic sea ice, such as marine mammals and, not least, the ice-associated crustaceans generally considered to spend their entire life on the underside of the Arctic sea ice...