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An Algebraic Method for Decoding q-ary Codes via Submodules of Zn

Malihe Aliasgari and Mohammad-Reza Sadeghi

Abstract—In this paper, by using a relation between binomial
ideal and submodules of Zn in [3], a submodule associated with
the integer programming (IP) problem is defined. By computing
the reduced Gröbner basis (RGB) of the submodule, the decoding
problem of non-binary q-ary codes is considered as an integer
program problem. Decoding complexity is investigated and the
effective factors in complexity are also determined. Furthermore,
an example of the decoding method for a 3-ary code is provided.

Index Terms—Gröbner basis, group code, Z-module, integer
programming.

I. INTRODUCTION

THE integer programming (IP) in non-negative integers is
NP-complete. Algorithms with average complexity even

theoretically bad worst case can be useful for a special class of
NP-complete problems. Recently, various algebraic IP solvers
based on the theory of Gröbner basis (GB) have been proposed
[5], [10]. The key idea is to translate an IP problem into an
ideal associated with the constraints of the problem. The GB
is equivalent to the test set of the IP problem. The test set of
the IP problem can be directly computed by using algebraic
software such as CoCoA or Maple. There are two methods
for translating an IP problem into a certain ideal:

• Translating by adding extra variables;

This method was the first connection which established
by Conti and Traverso [5].

• Translating without adding extra variables;

This method is a geometric interpretation of Conti-
Traverso algorithm where introduced by Thomas [10].

The main difficulty of these solvers is the size of the GB
generated by both methods which is quite large.
An extension of Conti-Traverso procedure to solve IP with
modulo arithmetic conditions is proposed by Ikegami and Kaji
[7]. As a consequence, the class of binary codes have been
decoded as an IP problem. In order to carry out the Conti-
Traverso method, the FGLM-based trick [4] has been used to
compute a reduced Gröbner basis (RGB) in [9].

The maximum likelihood decoding (MLD) is one of the
fundamental topics in the theory of error correcting codes.
Many efforts have been devoted to find an efficient algorithm
for the MLD of block codes. The MLD based on an IP problem
for binary linear codes was introduced by Feldman et al. [6].
Also, MLD using GB is reduced into a class of IP [7]. The
hard-decision MLD on the binary symmetric channel consists
of finding an error vector with the smallest Hamming weight,
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such that the sum of the received word with the error vector
is a codeword. A linear programming objective for q > 2 has
been solved [7]. Since the Hamming metric is inefficient for
decoding non-binary codes, the modular IP method in [7] does
not allow one to perform decoding non-binary codes.

The study of binomial ideal derived from arbitrary codes
or lattices is currently of great interest in coding theory, for
example in the framework of decoding methods for binary
codes [4] or algorithms for decoding arbitrary lattices [8]
(integer and non-integer) using GB [1]. The notion of GB
for submodules of Zn was introduced in [3], where it has
been attempted to avoid using Buchberger algorithm in the
computation of GB of pure binomial ideals.

In this work, we propose a new method for solving IP
problem via GB. Our method implements Conti-Traverso
method on Zn-module and based on an IP formulation of
the MLD, a method for decoding q-ary codes is presented.

This work is organized as follow. In Section II we
give a brief sketch to some basic concepts needed in this
work. In Section III we introduce the idea of associating a
Zm+n-module to IP problem and then by using the division
algorithm, non-binary q-ary codes are decoded. Section IV
is devoted to discuss about complexity. Finally, we draw a
conclusion in Section V.

Notations: Throughout the paper, small boldface letters and
capital letters are used to represent vectors and matrices. For
a vector x, we use xj to represent the j-th component of x.
For a matrix X , the matrix Xt denote the transpose of X .

II. GENERAL SETTING

In this section, we briefly introduce some definitions and
results from group code, IP problem, G-norm and GB which
are necessary for the subsequent text.

A. Group code

Let Gi be a finite alphabet of symbols. A block code
C is any subset of a sequence space G = G1 × · · · × Gn.
Elements of C are called codewords. If C = {c1, . . . , cM}
has M codewords then C is an (n,M) code. An Abelian
group block code C is a subgroup of a sequence space G
where each Gi is an Abelian group. Since any finite Abelian
group can be expressed as a direct product of finite cyclic
groups, without loss of generality, we can assume that Gi is
cyclic. If |Gi| = gi for i = 1, . . . , n then Gi is isomorphic
to Zgi , the integer group module gi. So we suppose that
G = Zg1 ×Zg2 ×· · ·×Zgn under addition. If all code symbols
are given from the same alphabet A = {α1, . . . , αq}, then C
is called a q-ary code over A. Also, when each Gi = {0, 1}
the code C is a binary code. More details are given in [2].
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Here, we consider C as a subgroup of q-ary code G =
Zn
q , where Zq = {0, 1, . . . , q − 1}. The minimal subset of

{c1, . . . , cM} which generates C is said a generator set for C.
The dual code C⊥ of C is defined as follow

C⊥ = {c ∈ G : 〈a, c〉 = 0 (mod q), for all a ∈ C},
where 〈a, c〉 is denoted the inner product of vectors a and c.
A matrix H =

[
c∗1 . . . c∗m

]t
whose rows form a spanning set

of C⊥ is called a parity check matrix of C. It follows that C
is the null space of H .

B. Decoding as an integer programming problem

The problem of finding a non-negative integer vector which
minimizes or maximizes a target function with respect to some
linear constraint equations with integer coefficients, is called
an IP problem. Let H ∈ Zm×n, st ∈ Zm and w ∈ Rn. The
IP problem finds an integer vector e ∈ Zn

≥0 such that 〈w, e〉 is
minimized subject to Het = s and it is denoted by IPH,w(s).
The matrix form of the problem is:

IPH,w(s) =

{
minimize 〈w, e〉
subject to

{
Het = s
e ∈ Zn

≥0.

Also, the modular IP for an integer q ≥ 2 is denoted
by IPH,w,q(s) which minimizes 〈w, e〉 subject to Het ≡
s (mod q). In this case H ∈ Zm×n

q and s ∈ Zm
q . A vector

e ∈ Zn
q which satisfies Het ≡ s (mod q) is called optimal if

e minimizes the 〈w, e〉.
The Conti-Traverso algorithm solves the IP problem by

translating it into a problem dealing with polynomials. Then
they introduced a GB to solve IPH,w. Ikegami et al. adapted
the idea of the Conti-Traverso algorithm to solve the modular
IP. The MLD can be considered as an IP problem.

Let C be a code with parity check matrix H and let
c = (c1, . . . , cn) ∈ C be the transmitted codeword. We
consider a baseband model in that it suppresses all of the
modulation and demodulation functions. The corruption of
a codeword by channel noise is modeled as an additive
process. Let r ∈ G be the received word output by the
demodulator and entering the decoder. Based on syndrome
decoding, syndromes of received codewords are computed by
matrix H , i.e. s = Hrt. MLD consists of finding the most
likely codeword c given the observation r. Since Hct = 0
for a codeword c, a null syndrome indicates that a received
word is a codeword. For a non-zero syndrome vector, the
presence of error is detected. In hard-decision MLD for a
binary code C is finding an error vector e = (e1, . . . , en) ∈ Zn

2

with the smallest Hamming weight among all the vectors in
Zn
2 such that the sum of the received word with the error

vector is a codeword. Since the Hamming weight e is equal
to

∑n
i=1 ei, MLD is equivalent to solving IPH,1,2(Hrt) where

1 = (1, . . . , 1).

C. Gröbner bases of Zn-submodules

If a= (a1, . . . , an) and b= (b1, . . . , bn) are in Zn
≥0, then

the degree lexicographic order is defined by a≺lexb, if either∑n
i=0 ai <

∑n
i=0 bi or

∑n
i=0 ai =

∑n
i=0 bi and the left-

most nonzero coordinate of b−a is positive. Also, the degree

reverse lexicographic order is defined by a≺rlexb if either∑n
i=0 ai <

∑n
i=0 bi or

∑n
i=0 ai =

∑n
i=0 bi and the right-

most nonzero coordinate of b−a is positive. We say that b
divides a and write b|a if bi ≤ ai for all i.

For a∈ Zn, we use the decomposition a=a+−a− where
(a+)i = max{ai, 0} and a− = (−a)+ ≥ 0. Define
supp(a) := {i : ai 	= 0} ⊆ {1, . . . , n}. It should be noted
that a+ and a− have disjoint supports and each part of a+

and a− are uniquely determined by a. Boffi and Logar have
introduced the theory of GB on Zn-modules by extending the
order to Zn [3].

We consider a,b ∈ Zn and F = {f1, . . . ,fr} ⊂ Zn such
that f+

i is greater than f−
i with respect to ≺lex or ≺rlex order.

In [3], a reduces to b module F in one step if there exists
i = 1, . . . , r such that either f+

i divides a+ and b=a−f i or
f+
i divides a− and b=a+f i. Also, a reduces to b module

F if there exists b1, . . . ,bk ∈ Zn such that a reduces to b1
in one step module F , b1 reduces to b2 in one step module
F , . . . , bk−1 reduces to bk in one step module F and bk =b.
If none of f+

i divides b+ and b− for all i = 1, . . . , r, then
b is called a reduction of a module F and it is denoted by
Red(a,F).

Definition 1. Let M be a Zn-submodule. A set G =
{g1, . . . ,gs} is a GB of M with respect to the given order if
for every a∈ M there exists gi such that g+

i |a+. Also, G is
called a reduced one if g+

i |g+
j then i = j and none of the g+

i

divides g−
j for all i, j = 1, . . . , s.

Every GB of a Zn-module M forms a set of generators.

D. G-norm

Decoding q-ary codes consists of finding the codeword
with the smallest distance to the received word r. If q = 2
then solving the modular IP problem IPH,1,2(s) where H
is the parity check matrix of the binary linear code and
s = rHt(mod 2), gives the complete decoding of the received
word r. Since Hamming distance can not be stated as a linear
programming problem for a non-binary q-ary codes we resort
on [1] in which an appropriate norm, called the G-norm, has
been introduced. The G-norm is equivalent to the assumed
order on Zn-module. If G is a vector space over Z2 then the
G-norm in G is defined as follows.

Definition 2. Let c = (c1, . . . , cn) be a q-ary codeword in G.
The G-norm of c which is denoted by ‖c‖G is defined as

‖c‖G = c1 + c2 + · · ·+ cn,

where the operations are performed in R.

It should be noted that the G-norm is equivalent to both
degree lexicographic and degree reverse lexicographic orders
[1]. From now on we work with a degree reverse lexicographic
order as a primary order and use the notation ≺ instead of
≺rlex.

Lemma 3. Let a, c ∈ G and c ≺ a. If a is the closest
codeword to c with respect to ≺, then a is the closest codeword
to c with respect to the G-norm ‖.‖G.

Proof: The proof is given in [1].
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III. Z-MODULE ASSOCIATED TO THE INTEGER

PROGRAMMING PROBLEM

In [5] GB is used for solving IPH,w(s). The extension
of this algorithm to solve modular IP was presented in [7].
Also, a hard-decision MLD for a binary code via IP and GB
was presented. We use the Conti et al. algorithm for decoding
q-ary codes. Since there is a correspondence between pure
saturated binomial ideals of K[x1, . . . , xn] and Zn-modules,
we consider the constraints of the IP problem IPH,w,q(s) as
a submodule of Zm+n instead of a binomial ideal. In this
section we show how to decode non-binary q-ary codes with
G-norm.

Consider C ⊆ Zn
q as a non-binary q-ary code and H be a

parity-check matrix for the code. Let s = Hrt (mod q). Since
G-norm for every e ∈ G is equal to ‖e‖G =

∑n
i=1 ei, we

assume that w = 1 so that the matrix form of the decoding
group code becomes:

IPH,1,q(s) =

{
minimize ‖e‖G
subject to

{
Het ≡ s (mod q)
e ∈ Zn

q .

Let H =
[
h1 · · · hn

]
be a full rank m×n basis matrix for C⊥

with column vectors hi ∈ Zm
q for i = 1, . . . , n. We consider

H ′ =
[
H |diagm(q)

]t
, where diagm(q) = qIm and Im is an

m×m identity matrix. Now, we define the square (m+n)×
(m+ n) matrix

H� =

[
Ht −In

diagm(q) 0m×n

]
, (1)

where 0m×n ∈ Zm×n is the all zero matrix. We define
two maps ιmn : Zm → Zm+n where ιmn(h1, . . . , hm) =
(h1, . . . , hm, 0, . . . , 0) and πmn : Zm+n → Zn which
πmn(h1, . . . , hm+n) = (hm+1, . . . , hm+n). The map ιmn

extends an m-tuple vector to an m + n vector by adding n
zero components at the end of the vector and πmn maps an
(m+ n)-tuple vector to its last n components.

Let M be a Zm+n-submodule associated to the row vectors
of H�. By using the method in [3] the GB of submodule
M which avoids the Buchberger algorithm is computed. Let
G denote the RGB associated to M. We consider G as the
RGB of the constraint of IPH,1,q problem. To present decoding
method for non-binary q-ary codes via IP, first we state the
following Lemma.

Lemma 4. Let H ∈ Zm×n
q and s ∈ Zm

q . Consider G as
the RGB of Zm+n-module associated to the row vectors of
H�. If s is a linear combination of column vectors of H then
Red(ιmn(s),G) ∈ 0m × Zn.

Proof: Let ιmn(s)i be the i-th component of the vector
ιmn(s). Since s is a vector in a column space of the matrix
H , we have

ιmn(s)i =

{
hi1x1 + · · ·+ hinxn i = 1, . . . ,m,
0 i = m+ 1, . . . ,m+ n,

where xi ∈ R. We replace zero components of ιmn(s)i with
xi − xi, i = m + 1, . . . ,m + n. In other words, ιmn(s)
decompose to sum of the following vectors
(h11x1 + · · ·+ h1nxn, . . . , hm1x1 + · · ·+ hmnxn, x̄1, . . . , x̄n)

+(0, . . . , 0, x1, . . . , xn)
= x1h�

1 + · · ·+ xnh�
n + (0, . . . , 0, x1, . . . , xn)

where −xi is denoted by x̄i and h�
i is the i-th row vector of

matrix H�. Since x1h�
1 + · · ·+ xnh�

n ∈ G, thus the reduction
of ιmn(s) with respect to G is a vector in 0m × Zn.

Now by using the above Lemma we state our main theorem.

Theorem 5. Using the previous notation, if s ∈ Zm
q is in a

column space of H then πmn(Red(ιmn(s),G)) is the optimal
solution of IPH,1,q(s).

Proof: Let h�
i , h′

i be the i-th row vector of matrices
H�, H ′, respectively. For i = 1, . . . , n, h�

i is obtained from
h′
i where its (m + i)-th component in h�

i is −1. Also in
computing the reduction of ιmn(s) it is checked whether or
not g+

i |ιmn(s)+ for gi ∈ G. Equivalently, ιmn(s) is subtracted
from vectors of M because G is a generator for M. The
n last coordinates of a vector ιmn(s) are zero. Because of
the existence of −In matrix in H�, in each subtraction, the
(m + i)-th component one unit increases for i = 1, . . . , n.
Furthermore, s is in a column space of H thus by Lemma 4,
Red(ιmn(s),G) ∈ 0m × Zn. Let e = πmn(Red(ιmn(s),G))
where satisfies in equation Het ≡ s (mod q). Meanwhile,
the reduction is performed by considering degree lexico-
graphic or degree reverse lexicographic order. By Lemma 3,
these orders are compatible with G-norm. The uniqueness of
Red(ιmn(s),G) results having the least G-norm among all n-
tuple vectors. So e has the least G-norm and it is the optimal
solution.

Let C be a q-ary code with parity-check matrix H . Also
assume that G is a RGB associated with the constraint of
IPH,1,q(Hrt) where r is a received word. Since Hrt is a vector
in column space of H , by Theorem 5 hard-decision decoding
of r with respect to the G-norm is the codeword c = r − e
where e = πmn(Red(ιmn(Hrt),G)).

We want to find a codeword c∗ which satisfies in
minc∗∈C{‖r − c∗‖G, ‖c∗ − r‖G}. We observe that c is the
closest codeword to r with respect to the G-norm. Once
again solve IPH,1,q(s′), where s′ = Hrt0(mod q) and r0 =
−r(mod q). In fact, the vector e′ which is the reduction
of the vector s′ by G is the optimal solution of IPH,1,q(s′).
Let c′ = r0 − e′, so c′ is the closest codeword to r0 with
respect to the G-norm. Put c0 = −c′(mod q), thus ‖c0 − r‖
is minimized. Finally, we choose either c or c0 whichever
minimizes {‖r − c‖G, ‖c0 − r‖G}. If ‖e‖ = ‖e′‖ then we
choose c or c0 randomly. This codeword is the nearest one to
the received vector r which its error vector has the smallest
G-norm.

Example 6. Let C be a 3-ary code in Z5
3, whose parity-check

matrix is H =
[
1 1 2 0 0
0 1 0 1 1

]
. Let r = (2, 2, 2, 0, 0)

be a received word and e = (e1, . . . , e5) be an error vector.
Solving the following IP problem is equivalent to decoding r
to the nearest codeword of 3-ary code C,

IPH,1,3(s) =

⎧⎪⎨
⎪⎩

minimize ‖e‖G

subject to

⎧⎨
⎩

e1 + e2 + 2e3 = 2(mod 3)
e2 + e4 + e5 = 2(mod 3)
ei ∈ Z3, i = 1, . . . , 5

where s ≡ rHt(mod 3) = (2, 2). Based on our method, we
consider the Z12-submodule associated with the row vectors
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of matrix H�

H� =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 3 0 0 0 0 1̄ 0 0 0 0
1 1 0 3 0 0 0 0 1̄ 0 0 0
2 0 0 0 3 0 0 0 0 1̄ 0 0
0 1 0 0 0 3 0 0 0 0 1̄ 0
0 1 0 0 0 0 3 0 0 0 0 1̄
3 0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

G the RGB associated with the submodule is⎧⎪⎨
⎪⎩

000000300000, 000003000000, 000030000000, 000300000000
003000000000, 010000000001̄, 000000000003, 000000000011̄
10000001̄0000, 0000000201̄00, 000000010100, 00000001̄0200
000000011̄001, 000000001101̄, 0000000111̄01̄, 000000002̄102
0000000021̄01, 00000001̄1002̄, 000000003000

⎫⎪⎬
⎪⎭ .

The reduction of ι75(s) with respect to G is computed and
π75(Red(ι75(s),G)) = (02000). Thus e = (02000) and c =
r− e = (20200). Since ‖e‖G = 2 	= 1, we compute the reduc-
tion of ι75(s′) for s′ = r0Ht and r0 = −r(mod 3) = (11100).
Therefore π75(Red(ι75(s′),G)) = (01000), e′ = (01000)
and c′ = (10100). Since ‖e′‖G = 1 is less than ‖e‖G,
c0 = −c = (20200) is the desired codeword. In this case,
c is equal to c0.

IV. DISCUSSION ON COMPLEXITY

By and large, for decoding q-ary codes via G-norm we
solve the IP problem twice and as a consequence we compute
the reduction by G twice. Thus, the main part of the decoding
complexity is due to the division algorithm. The reduction in
submodules of Zn is equivalent to subtraction of vectors.

We analyze the complexity by counting the number of re-
quired arithmetic operations. Hereafter, we set ιmn(h′

r) = υr.
To obtain the complexity we prove the following Lemma.

Lemma 7. Let G = {g1, . . . ,gt} be a RGB of Zm+n-module
M associated with q-ary code C ⊆ Zn

q . Then −q ≤ glj ≤ q
for j = 1, . . . ,m+ n and l = 1, . . . , t.

Proof: Let K[x1, . . . , xm+n] denote the polynomial ring
over field K . Consider Xb = xb1

1 . . . x
bm+n

m+n where b ∈ Zm+n
≥0 .

Given any point c = (c1, . . . , cm+n) ∈ Zm+n
≥0 we use the

notation Xc = Xc+ −Xc− . The following binomial ideal

I = (Xυ1 − xm+1, . . . , X
υn − xm+n, x

q
1 − 1, . . . , xq

m − 1)

is equivalent to M. Let GI be a GB of I . Exponents of
binomials in GI are equivalent to vectors in G. Basically,
the accuracy of our claim depends on existence of xq

k − 1,
1 ≤ k ≤ m . The Buchberger criterion is used to obtain GI .
In the first step the S-polynomials of I for 1 ≤ k, k′ ≤ m and
1 ≤ r, s ≤ n, are as follows

S(Xυr − xm+r, X
υs − xm+s) =

xm+sX
υr−xm+rX

υs

gcd(Xυr ,Xυs ) ,

S(Xυr − xm+r, x
q
k − 1) =

Xυr−xq
kxm+r

x
υrk
k

,

S(xq
k − 1, xq

k′ − 1) = xq
k − xq

k′ .

The equivalent vectors to these S-polynomials have compo-
nents greater than −q− 1 and less than q+1. The remainders
of these polynomials with respect to I are computed and this
process continues. Thus the application of the Buchberger
criterion to the powers of GI yields the statement.

In each stage of reduction it is checked whether or not
gl

+ divides ιmn(s), l = 1, . . . , t. We assume that g1
+|ιmn(s)

and b1 = Red(ιmn(s),g1). Let γ be the greatest positive
component of vector g1. Since s ≡ rHt(mod q), we consider
all the components of s to be at most q − 1. In the first
stage of the reduction we have at most [ q−1

γ ] subtractions
of (m + n)-tuple vectors. By Lemma 7, 1 ≤ γ ≤ q so
an upper bound on the reduction operation takes place when
γ = 1. Thus at most (m+ n)q subtractions in the first stage
are done. In the next step g+

1 � b1. During the subtraction,
the components of b1 grow up to [ q−1

γ ]q + q − 1 or at most
(q−1)(q+1). We choose g1, . . . ,gt, where during the division
algorithm none of the vectors g+

1 , . . . ,g
+
l−1 divides bl. This

procedure continues in the same manner. In the l-th stage at
most (m + n)(q − 1)(q + 1)l−1 subtractions are done and
0 ≤ blk ≤ (q− 1)(q+1)l. Hence the complexity of reduction
is bounded above by∑t

l=1(m+ n)(q − 1)(q + 1)l−1 ≤ (m+ n)(q + 1)t,

where t, n,m and q are the number of elements in GB, the
length and the dimension of q-ary code, respectively.

V. CONCLUSION

In a nutshell, the main result of this paper is decoding q-
ary codes as an IP problem. In the previous works, binary
codes had been decoded via binomial ideals associated with
the IP problem. In this paper, we use G-norm to decode non-
binary q-ary codes and consider an IP problem of decoding as
a submodules of Zn. The number of elements in GB, length,
dimension and character of q-ary code play a key role in the
decoding complexity.
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