Makoto MizunamiHokkaido University | Hokudai · Faculty of Science
Makoto Mizunami
Ph.D.
About
157
Publications
22,925
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,409
Citations
Introduction
Studying insect brain and behavior, focusing of mechanisms of learning and memory.
Additional affiliations
January 2004 - December 2011
January 1997 - December 2010
January 1999 - present
Publications
Publications (157)
Pavlovian conditioning is a ubiquitous form of associative learning that enables animals to remember appetitive and aversive experiences. Animals possess appetitive and aversive conditioning systems that memorize and retrieve appetitive and aversive experiences. Here, we addressed a question of whether integration of competing appetitive and aversi...
Periplaneta cockroaches use periplanone analogs as female sex pheromones to attract males. We previously identified two periplanone receptor genes, PameOR1 and PameOR2 , in the American cockroach Periplaneta americana . Here, we report the identification of PameOR1-like , an additional olfactory receptor resembling PameOR1 in P. americana . PameOR1...
Many animals use multi-component sex pheromones for mating, but the specific function and neural processing of each pheromone component remain unclear. The cockroach Periplaneta americana is a model for studying sex pheromone communication, and an adult female emits major and minor sex pheromone components, periplanone-B and -A (PB and PA), respect...
Acetylcholine (ACh) is a major excitatory neurotransmitter in the insect central nervous system, and insect neurons express several types of ACh receptors (AChRs). AChRs are classified into two subgroups, muscarinic AChRs and nicotinic AChRs (nAChRs). nAChRs are also divided into two subgroups by sensitivity to α-bungarotoxin (α-BGT). The cricket G...
Novel genes have the potential to drive the evolution of new biological mechanisms, or to integrate into preexisting regulatory circuits and contribute to the regulation of older, conserved biological functions. One such gene, the novel insect-specific gene oskar, was first identified based on its role in establishing the Drosophila melanogaster ge...
Aminergic neurons mediate reward signals in mammals and insects. In crickets, we showed that blockade of synaptic transmission from octopamine neurons (OANs) impairs conditioning of an odor (conditioned stimulus, CS) with water or sucrose (unconditioned stimulus, US) and execution of a conditioned response (CR) to the CS. It has not yet been establ...
Social learning is found in many animals, but its mechanisms are not understood. We previously showed that a cricket that was trained to observe a conspecific staying at a drinking apparatus exhibited an increased preference for the odor of that drinking apparatus. Here we investigated a hypothesis that this learning is achieved by second-order con...
Novel genes have the potential to drive the evolution of new biological mechanisms, or to integrate into pre-existing regulatory circuits and contribute to the regulation of older, conserved biological functions. One such gene, the novel insect-specific gene oskar , was first identified based on its role in establishing the Drosophila melanogaster...
In associative learning in mammals, it is widely accepted that learning is determined by the prediction error, i.e., the error between the actual reward and the reward predicted by the animal. However, it is unclear whether error-based learning theories are applicable to the learning occurring in other non-mammalian species. Here, we examined wheth...
Conditioned taste aversion (CTA) is a form of classical conditioning in which animals associate the taste of a food with illness caused by toxin contained in the food. CTA in mammals is achieved with a long interval of up to several hours between food ingestion and illness induced by LiCl injection. Insects also exhibit CTA, but not much is known a...
Insects detect odors via a large variety of odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). The insect OR is a heteromeric complex composed of a ligand-specific receptor and the co-receptor (ORco). In this study, we identified the ORco gene of the cockroach, Periplaneta americana (PameORco), and performed RNA interference (RN...
In Pavlovian conditioning in mammals, two theories have been proposed for associations underlying conditioned responses (CRs). One theory, called S-S theory, assumes an association between a conditioned stimulus (CS) and internal representation of an unconditioned stimulus (US), allowing the animal to adjust the CR depending on the current value of...
The effect of repetitive training on learned behavior has been an important subject in neuroscience. In instrumental conditioning in mammals, learned action early in training is often goal-driven and controlled by outcome expectancy, but as training progresses, it becomes more habitual and insensitive to outcome devaluation. Similarly, we recently...
Many animals acquire biologically important information from conspecifics. Social learning has been demonstrated in many animals, but there are few experimental paradigms that are suitable for detailed analysis of its associative processes. We established procedures for appetitive and aversive social learning with living and dead conspecifics in we...
The basic organization of the olfactory system has been the subject of extensive studies in vertebrates and invertebrates. In many animals, γ-aminobutyric acid (GABA)-ergic neurons inhibit spike activities of higher-order olfactory neurons and help sparsening of their odor representations. In the cockroach, two different types of GABA-immunoreactiv...
Female Periplaneta americana cockroaches emit two cooperatively working pheromone components, peripla-none-B (PB) as a long-range attractant and periplanone-A (PA) as a short-range arrestant, and males develop enlarged glomeruli for processing them separately in the first-order olfactory center. Using intracellular recordings and neuronal labelings...
The mushroom body of the insect brain participates in processing and integrating multimodal sensory information and in various forms of learning. In the field cricket, Gryllus bimaculatus, dopamine plays a crucial role in aversive memory formation. However, the morphologies of dopamine neurons projecting to the mushroom body and their potential tar...
The effect of repetitive training on learned actions has been a major subject in behavioural neuroscience. Many studies of instrumental conditioning in mammals, including humans, suggested that learned actions early in training are goal-driven and controlled by outcome expectancy, but they become more automatic and insensitive to reduction in the v...
Elucidation of the conditions in which associative learning occurs is a critical issue in neuroscience and comparative psychology. In Pavlovian conditioning in mammals, it is thought that the discrepancy, or error, between the actual reward and the predicted reward determines whether learning occurs. This theory stems from the finding of Kamin’s bl...
Unraveling the molecular mechanisms underlying memory formation in insects and a comparison with those of mammals will contribute to a further understanding of the evolution of higher-brain functions. As it is for mammals, insect memory can be divided into at least two distinct phases: protein-independent short-term memory and protein-dependent lon...
Animals rely on olfaction to navigate through complex olfactory landscapes, but the mechanisms that allow an animal to encode the spatial structure of an odorous environment remain unclear. To acquire information about the spatial distribution of an odorant, animals may rely on bilateral olfactory organs and compare side differences of odor intensi...
Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other...
Background
Facultative parthenogenesis, seen in many animal phyla, is a reproductive strategy in which females are able to generate offspring when mating partners are unavailable. In some subsocial and eusocial insects, parthenogenesis is often more prevalent than sexual reproduction. However, little is known about how social cooperation is linked...
Background:
Cephalopods exhibit unique behaviors such as camouflage and tactile learning. The brain functions correlated to these behaviors have long been analyzed through behavioral observations of animals subject to surgical manipulation or electrical stimulation of brain lobes. However, physiological methods have rarely been introduced to inves...
In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. The prediction error theory has been proposed to account for the finding of a blocking phenomenon, in which pairing of a stimulus X with an unconditioned stimulus (US) could block subseque...
Elucidation of neural mechanisms of learning and memory in insects and their comparison with those in mammals should help to deepen our understanding of evolution of the brain and behavior in animals. Our studies on Pavlovian (classical) conditioning in crickets suggested that octopamine (OA), the invertebrate counterpart of noradrenaline, and dopa...
In animals, sensory processing via parallel pathways, including the olfactory system, is a common design. However, the mechanisms that parallel pathways use to encode highly complex and dynamic odor signals remain unclear. In the current study, we examined the anatomical and physiological features of parallel olfactory pathways in an evolutionally...
Insects have sophisticated learning abilities despite the relative simplicity of their central neural systems, which consist of small numbers of neurons as compared to vertebrates. Among insects, crickets (Gryllus bimaculatus) exhibit the most robust olfactory learning and memory. In this chapter, we describe protocols for classical conditioning an...
Crickets have excellent capabilities for olfactory and visual learning and thus are useful organisms in which to study the mechanisms of learning and memory. Our studies on crickets have revealed detailed information about signaling cascades underlying long-term memory (LTM) formation, namely, that the serial activation of the NO-cGMP system, cycli...
Animals learn through experience and consolidate the memories into long-time storage. Conditioning parameters to induce protein synthesis-dependent long-term memory (LTM) have been the subject of extensive studies in many animals. Here we found a case in which a conditioning trial inhibits or facilitates LTM formation depending on the intervals fro...
From authors renowned in the fields of engineering and biology, this is the first book to integrate sensor and actuator technology with bioinspired design. Beginning with detailed descriptions of actuation and sensing mechanisms in plants and animals, the authors move on to apply these principles to synthetic design, offering in-depth knowledge of...
Caffeine is a plant-derived alkaloid that is generally known as a central nervous system (CNS) stimulant. In order to examine the effects of caffeine on higher CNS functions in insects, we used an appetitive olfactory learning paradigm for the cricket Gryllus bimaculatus. Crickets can form significant long-term memories (LTMs) after repetitive trai...
Global inhibition is a fundamental physiological mechanism that has been proposed to shape odor representation in higher-order olfactory centers. A pair of mushroom bodies (MBs) in insect brains, an analogue of the mammalian olfactory cortex, are implicated in multisensory integration and associative memory formation. With the use of single/multipl...
Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has r...
The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine's actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons...
Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, throu...
Detailed structural analyses of the mushroom body which plays critical roles in olfactory learning and memory revealed that it is directly connected with multiple primary sensory centers in Drosophila. Connectivity patterns between the mushroom body and primary sensory centers suggest that each mushroom body lobe processes information on different...
Thermosensation is critically important for survival of all animals. In the cockroach Periplaneta americana, thermoreceptor neurons on antennae and thermosensory interneurons in the antennal lobe have been characterized electrophysiologically, and recent studies using advanced transgenic technologies in the fruit fly Drosophila melanogaster have ad...
Insects are widely used as models to study neural mechanisms of learning and memory. Our recent studies on crickets, together with reports on other insect species, suggest that some fundamental differences exist in neural and molecular mechanisms of learning and memory among different species of insects, particularly between crickets and fruit flie...
Cephalopods have the largest and most complex nervous system of all invertebrates and the brain-to-body weight ratio exceeds those of most fish and reptiles. The brain is composed of lobe units, the functions of which have been studied through surgical manipulation and electrical stimulation. However, it has rarely been investigated how information...
Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in c...
Elucidation of reinforcing mechanisms for associative learning is an important subject in neuroscience. Based on results of our previous pharmacological studies in crickets, we suggested that octopamine and dopamine mediate reward and punishment signals, respectively, in associative learning. In fruit-flies, however, it was concluded that dopamine...
In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but bloc...
Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca2+/CaM and cAMP signaling participates in lo...
Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee Apis mellifera, olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM) are formed upo...
Crickets (Gryllus bimaculatus) and cockroaches (Periplaneta americana) have emerged as pertinent models for studying the neural basis of learning and memory. This is partly because they have excellent capabilities for olfactory and visual learning and partly because their rather large brains allow detailed physiological, pharmacological, and micros...
Many insects exhibit excellent capability of visual learning, but the molecular and neural mechanisms are poorly understood. This is in contrast to accumulation of information on molecular and neural mechanisms of olfactory learning in insects. In olfactory learning in insects, it has been shown that cyclic AMP (cAMP) signaling critically participa...
Sensory preconditioning (SPC) is a procedure to demonstrate learning to associate between relatively neutral sensory stimuli in the absence of an external reinforcing stimulus, the underlying neural mechanisms of which have remained obscure. We address basic questions about neural processes underlying SPC, including whether neurons that mediate rew...
The molecular and neural basis of protein synthesis-dependent long-term memory (LTM) has been the subject of extensive studies in vertebrates and invertebrates. In crickets and honey bees, it has been demonstrated that nitric oxide (NO) signaling plays critical roles in LTM formation, but no experimental system appropriate for electrophysiological...
Many animals utilize sex pheromone for detecting conspecific mates. Sex pheromone is usually a blend of two or more components with similar chemical compositions. The pheromone receivers are equipped with localized olfactory glomeruli in the first-order olfactory center for specifically processing these pheromone components. In the American cockroa...
Context-dependent discrimination learning, a sophisticated form of nonelemental associative learning, has been found in many animals, including insects. The major purpose of this research is to establish a method for monitoring this form of nonelemental learning in rigidly restrained insects for investigation of underlying neural mechanisms. We rep...
The cockroach Periplaneta americana is an evolutionary basal neopteran insect, equipped with one of the largest and most elaborate mushroom bodies among insects. Using intracellular recording and staining in the protocerebrum, we discovered two new types of neurons that receive direct input from the optic lobe in addition to the neuron previously r...
In insects, cholinergic neurons are thought to transmit olfactory conditioned stimulus (CS) to the sites for associating the CS with unconditioned stimulus (US), but the types of acetylcholine (ACh) receptor used by neurons participating in the association have not been determined. In cockroaches, a type of nicotinic ACh receptor specifically antag...
Many animals depend on pheromone communication for successful mating. Sex pheromone in insects is usually released by females to attract males. In American cockroaches, the largest glomerulus (B-glomerulus) in the male antennal lobe (first-order olfactory center) processes the major component of sex pheromone. Using intracellular recordings combine...
We review recent progress in the study of roles of octopaminergic (OA-ergic) and dopaminergic (DA-ergic) signaling in insect classical conditioning, focusing on our studies on crickets. Studies on olfactory learning in honey bees and fruit-flies have suggested that OA-ergic and DA-ergic neurons convey reinforcing signals of appetitive unconditioned...
Glomeruli are structural and functional units in the primary olfactory center in vertebrates and insects. In the cockroach Periplaneta americana, axons of different types of sensory neurons housed in sensilla on antennae form dorsal and ventral antennal nerves and then project to a number of glomeruli. In this study, we identified all antennal lobe...
Social insects exhibit sophisticated communication by means of pheromones, one example of which is the use of alarm pheromones to alert nestmates for colony defense. We review recent advances in the understanding of the processing of alarm pheromone information in the ant brain. We found that information about formic acid and n-undecane, alarm pher...
In most insects, sex pheromone is processed by an enlarged glomerular complex (macroglomerular complex, MGC) in the male antennal lobe (first-order olfactory center). The MGC of the American cockroach consists of two closely located A- and B-glomeruli which are responsible for processing the major sex pheromone components, periplanone-A and -B, res...
Pheromones play major roles in intraspecific communication in many animals. Elaborated communication systems in eusocial insects provide excellent materials to study neural mechanisms for social pheromone processing. We previously reported that alarm pheromone information is processed in a specific cluster of glomeruli in the antennal lobe of the a...
An important component in understanding central olfactory processing and coding in the insect brain relates to the characterization of the functional divisions between morphologically distinct types of projection neurons (PN). Using calcium imaging, we investigated how the identity, concentration and mixtures of odors are represented in axon termin...
In many insect species, sex pheromone is processed by specific, enlarged glomeruli in the antennal lobes of males. In the male American cockroach, two closely located glomeruli (A and B) are responsible for processing the major pheromone components (periplanone-A and -B, respectively), and these collectively form the macroglomerular complex. Affere...