Makoto Kawamukai

Makoto Kawamukai
Shimane University · Faculty of Life and Environmental Science

PhD

About

220
Publications
19,321
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,611
Citations
Additional affiliations
January 1991 - December 1992
January 1989 - December 1991
January 1988 - December 2013
Shimane University

Publications

Publications (220)
Article
Full-text available
Coenzyme Q (CoQ) is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only...
Article
Full-text available
The fission yeast Schizosaccharomyces pombe secretes the extracellular maltase Agl1, which hydrolyzes maltose into glucose, thereby utilizing maltose as a carbon source. Whether other maltases contribute to efficient utilization of maltose and how Agl1 expression is regulated in response to switching of carbon sources are unknown. In this study, we...
Article
Full-text available
Polypeptone is widely excluded from Schizosaccharomyces pombe growth medium. However, the reasons why polypeptone should be avoided have not been documented. Polypeptone dramatically induced cell lysis in the ura4 deletion mutant when cells approached the stationary growth phase, and this phenotype was suppressed by supplementation of uracil. To de...
Article
Full-text available
Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findi...
Article
Coenzyme Q (CoQ) is essential for mitochondrial respiration and as a cofactor for sulfide quinone reductase. Schizosaccharomyces pombe produces a human-type CoQ10. Here, we analyzed CoQ in other fission yeast species. S. cryophilus and S. octosporus produce CoQ9. S. japonicus produces low levels of CoQ10, although all necessary genes for CoQ synthe...
Preprint
The phospholipase B homolog Plb1 and the cAMP-dependent protein kinase (PKA) pathway are required by fission yeast, also known as to Schizosaccharomyces pombe, to grow under KCl stress conditions. Here, we report the relative contributions of Plb1 and the cAMP/PKA pathway during the hypertonic stress response. We show that the plb1∆, cyr1∆, and pka...
Article
A strain of Pseudoalteromonas that degrades agar was isolated from the intestines of an alga-eating fish (Andamia tetradactyla). We named the strain KAN5 and report on the genome sequenced with the Oxford Nanopore Technologies platform. The 3.8-Mbp genome contains 3,428 protein-coding genes, and the genes involved in agar degradation were confirmed...
Preprint
Prenyldiphosphate synthases catalyze the reaction of allylic diphosphates with one or more isopentenyl diphosphate molecules to form compounds such as farnesyl diphosphate, used in e.g. sterol biosynthesis and protein prenylation, as well as longer “polyprenyl” diphosphates, used in ubiquinone and menaquinone biosynthesis. Quinones play an essentia...
Article
Full-text available
Some marine fishes are algae-feeding, and the microorganisms in their digestive tracts produce carbohydrate hydrolyzing enzymes such as agarose and fucosidase, which are potentially interesting resource for new functional enzymes. The purpose of this study was to establish a method for identifying and utilizing characteristic bacteria from the inte...
Article
Full-text available
The cAMP-dependent protein kinase (Pka1) regulates many cellular events, including sexual development and glycogenesis, and response to the limitation of glucose, in Schizosaccharomyces pombe. Despite its importance in many cellular events, the targets of the cAMP/PKA pathway have not been fully investigated. Here, we demonstrate that the expressio...
Article
Full-text available
Momilactone B is a natural product with dual biological activities, including antimicrobial and allelopathic properties, and play a major role in plant chemical defense against competitive plants and pathogens. The pharmacological effects of momilactone B on mammalian cells have also been reported. However, little is known about the molecular and c...
Article
Full-text available
Coenzyme Q (CoQ, ubiquinone) is an essential component of the electron transport system in aerobic organisms. Human type CoQ 10 , which has 10 units of isoprene in its quinone structure, is especially valuable as a food supplement. Therefore, studying the biosynthesis of CoQ 10 is important not only for increasing metabolic knowledge, but also for...
Article
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, proper chromosome segregation, and stress responses in Schizosaccharomyces pombe. We demonstrated that both the cAMP/PKA pathway and glucose limitation play roles in appropriate spindle formation. Overexpression of Mal3 (1–308), an EB1 family pr...
Article
We demonstrate a novel bio‐spectroscopic technique, “simultaneous Raman/GFP microspectroscopy”. It enables organelle specific Raman microspectroscopy of living cells. Fission yeast, Schizosaccharomyces pombe, whose mitochondria are GFP labeled, is used as a test model system. Raman excitation laser and GFP excitation light irradiate the sample yeas...
Article
Full-text available
Coenzyme Q (CoQ) is an essential component of the electron transport system that produces ATP in nearly all living cells. CoQ10 is a popular commercial food supplement around the world, and demand for efficient production of this molecule has increased in recent years. In this study, we explored CoQ10 production in the fission yeast Schizosaccharom...
Article
Full-text available
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, chronological aging, and stress responses in the fission yeast, Schizosaccharomyces pombe. We demonstrated here that Pka1 is responsible for normal growth in the presence of the microtubule-destabilization drug TBZ and proper chromosome segregat...
Data
Expression and localization of Mal3 are not changed in the cgs1Δ and pka1Δ strains. (A) mal3-13Myc (TTP4), cgs1Δ mal3-13Myc (TTP24), and pka1Δ mal3-13Myc (TTP22) strains were cultured in YES liquid medium to mid-log phase (~4 × 106 cells/mL), and after addition of 10 mM HU, the cells were incubated for 4 h to arrest in the S phase. Cells were harve...
Data
Oligonucleotide primers used for making plasmids in this study. (DOCX)
Data
The pka1Δ strain shows normal mitotic microtubules. GFP-atb2 sad1-mRFP (TTP76) and pka1Δ GFP-atb2 sad1-mRFP (TTP218) strains were cultured in EMMLU (EMM+leucine+uracil) liquid medium to mid-log phase (~4 × 106 cells/mL). Cells were cultured for 30 min in EMMLU liquid medium in the presence or absence of 20 μg/mL TBZ. Cells were observed by fluoresc...
Data
Overexpression of +TIP proteins expect Mal3 failed to restore the TBZ-sensitive phenotype in the pka1Δ strains. (A) Wild type (PR109) and pka1Δ (YMP36) strains harboring pREP3X (vector), pREP3X-tip1, pREP3X-tea1, pREP3X-tea2, pREP3X-mal3, pREP41X-alp14, or pREP41X-alp7 were cultured as described in Fig 1C. Culture dilutions were prepared as describ...
Article
DDL1 encodes a mitochondrial phospholipase A1 involved in acyl chain remodeling of mitochondrial phospholipids and degradation of cardiolipin in Saccharomyces cerevisiae. The deletion of DDL1 leads to respiratory growth defects. To elucidate the physiological role of DDL1, we screened for genes that, when overexpressed, suppress the respiratory gro...
Article
Prenylquinones are isoprenoid compounds with a characteristic quinone structure and isoprenyl tail that are ubiquitous in almost all living organisms. There are four major prenylquinone classes: ubiquinone (UQ), menaquinone (MK), plastoquinone (PQ), and rhodoquinone (RQ). The quinone structure and isoprenyl tail length differ among organisms. UQ, P...
Article
α-lipoic acid (ALA) is an essential cofactor for many enzyme complexes in aerobic metabolism, especially in mitochondria of eukaryotic cells where respiration takes place. It also has excellent anti-oxidative properties. The acid has two stereo-isomers, R- and S- lipoic acid (R-LA and S-LA), but only the R-LA has biological significance and is excl...
Article
In Schizosaccharomyces pombe, the transcription factor Rst2 regulates ste11 in meiosis and fbp1 in glucogenesis downstream of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) pathway. Here, we demonstrate that Rst2 regulates additional cellular events. Overexpressed Rst2 elevated the frequency of oval, bent, branched, septat...
Article
Full-text available
A considerable portion of agricultural land in central-east Japan has been contaminated by radioactive material, particularly radioactive Cs, due to the industrial accident at the Fukushima Daiichi nuclear power plant. Understanding the mechanism of absorption, translocation, and accumulation of Cs(+) in plants will greatly assist in developing app...
Article
Cell lysis is induced in Schizosaccharomyces pombe ?ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ?ura4 cells on YE medium was observed when yeast extracts from O...
Article
Full-text available
Coenzyme Q10 (CoQ10), a benzoquinone present in most organisms, plays an important role in the electron-transport chain, and its deficiency is associated with various neuropathies and muscular disorders. CoQ10 is the only lipid-soluble antioxidant found in humans, and for this, it is gaining popularity in the cosmetic and healthcare industries. To...
Article
Full-text available
Coenzyme Q (CoQ) is composed of a benzoquinone moiety and an isoprenoid side chain of varying lengths. The length of the side chain is controlled by polyprenyl diphosphate synthase. In this study, dps1 genes encoding decaprenyl diphosphate synthase were cloned from three fungi: Bulleromyces albus, Saitoella complicata, and Rhodotorula minuta. The p...
Article
Chitosanases belong to glycoside hydrolase families 5, 7, 8, 46, 75 and 80 and hydrolyse glucosamine polymers produced by partial or full deacetylation of chitin. Herein, we determined the crystal structure of chitosanase from the β-proteobacterium Mitsuaria chitosanitabida (McChoA) at 1.75 Å resolution; the first structure of a family 80 chitosana...
Article
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, meiosis, and stress responses in Schizosaccharomyces pombe. We demonstrated that Pka1 is responsible for calcium tolerance. Loss of functional components of the PKA pathway such as Git3, Gpa2, Cyr1, and Pka1 yields a CaCl2-sensitive phenotype, while loss of Cgs1, a regu...
Article
Full-text available
Fungal cell walls are medically important since they represent a drug target site for antifungal medication. So far there is no method to directly visualize structurally similar cell wall components such as alpha-glucan, beta-glucan and mannan with high specificity, especially in a label-free manner. In this study, we have developed a Raman spectro...
Article
Schizosaccharomyces pombe Cap1 has been identified as the (adenylyl) cyclase associated protein. Cap1 was able to bind Cap1 itself and actin. Cap1 localized at the growing tip, and this localization was dependent on the Cap1 P2 region. In a two-hybrid screening using cap1 as bait, we isolated csh3, which encodes a protein of 296 amino acids with an...
Article
Full-text available
Schizosaccharomyces pombe Δura4 cells lyse when grown on YPD medium. A S. pombe non-essential gene deletion library was screened to determine suppressors of the lysis phenotype. Deletion of the pub1 gene, which encoded E3 ubiquitin ligase, strongly suppressed cell lysis in Δura4 cells. The Δpub1 cells displayed high sensitivity to 5-fluorouracil, a...
Article
Coenzyme Q10 (CoQ10) is essential for energy production and has become a popular supplement in recent years. In this study, CoQ10 productivity was improved in the fission yeast Schizosaccharomyces pombe. Ten CoQ biosynthetic genes were cloned and overexpressed in S. pombe. Strains expressing individual CoQ biosynthetic genes did not produce higher...
Article
Mitochondrial Coq10 is a ubiquinone (UQ)-binding protein that belongs to a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain superfamily. Deletion of the COQ10 gene was previously shown to cause a marked respiratory defect in Saccharomyces cerevisiae and Schizosaccharomyces pombe, which indicated that...
Article
The inclusion complex of coenzyme Q10 (CoQ10) by γ-cyclodextrin (γ-CD), CoQ10-CD complex, was recently developed. The addition of the CoQ10-CD complex recovered the growth of a fission yeast mutant strain, Δdps1, which otherwise cannot grow well due to the lack of coenzyme Q producing ability. However, the oxygen consumption rate of this strain was...
Article
Anterograde vesicle transport from the endoplasmic reticulum to the Golgi apparatus is the start of protein transport through the secretory pathway, in which the transport is mediated by coat protein complex II (COPII)-coated vesicles. Therefore, most proteins synthesized on the endoplasmic reticulum are loaded as cargo into COPII vesicles. The COP...
Data
(A) Cell’s culture of the L972 (WT), UMP34 (Δura1), UMP35 (Δura2), UMP36 (Δura3), UMP31 (Δura4), and UMP37 (Δura5) strains were serially diluted 10-fold, plated on the indicated plates and incubated for 3 days at 30°C. For alkaline phosphatase assay, each plate was overlaid for 10, 30 and 60 min with a phosphatase assay solution as in Fig. 1. The a...
Data
Oligonucleotide primers used in this study. (DOCX)
Data
Cellular morphology of a tetrad, 5a (Δura4), 5b (leu1-32 Δura4), 5c (leu1-32) and 5d (wild type), derived by crossing L972 (h−) with PR110 (h+ura4-D18 leu1-32). Cells were grown on YES and YPD. Bar: 10 µm (TIFF)
Article
Fission yeast flocculates non-sexually by induction of the flocculin encoded by gsf2(+) which is controlled by the positive regulator Mbx2. Here we report a novel gene designated gsf1(+) found to be a negative regulator of non-sexual flocculation. We identified gsf1(+) as a multicopy suppressor of a sam2 mutation, which caused growth sensitivity to...
Article
An H3/H4 histone chaperone, Asf1, plays an essential role in maintaining genomic stability in many species, including fission yeast. Here, we showed that overexpression of a CENP-A chaperone Sim3 suppressed the temperature sensitive phenotype of asf1-33 and asf1-30 mutants and the defect in chromatin structure, and prevented the accumulation of DNA...
Article
Small proteins secreted to the extracellular matrix in plants regulate many physiological activities, including pathogen response, material transport, and morphogenesis, but the functions of most small secreted proteins have not been elucidated except for some well-known small secreted proteins. To predict the functions and physiological roles of u...
Article
Full-text available
The histone H3-H4 chaperone Asf1 is involved in chromatin assembly (or disassembly), histone exchange, regulation of transcription, and chromatin silencing in several organisms. To investigate the essential functions of Asf1 in Schizosaccharomyces pombe, asf1-ts mutants were constructed by random mutagenesis using PCR. One mutant (asf1-33(ts)) was...
Article
Panicum meyerianum Nees is a wild relative of Panicum maximum Jacq. (guinea grass), which is an important warm-season forage grass and biomass crop. We investigated the conditions that maximized the transformation efficiency of P. meyerianum by Agrobacterium infection by monitoring the expression of the β-glucuronidase (GUS) gene. The highest activ...
Article
COPII vesicles mediate protein transport from ER to Golgi. Sec13 makes up lattice structure with Sec31 to form COPII vesicles. We analyzed expression of two Arabidopsis thaliana Sec13 homologs, AtSec13A and AtSec13B. AtSec13A was expressed in most parts of seedlings, while AtSec13B was partially expressed. Interaction of AtSec13A or AtSec13B with S...
Article
Full-text available
The cAMP-PKA is the major glucose-sensing pathway that controls sexual differentiation in Schizosaccharomyces pombe. Sequencing from the pka1 locus of recessive sam mutants, in which cells are highly inclined to sexual differentiation, led to the identification of mutations in the pka1 locus in sam5 (pka1-G441E) and sam7 (pka1-G441R). Rst2 and Ste1...
Article
Full-text available
Nine sam mutants that undergo sexual differentiation without requiring starvation in Schizosaccharomyces pombe were previously isolated. In this study, we identified a nonsense mutation on the pka1 locus in the sam6 mutant. pka1 encodes a catalytic subunit of protein kinase A (PKA). Replacement and overexpression of pka1 suppressed the KCl sensitiv...
Article
We made two series of Gateway binary vectors, pGWBs and R4pGWBs, possessing a UDP-N-acetylglucosamine: dolichol phosphate N-acetylglucosamine-1-P transferase (GPT) gene driven by the nopaline synthase promoter (Pnos) as a tunicamycin resistance marker for the transformation of Arabidopsis thaliana. The reporters and tags employed in this system are...
Article
The msa2/nrd1 gene encodes an RNA-binding protein that negatively regulates sexual differentiation of fission yeast Schizosaccharomyces pombe by repressing the Ste11-regulated genes. However, it is not known how Msa2 regulates sexual differentiation, and to characterize its role, we altered the msa2 gene by inducing point mutations and tested the r...
Article
Full-text available
Eukaryotic cells monitor and maintain protein quality through a set of protein quality control (PQC) systems whose role is to minimize the harmful effects of the accumulation of aberrant proteins. Although these PQC systems have been extensively studied in the cytoplasm, nuclear PQC systems are not well understood. The present work shows the existe...
Article
The volatile phenols, to which Saccharomyces cerevisiae converts from phenylacrylic acids including ferulic acid, p-coumaric acid, and cinnamic acid, generate off-flavors in alcoholic beverages such as beer and wine. Using gene disruptants, transformants and cell-free extracts of these strains, we have verified that the adjacent PAD1 (phenylacrylic...
Article
Full-text available
Gap-repair cloning for plasmid construction in budding yeast is very effective and often used. In contrast, the same method is not widely used in fission yeast, because of a shortage of information on it. Here we describe simple and effective gap-repair cloning for plasmid construction using short tracts of flanking homology. By this method, we com...
Article
The length of the isoprenoid-side chain in ubiquinone, an essential component of the electron transport chain, is defined by poly-prenyl diphosphate synthase, which comprises either homomers (e.g., IspB in Escherichia coli) or heteromers (e.g., decaprenyl diphosphate synthase (Dps1) and D-less polyprenyl diphosphate synthase (Dlp1) in Schizosacchar...
Article
Full-text available
Coenzyme Q10 (CoQ10) is a popular food supplement. Earlier, we successfully produced CoQ10 in rice, which normally produces predominately CoQ9. Here we developed efficient production of CoQ10 in rice by introducing the gene for decaprenyl diphosphate synthase into rice sugary and shrunken mutants. These rices produced 1.3 to 1.6 times as much CoQ10...
Article
We developed a new series of Gateway binary vectors for plant transformation, R4L1pGWBs, which allow easy construction of promoter:reporter clones. R4L1pGWBs contain a recombination attR4-attL1-reporter cassette, and thus an attL4-promoter-attR1 entry clone was efficiently incorporated by the Gateway LR reaction, resulting in the generation of an a...
Article
Coenzyme Q (CoQ), also called ubiquinone, is an electron transfer molecule in the respiratory chain; it is also a lipid-soluble antioxidant. Most cereal crops produce mainly CoQ9, which has nine isoprene units, whereas humans produce mainly CoQ10, with 10 isoprene units. CoQ10 is a very popular food supplement. Using the cultivar Nipponbare, we pre...
Article
CoQ (coenzyme Q), an isoprenylated benzoquinone, is a well-known component of the electron-transfer system in eukaryotes. The main role of CoQ is to transfer electrons from NADH dehydrogenase and succinate dehydrogenase to CoQ:cytochrome c reductase in the respiratory chain. However, recent evidence indicates that an involvement in respiration is n...
Article
Full-text available
Sexual differentiation in Schizosaccharomyces pombe is triggered by nutrient starvation and is downregulated by cAMP. Screening programs have identified the moc1/sds23, moc2/ded1, moc3 and moc4/zfs1 genes as inducers of sexual differentiation, even in the presence of elevated levels of cAMP. To investigate possible interactions among Moc1, Moc2, Mo...
Article
Fission yeast requires nutritional starvation to switch the mitotic cell cycle to sexual differentiation, but sam mutants, of which we had isolated nine alleles, mate without the starvation condition. These mutants are useful for understanding the mechanism underlying the way cells sense nutritional starvation and change the cell cycle. To identify...
Article
Full-text available
The moc3 gene was screened out as an inducer of sexual differentiation in fission yeast Schizosaccharomyces pombe. We isolated a novel gene, named ers2, encoding mitochondrial glutamyl tRNA synthetase (mGluRS) as a Moc3 interacting element by the yeast two-hybrid system. Cytoplasmic glutamyl tRNA synthetase (cGluRS) also interacted with Moc3 in a y...