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Abstract—In this paper, we develop an improved particle the model is assumed to be differentiable. Unfortunately,
filtering algorithm for nonlinear states estimation. In case of for highly nonlinear or complex models, the EKF does not
standard particle filter, the latest observation is not conglered usually provide a satisfactory performance. On the othadha
for the evaluation of the weights of the particles as the . . . .
importance function is taken to be equal to the prior density instead Of_ IlnearIZIng_ the model to approximate the mean
function. This choice of importance sampling function simgifies and covariance matrix of the state vector, the UKF uses
the computation but can cause filtering divergence. In cases the unscented transformation to improve the approximation
where the likelihood function is too narrow as compared to te  of these moments. In the unscented transformation, a set of
prior function, very few particles will have significant weights. ; ;

Hence a better proposal distribution that takes the latest samples (called _S|gma points) a_re seleqted and propagated
observation into account is desired. The proposed algoritim throth thef nonlinear model, which prOVIdeS m_ore accurate
consists of a particle filter based on minimizing the Kullbak- approximations of the mean and covariance matrix of the stat
Leibler divergence distance to generate the optimal impodnce vector, and thus more accurate state estimation. Howewer, f

proposal distribution. The proposed algorithm allows the marticle  UKF, the number of sigma points could be small and may not
filter to incorporate the latest observations into a prior updating represent adequately complicated distributions [6].

scheme using the estimator of the posterior distribution tlat = t i t d G . . b
matches the true posterior more closely. In the comparative Or most nonlinear Systems and non-taussian noise ob-

study, the state variables are estimated from noisy measuneents ~ S€rvations, closed-form analytic expression of the paster
of these variables, and the various estimation techniquesra distribution of the state is untractable [7]. To overcomss th

compared by computing the estimation root mean square error drawback, a non-parametric Monte Carlo sampling based
with respect to the noise-free data. The simulation resultshow method called Sequential Monte Carlo method (SMC) (also

that the proposed algorithm, outperforms the standard paricle . o .
filter, the unscented Kalman filter, and the extended Kalman KNOWN as particle filtering (PF)) [8] has recently gained

filter algorithms. popularity. PF methods approximate the posterior prolgbil
distribution by a set of weighted samples, called particles
Keywords—Particle filter, Kullback-Leibler divergence. Since real world problems usually involve high dimensional

random variables with complex uncertainty, the nonparemet
and sample-based estimation of uncertainty (provided by th
The states estimation problem that is addressed here €4F) has thus become quite popular to capture and repregent th
be viewed as an optimal filtering problem [1], in whichcomplex distributionP(z|y) in nonlinear and non-Gaussian
the posterior distribution of the unobserved state, given tmodels [9]. SMC methods offer a number of significant
sequence of observed data and the state evolution modeladsantages over other conventional methods. Howevere sinc
recursively updated. Several state estimation techniaes they use the prior distribution as the importance distidyut
been developed and used in practice. These techniquedéncli8], the latest data observation is not considered and kenta
the extended Kalman filter (EKF), the unscented Kalman filtémto account when evaluating the weights of the particles.
(UKF), and more recently the particle filter (PF). The clagki Even this choice of the importance sampling distributios ha
Kalman Filter (KF) was developed in th®60s [2], and has computational advantages, it can cause filtering divergeinc
been widely used in various engineering and science appases where the likelihood distribution is too small corsgar
cations, including communications, control, machinen@ay, to the prior distribution, very few particles will have sijoant
neuroscience, and many others. In the case where the madeights. Hence, a better proposal distribution that takes t
describing the system is assumed to be linear and Gaudséan/atest observation data into account is needed. Newer igdapt
KF provides an optimal solution [3]. It is known that the KFmethods need to be further developed that incorporaterbette
is computationally efficient; however, it is limited by them feedback and smoothing in the selection or deletion of glagi
universal linear and Gaussian modeling assumptions. &x relnd their weights.
these assumptions, the extended Kalman filter (EKF) [4] andEach of the above estimation methods has its advantages
the unscented Kalman filter (UKF) [5] have been developednd disadvantages. The particle filter can be applied teelarg
In extended Kalman filtering, the model describing the systeparameter spaces, has better convergence propertiessiad ea
is linearized at every time sample (in order to estimate the implement than the UKF, and both of them can provide
mean and covariance matrix of the state vector), and thinsproved accuracy over the EKF. In addition, the proposed
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improved Particle filtering (IPF) algorithm provides a sfgn 1) Particle Filter: A particle filter is an implementation of a
cant improvement over the PF because, unlike the PF whigtursive Bayesian estimator [10]. Bayesian estimatidiege
depends on the choice of sampling distribution used to estih computing the posterigi(zx|y1.x), which is the density
mate the posterior distribution, the proposed improveddétar function of the unobserved state vectgy, given the sequence
filtering algorithm yields an optimum choice of the samplingf the observed datg:.x = {y1, v2, -+, yr}. However,
distribution, which also accounts for the observed datee Tinstead of describing the required posterior distributiora
proposal sampling distribution is obtained by minimizimg t functional form, in this particle filter scheme, it is repeated
Kullback-Leibler divergence (KLD) distance. approximately as a set of random samples of the posterior
The contribution of this work is to propose new improvedlistribution. These random samples, which are called the
particle filtering (IPF) algorithm for states estimationthwi particles of the filter, are propagated and updated acoptdin
better proposal distribution based on minimizing the Kaitlk- the dynamics and measurement models [10]. The advantage
Leibler distance. of the PF is that it is not restricted by the linear and Gaussia
The rest of the paper is organized as follows. In Sectigssumptions, which makes it applicable in a wide range of
I, a statement of the problem addressed in this paper dpplications. The basic form of the PF is simple, but may
presented, followed by description of new improved pagticbe computationally expensive. Thus, the advent of cheap,
filtering (IPF) technique in Section II-B. Then, in Sectidh | powerful computers over the last ten years has been a key
the performances of the various state estimation techsique the introduction and utilization of particle filters inriaus
are compared through their application to estimate thee stapplications.
variables. Finally, some concluding remarks are preseimted For a given dynamical system describing the evolution of
Section V. the states that we wish to estimate, the estimation problem
can be viewed as an optimal filtering problem [10], in which
II. PROBLEM FORMULATION the posterior distributionp(zx|y1.x), iS recursively updated.
. ) o ) Here, the dynamical system is characterized by a Markov
In this section, the ;tates estimation probler_n is formdl,ates»[(?lte evolution modelp(zy|z1-1) = p(zk|zr_1), and an
and then a comparative performance analysis of states egfiservation modelp(yx|zx). In a Bayesian context, the task
mation using improved particle filter, particle filter, ueséed of state estimation can be formulated as recursively cateul
Kalman f|Iter,_ ano_l extended Kalman filter will be conducteq]g the predictive distribution(zy|y1.x—1) and the filtering
for states estimation. distribution p(z |y1.x) as follows,

A. Problem Statement P(zk|yi:e—1) =/ P(2k|2e—1)P(2k—1]Y1:6—1)d2K—1,  (3)

Here, the estimation problem of interest is formulated. Let (el2)p (2] )
a nonlinear state space model be described as follows: and p(zgly1x) = PAYk (k I|? b yl:)k_l
P\Yk|Y1:k—1

(1)  where P(yk|y1:k—1):/ (k|26 )p(2k|y1:6—1)d 2k
RZL‘

= g(z,u,@,w),
Yy = l(z,u,b’,v),

wherez € R" is a vector of the state variables,c R? is  The state vectog, is assumed to follow a Gaussian model,
a vector of the input variableg, € RY is a known parameter z, ~ N (ux, \;), where at any time instark, the expectation
vector,y € R™ is a vector of the measured variables, and j; and the covariance matri¥, are both constants. Thus, the
and! are nonlinear differentiable functions. Discretizing thenarginal state distribution is obtained by integrating rowes
state space model (1), the discrete model can be writtenmagan and covariance matrix as follows,
follows:

2k = f(2e—1,Up—1,00—1,Wp_1), @) (2] 2k—1) = /N(Zk“Mm)\k)p(ﬂk7)\k|zk71)d,ukd)\k7 (4)

Yk = h(zk, uk, O, Vi),

) ) _ ) . The nonlinear nature of the system model leads to intraetabl
which describes the state variables at some time §%Pn  jyieqrals when evaluating the marginal state distribytion
terms of their values at a previous time sép- 1). Let the p(zk|zk—1). Therefore, Monte Carlo approximation is utilized,
process and measurement noise vectors have the foIIowWIgere the joint posterior distributiom(zo.4|y1:x), i approx-

H . _ T —
prope;tles.E[wk] = 0, Elwpwi] = Qu Elue] = 0 and jja0ed by the point-mass distribution of a set of weighted
E[v,v; ] = Ry. The objective is to estimate the state VetharampIes (particlesﬁz(i) é(i)}N e
zk, given the measurements vectgr. Ok Tk Ju=te

N N
B. Description of States Estimation Techniques PN (20:k|Y1:k) = Zf,(f)éz& (dzo0:)/ ng), (5)
Here, the formulations as well as the algorithms of interest = =
(PF and IPF) are described. whered_q) (d 20:,) denotes the Dirac function, an¥l is the

total number of particles. Based on the same set of particles



the marginal posterior probability of interestz;|y1.x), can observations datgo.,. This selection has also been studied

also be approximated as follows: by other researchers. However, this optimal choice suffers
N N from one major drawback. The particles are sampled from
5 _ @5 () the prior densityp(zx|20.x—1) and the integral over the new
zilyie) = 06V o (dz A% 6 p YP\ 2k | 20:k—1 g
P (zelyrix) ; k ch)( k)/; k ©) state need to be computed. In the general case, closed form

In this Bayesian importance sampling (IS) approach, the p‘,;cllrnalytlc expression of the posterior distribution of thatest

. (DN ) R iS untractable [10]. Therefore, the distributigrizy|z0.x—1)
ticles {z..}i=, are sampled from the following distribution, g yhe mogt popular choice of proposal distribution. One of

its advantages is its simplicity in sampling from the _§>rior
functions p(zi|z0.x—1) and the evaluation of weightééZ

(as presented in the previous section). However, the latest
observation is not considered for the computation of the
weights of the particles as the importance density is taken t
be equal to the prior density. The transition pridey|zo.x—1)

m(20:k|Y1:1) :/N(2k|ﬂka/\k)p(ﬂka/\k|zk—1)dﬂkd/\ka (7

Then, the estimate of the augmented statean be approxi-
mated by a Monte Carlo scheme as follows:

N

> (&) (1) | K
k= ka ks (8) does not take into account the current observation gafa
=1 and many particles can be wasted in low likelihood areas.
whereé,(f) are the corresponding importance weights: This choice of importance sampling function simplifies the

_ computational complexity but can cause filtering divergenc
/@ p(yl:k|Zéf3€)p(zO;k [11]). In cases where the likelihood density is too narrow as
x ‘ compared to the prior function, very few particles will have

* ,
Tr(zél?ch/lk) . . .
. o _considerable weights. Next, we present an overview of KLD-
The PF algorithm for state/parameter estimation is suneedri psseq improved particle filter.

(7) )

9)

in Algorithm 1. Improved Particle Filter based on KLD minimizatiorAs
_ _ _ _ mentioned above, the distribution of interest for the state
Algorithm 1: Particle Filtering algorithm takes the form of a marginal posterior distributipfey|y1.x).
'(;‘Ptlﬂityzg 105 Ao The proposed extended Bayesian sampling algorithm (also
or f“:f‘; o named as improved particle filtering, IPF) is proposed for
Importance sampling step: approximating intractable integrals arising in Bayesitatis-
Sample%f;_” ~ W(Z_;i”lz((ﬂ.,l,ym), according the equation (4),  tics. By using a separable approximating distributidey, ) =
and se() = (25,20 _ G(2k|20:-1,y0r) = [1;¢(#4) to lower bound the marginal
Compute (tg)e approximated joint distributiopy (z0:x|y1:x). USiNg |ikelihood, an analytical approximation to the posterioolp-
equation ) - . . e
Evaluate importance weights using equation (9); ab!“ty p(_zk|y1:k) is provided by minimizing the Kullback-
Normalize importance weights: Leibler divergence (KLD):
i % . . 4(2x]20:k—1, Yo:k)
0= I Dy (qllp) = /Q(Zk|20;k71,yo:k)10g ;
() P(2k|20:k—15 Youkl Y1)
’ (10)
Selection step: h
If Negr = W < Nipreshola Resample with where,
i=1\"k . . . N . R N .
replacementV particles{zéf;C N | from the set{E_(fi}iI\Ll G(2k|20:k—1, Yo:ik) = HQ(IMIO:kfl, Yo:k) = 4(2r)q(1r)G(Ar)-
according to the normalised importance weiglﬂg, = Zkz ; i
Compute the estimated state using equation (8); L . i
end Minimizing the KLD subject to the constrairftq(z;)dz, =
Return the augmented state estimation I, [ a(z})d= = 1, the Lagrange multiplier scheme is used

to yield the following approximate distribution [12], [13]

In summary, particle filtering suffers from one major draw-
back. Its efficient implementation requires the ability sorgple

from p(zy|2x—1), which does not take into account the curreqfhere E(.),..:, denotes the expectation operator relative to
k

obse_rveq datay;,, and thus many.pqrtlcles_ can be wasted '!ﬁe distributionq(zi). Therefore, these dependent parameters
low Ilkellhc_)od (sparse) areas. This issue IS ac_idresse(_j_ by can be jointly and iteratively updated. Taking into accotlnet
proposed improved particle filter (IPF), which is descrilied separable approximate distributigtz;_;) at time k — 1, the

the next sub-section. osterior distributiorp(z|y1.x) is sequentially approximated
2) Improved Particle Filter:The choice of optimal proposal P ) {2k Y1k .q y app
according to the following scheme:

function is one of the most critical design issues in impocta
sampling scheme.s. In [19], the optirn_al _p_roposal distr'dmti Plzrlyie) o< p(yrlze)p(zhs e lpw)gp(x),  (12)
P(2k|20:k—1, Yo:1) 1S Obtained by minimizing the variance X

of the importance weights given the states,_; and the where g, (pr) = /P(MkMk—l)CI(Mk—l)dﬂk—l-

(1) o< exp [B (log plyra 21)yp . ge)] (A1)



Hence, the particle$zéf?€}£v:1 are sampled according to theA. Cad System in E. coli (CSEC) Model

following optimal function: Using the metabolic pathways, one can specify the kinetic

OIS (i) (i) N durd orders that are zero. For instance,if does not directly
Qo klyrir) /N(Z’“ aes M) Cptes Al 2= )P (il 2 ) g )\kaiffect z;, the corresponding kinetic orders; and h;; are
. . ] . (13)  zero. Moreover, based on experience [14], the kinetic arder
The recursive estimate of the importance weights can be 5re set to zero to omit a direct reinforcing effect of a
derived as follows: ‘ metabolite on its own production. For example, consider the
/) _ 0 p(y1;k|zéf3€)p(zo:k generic branched pathway which has four dependent vasiable
ko= Yk—1 (i) : x1,...,24 and one independent variablg [14]. The produc-
q(ZO:k|yl:k) . . . .
) id hani il tat tion of x; depends on the independent variable with an
_Equanon (14) provides a mechanism to_ sequen_tla y upBi@ie {piniion effect exerted bys. Hence, the kinetic orderg s,
importance weights, given an appropriate choice of praposa

T ) 15 andhy, are only non-zero. Similarly, one can determine for
distribution, ¢(z.,,[y1.1). Then, the estimate of the augmenteg, -, metabolite which kinetic orders are non-zero and which

fStﬁtezk can be approximated by a Monte Carlo scheme a3, negative such ags. These concentrations are the four
ollows:

(7) )

(14)

N dependent variables, ..., z4 in the following S-system [14],
2 = Zgl(f)z](:), (15) Wwhich also involves one independent variable
i=1

. e . o 1 = oz — fralt
The improved particle filter which based on minimizing KLD

R . e ) ) o — o9 — B2
for proposal distribution generation within a particle €flt T2 = ol B2 (16)
framework is depicted in Algorithm 2. 3 = ozl — Baah gl
s ga1 haa
Algorithm 2: Improved Particle Filtering algorithm T = gy — fazy
INput: vy, 1o, Ao wherew = [, ..., o4, B, ..., Ba, 913, 915, 921, 932, ga1, Pt hoa,
Output: zj hss, hss, hag]. Based on the fact that the rate coefficients

for i =1,2,...do 5 S .
Importance sampling step: and g;’s and all the kinetic orders excepts are positive, the

samplezt”) ~ (=7 [2{") | y1.4), according the equation (13), ~Parameter pre-specified set is definedias—= R% xR_ xRY.

d setz® — (;® (0)y. Eventually, to perform comparison between the techniques,
and setz; ;. = (25,51, %, )i . . . .

Compute the approximated joint distributiopzo.z|y1.x), as the the estimation root mean square errors (RMSE) criteria will
equation (12); be used and calculated on the states (with respect to the nois

Evaluate importance weights, as the equation (14);

Normalize importance weights: free data)’

. RMSE= \/E ((z — 2)?), (17)
7o b

k= ‘ZN (@) wherez (resp.z) is the true state (resp. the estimated state).
e

_ The model (16) is used to simulate the responses; pfio,
Selection step:

It Noys = ——trs— < Nynreanota Resample with 3 and x4 for.Cad System in E. coli (CSEC) as functions of
it (672 o o time as functions. These simulated states, which are assume
. 7 N ~(7 N . . .
replacementV particles{z,, },=, from the SEt{Z_?:k i1 to be noise free, are then contaminated with zero mean
according to the normalised importance weiglfis;, = Z(,Z) Gaussian errors, i.e., a measurement nojsg ~ ./\/(O 02)_
Compute the estimated state, as the equation (15); . . 2 . v
end Considering a value ob; = 0.01 the following data set
Return the augmented state estimatin can be gener_ated. The sampling time useq for discretization
is 0.0Imin. Figure 1 shows the changes in the four state
variables.

I11. SIMULATION RESULTSANALYSIS

In this section, the state estimation techniques (i.e., ,EK%..Estimation of State Variables from Noisy Measurements
UKF, PF and IPF) are compared through their utilization t35iN9 EKF, UKF, PF and IPF
estimate the state variables of the Cad System in E. collhe objective behind this study is compare the performances
(CSEC) [14]. First, a description of the CSEC process modef various he estimation accuracy of EKF, UKF, PF and IPF
is presented, and then one comparative study is conductdgorithms through their application using simulated time
to assess the performances of the proposed algorithm (IREjies metabolic data representing the concentrationewf f
compared to EKF, UKF, and PF techniques. In the comparativeetabolites, i.e.x, 22, 3 andz4. Hence, we consider the
study, the state estimation techniques are used to estthiatestate vector that we wish to estimatg, = [z z2 23 :v4]T,
four state variablesy, x2, x3 andz, for a model of the Cad and the model parameters (i.exw, a2, as, as, 51,52, Bs,
System in E. coli (CSEC) [14]) from noisy measurers of thes®&, ¢13, 921, 932, a1, hi1, hoo, hss, has ) are assumed
variables. to be known. The simulation results of estimating the four

Next, the model of CSEC [14], that will be used in oustatesz, xs2, x3, and x4 using EKF, UKF, PF and IPF are
analysis, will be described. shown in Figures 2(a,b,c,d). Also, the estimation root mean
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Figure 2. Estimation of state variables using various statenation techniques

square errors (RMSE) for the estimated states are shothe IPF provides a significant improvement over the PF, which
in Table I. It can be observed from Figure 2 and Tablei$ due to the fact that the IPF yields an optimal choice of the
that EKF resulted in the worst performance of all estimatiocsampling distributiop(zy|zx—1, yx) over the estimated states
techniques, which is expected due to the limited ability dfy minimizing a KLD criterion that also utilizes the obsedve
EKF to accurately estimate the mean and covariance matdiatayy,.

of the estimated states through lineralization of the maar

process model. The results also show that the PF provides a IV. CONCLUSIONS

significant improvement over the UKF, which is due to the In this paper, we developed an improved particle filtering
fact that, by using UKF, linearizing the process model doedgorithm for nonlinear and non-Gaussian states estimatio
not necessarily provide good estimates of the mean of the case of standard particle filter, the latest observat®on i
state vector and the covariance matrix of the estimatioorernot considered for the evaluation of the weights of the
which are used in state estimation. The results also show tparticles as the importance function is taken to be equal



Table | [12]
ROOT MEAN SQUARE ERROR{RMSE)OF ESTIMATED STATES FOREKF,
UKF, PFAND IPF
[13]
Technique T T2 T3 T4
EKF 0.0694 | 0.1160 | 0.1215 | 0.0311 [14]
UKF 0.0593 | 0.0937 | 0.1129 | 0.0195
PF 0.0009 | 0.0012 | 0.0009 | 0.0012
IPF 0.00078 | 0.0011 | 0.00079 | 0.0009

to the prior density function. This choice of importance
sampling function simplifies the computation but can cause
filtering divergence. In cases where the likelihood funttio

is too narrow as compared to the prior function, very few

particles will have significant weights. Hence a better psab

distribution that takes the latest observation into actasn

desired. The proposed algorithm consists of a particler filte

based on minimizing the Kullback-Leibler divergence dis&a

to generate the optimal importance proposal distributidre

proposed algorithm allows the particle filter to incorperat
the latest observations into a prior updating scheme usiag t

estimator of the posterior distribution that matches thee tr

posterior more closely.
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