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Abstract—In this paper, we develop an improved particle
filtering algorithm for nonlinear states estimation. In case of
standard particle filter, the latest observation is not considered
for the evaluation of the weights of the particles as the
importance function is taken to be equal to the prior density
function. This choice of importance sampling function simplifies
the computation but can cause filtering divergence. In cases
where the likelihood function is too narrow as compared to the
prior function, very few particles will have significant weights.
Hence a better proposal distribution that takes the latest
observation into account is desired. The proposed algorithm
consists of a particle filter based on minimizing the Kullback-
Leibler divergence distance to generate the optimal importance
proposal distribution. The proposed algorithm allows the particle
filter to incorporate the latest observations into a prior updating
scheme using the estimator of the posterior distribution that
matches the true posterior more closely. In the comparative
study, the state variables are estimated from noisy measurements
of these variables, and the various estimation techniques are
compared by computing the estimation root mean square error
with respect to the noise-free data. The simulation resultsshow
that the proposed algorithm, outperforms the standard particle
filter, the unscented Kalman filter, and the extended Kalman
filter algorithms.
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I. I NTRODUCTION

The states estimation problem that is addressed here can
be viewed as an optimal filtering problem [1], in which
the posterior distribution of the unobserved state, given the
sequence of observed data and the state evolution model, is
recursively updated. Several state estimation techniqueshave
been developed and used in practice. These techniques include
the extended Kalman filter (EKF), the unscented Kalman filter
(UKF), and more recently the particle filter (PF). The classical
Kalman Filter (KF) was developed in the1960s [2], and has
been widely used in various engineering and science appli-
cations, including communications, control, machine learning,
neuroscience, and many others. In the case where the model
describing the system is assumed to be linear and Gaussian, the
KF provides an optimal solution [3]. It is known that the KF
is computationally efficient; however, it is limited by the non-
universal linear and Gaussian modeling assumptions. To relax
these assumptions, the extended Kalman filter (EKF) [4] and
the unscented Kalman filter (UKF) [5] have been developed.
In extended Kalman filtering, the model describing the system
is linearized at every time sample (in order to estimate the
mean and covariance matrix of the state vector), and thus

the model is assumed to be differentiable. Unfortunately,
for highly nonlinear or complex models, the EKF does not
usually provide a satisfactory performance. On the other hand,
instead of linearizing the model to approximate the mean
and covariance matrix of the state vector, the UKF uses
the unscented transformation to improve the approximation
of these moments. In the unscented transformation, a set of
samples (called sigma points) are selected and propagated
through the nonlinear model, which provides more accurate
approximations of the mean and covariance matrix of the state
vector, and thus more accurate state estimation. However, for
UKF, the number of sigma points could be small and may not
represent adequately complicated distributions [6].

For most nonlinear systems and non-Gaussian noise ob-
servations, closed-form analytic expression of the posterior
distribution of the state is untractable [7]. To overcome this
drawback, a non-parametric Monte Carlo sampling based
method called Sequential Monte Carlo method (SMC) (also
known as particle filtering (PF)) [8] has recently gained
popularity. PF methods approximate the posterior probability
distribution by a set of weighted samples, called particles.
Since real world problems usually involve high dimensional
random variables with complex uncertainty, the nonparametric
and sample-based estimation of uncertainty (provided by the
PF) has thus become quite popular to capture and represent the
complex distributionP (z|y) in nonlinear and non-Gaussian
models [9]. SMC methods offer a number of significant
advantages over other conventional methods. However, since
they use the prior distribution as the importance distribution
[8], the latest data observation is not considered and not taken
into account when evaluating the weights of the particles.
Even this choice of the importance sampling distribution has
computational advantages, it can cause filtering divergence. In
cases where the likelihood distribution is too small compared
to the prior distribution, very few particles will have significant
weights. Hence, a better proposal distribution that takes the
latest observation data into account is needed. Newer adaptive
methods need to be further developed that incorporate better
feedback and smoothing in the selection or deletion of particles
and their weights.

Each of the above estimation methods has its advantages
and disadvantages. The particle filter can be applied to large
parameter spaces, has better convergence properties and easier
to implement than the UKF, and both of them can provide
improved accuracy over the EKF. In addition, the proposed



improved Particle filtering (IPF) algorithm provides a signifi-
cant improvement over the PF because, unlike the PF which
depends on the choice of sampling distribution used to esti-
mate the posterior distribution, the proposed improved Particle
filtering algorithm yields an optimum choice of the sampling
distribution, which also accounts for the observed data. The
proposal sampling distribution is obtained by minimizing the
Kullback-Leibler divergence (KLD) distance.

The contribution of this work is to propose new improved
particle filtering (IPF) algorithm for states estimation with
better proposal distribution based on minimizing the Kullback-
Leibler distance.

The rest of the paper is organized as follows. In Section
II, a statement of the problem addressed in this paper is
presented, followed by description of new improved particle
filtering (IPF) technique in Section II-B. Then, in Section III,
the performances of the various state estimation techniques
are compared through their application to estimate the state
variables. Finally, some concluding remarks are presentedin
Section IV.

II. PROBLEM FORMULATION

In this section, the states estimation problem is formulated,
and then a comparative performance analysis of states esti-
mation using improved particle filter, particle filter, unscented
Kalman filter, and extended Kalman filter will be conducted
for states estimation.

A. Problem Statement

Here, the estimation problem of interest is formulated. Let
a nonlinear state space model be described as follows:

ż = g(z, u, θ, w),
ẏ = l(z, u, θ, v),

(1)

wherez ∈ R
n is a vector of the state variables,u ∈ R

p is
a vector of the input variables,θ ∈ R

q is a known parameter
vector,y ∈ R

m is a vector of the measured variables, andg
and l are nonlinear differentiable functions. Discretizing the
state space model (1), the discrete model can be written as
follows:

zk = f(zk−1, uk−1, θk−1, wk−1),
yk = h(zk, uk, θk, vk),

(2)

which describes the state variables at some time step(k) in
terms of their values at a previous time step(k − 1). Let the
process and measurement noise vectors have the following
properties:E[wk] = 0, E[wkw

T
k ] = Qk, E[vk] = 0 and

E[vkv
T
k ] = Rk. The objective is to estimate the state vector

zk, given the measurements vectoryk.

B. Description of States Estimation Techniques

Here, the formulations as well as the algorithms of interest
(PF and IPF) are described.

1) Particle Filter: A particle filter is an implementation of a
recursive Bayesian estimator [10]. Bayesian estimation relies
on computing the posteriorp(zk|y1:k), which is the density
function of the unobserved state vector,zk, given the sequence
of the observed datay1:k ≡ {y1, y2, · · · , yk}. However,
instead of describing the required posterior distributionin a
functional form, in this particle filter scheme, it is represented
approximately as a set of random samples of the posterior
distribution. These random samples, which are called the
particles of the filter, are propagated and updated according to
the dynamics and measurement models [10]. The advantage
of the PF is that it is not restricted by the linear and Gaussian
assumptions, which makes it applicable in a wide range of
applications. The basic form of the PF is simple, but may
be computationally expensive. Thus, the advent of cheap,
powerful computers over the last ten years has been a key
to the introduction and utilization of particle filters in various
applications.

For a given dynamical system describing the evolution of
the states that we wish to estimate, the estimation problem
can be viewed as an optimal filtering problem [10], in which
the posterior distribution,p(zk|y1:k), is recursively updated.
Here, the dynamical system is characterized by a Markov
state evolution model,p(zk|z1:k−1) = p(zk|zk−1), and an
observation model,p(yk|zk). In a Bayesian context, the task
of state estimation can be formulated as recursively calculat-
ing the predictive distributionp(zk|y1:k−1) and the filtering
distributionp(zk|y1:k) as follows,

p(zk|y1:k−1) =

∫

Rn

p(zk|zk−1)p(zk−1|y1:k−1)dzk−1, (3)

and p(zk|y1:k) =
p(yk|zk)p(zk|y1:k−1)

p(yk|y1:k−1)
,

where p(yk|y1:k−1) =

∫

Rx

p(yk|zk)p(zk|y1:k−1)dzk.

The state vectorzk is assumed to follow a Gaussian model,
zk ∼ N (µk, λk), where at any time instantk, the expectation
µk and the covariance matrixλk are both constants. Thus, the
marginal state distribution is obtained by integrating over the
mean and covariance matrix as follows,

p(zk|zk−1) =

∫
N (zk|µk, λk)p(µk, λk|zk−1)dµkdλk, (4)

The nonlinear nature of the system model leads to intractable
integrals when evaluating the marginal state distribution,
p(zk|zk−1). Therefore, Monte Carlo approximation is utilized,
where the joint posterior distribution,p(z0:k|y1:k), is approx-
imated by the point-mass distribution of a set of weighted
samples (particles){z(i)0:k, ℓ

(i)
k }Ni=1, i.e.,:

p̂N (z0:k|y1:k) =
N∑

i=1

ℓ
(i)
k δ

z
(i)
0:k

(d z0:k)/

N∑

i=1

ℓ
(i)
k , (5)

whereδ
z
(i)
0:k

(d z0:k) denotes the Dirac function, andN is the
total number of particles. Based on the same set of particles,



the marginal posterior probability of interest,p(zk|y1:k), can
also be approximated as follows:

p̂N (zk|y1:k) =
N∑

i=1

ℓ
(i)
k δ

z
(i)
k

(d zk)/

N∑

i=1

ℓ
(i)
k . (6)

In this Bayesian importance sampling (IS) approach, the par-
ticles {z(i)0:k}

N
i=1 are sampled from the following distribution,

π(z0:k|y1:k) =

∫
N (zk|µk, λk)p(µk, λk|zk−1)dµkdλk, (7)

Then, the estimate of the augmented stateẑk can be approxi-
mated by a Monte Carlo scheme as follows:

ẑk =
N∑

i=1

ℓ
(i)
k z

(i)
k , (8)

whereℓ(i)k are the corresponding importance weights:

ℓ
(i)
k ∝

p(y1:k|z
(i)
0:k)p(z

(i)
0:k)

π(z
(i)
0:k|y1:k)

. (9)

The PF algorithm for state/parameter estimation is summarized
in Algorithm 1.

Algorithm 1: Particle Filtering algorithm
Input : yk, µ0, λ0

Output : ẑk
for i = 1, 2, . . . do

Importance sampling step:
Samplez̃(i)

k
∼ π(z

(i)
k

|z
(i)
0:k−1, y1:k), according the equation (4),

and set̃z(i)0:k = (z
(i)
0:k−1, z

(i)
k

);
Compute the approximated joint distribution,p̂N (z0:k|y1:k), using
equation (5);
Evaluate importance weights using equation (9);
Normalize importance weights:

ℓ̃
(i)
k

=
ℓ
(i)
k∑N

j=1(ℓ
(j)
k

)

Selection step:
If Neff = 1

∑
N
i=1(ℓ

(i)
k

)2
< Nthreshold Resample with

replacementN particles{z(i)0:k}
N
i=1 from the set{z̃(i)0:k}

N
i=1

according to the normalised importance weights,ℓ
(i)
k

= ℓ̃
(i)
k

;
Compute the estimated state using equation (8);

end

Return the augmented state estimationẑk.

In summary, particle filtering suffers from one major draw-
back. Its efficient implementation requires the ability to sample
from p(zk|zk−1), which does not take into account the current
observed data,yk, and thus many particles can be wasted in
low likelihood (sparse) areas. This issue is addressed by the
proposed improved particle filter (IPF), which is describedin
the next sub-section.

2) Improved Particle Filter:The choice of optimal proposal
function is one of the most critical design issues in importance
sampling schemes. In [10], the optimal proposal distribution
p̂(zk|z0:k−1, y0:k) is obtained by minimizing the variance
of the importance weights given the statesz0:k−1 and the

observations datay0:k. This selection has also been studied
by other researchers. However, this optimal choice suffers
from one major drawback. The particles are sampled from
the prior densityp(zk|z0:k−1) and the integral over the new
state need to be computed. In the general case, closed form
analytic expression of the posterior distribution of the state
is untractable [10]. Therefore, the distributionp(zk|z0:k−1)
is the most popular choice of proposal distribution. One of
its advantages is its simplicity in sampling from the prior
functions p(zk|z0:k−1) and the evaluation of weightsℓ(i)k

(as presented in the previous section). However, the latest
observation is not considered for the computation of the
weights of the particles as the importance density is taken to
be equal to the prior density. The transition priorp(zk|z0:k−1)
does not take into account the current observation datayk,
and many particles can be wasted in low likelihood areas.
This choice of importance sampling function simplifies the
computational complexity but can cause filtering divergence
[11]). In cases where the likelihood density is too narrow as
compared to the prior function, very few particles will have
considerable weights. Next, we present an overview of KLD-
based improved particle filter.

Improved Particle Filter based on KLD minimization:As
mentioned above, the distribution of interest for the state
takes the form of a marginal posterior distributionp(zk|y1:k).
The proposed extended Bayesian sampling algorithm (also
named as improved particle filtering, IPF) is proposed for
approximating intractable integrals arising in Bayesian statis-
tics. By using a separable approximating distributionq̂(zk) =
q̂(zk|z0:k−1, y0:k) =

∏
i q(z

i
k) to lower bound the marginal

likelihood, an analytical approximation to the posterior prob-
ability p(zk|y1:k) is provided by minimizing the Kullback-
Leibler divergence (KLD):

DKL (q̂||p) =

∫
q̂(zk|z0:k−1, y0:k) log

q̂(zk|z0:k−1, y0:k)

p(zk|z0:k−1, y0:k|y1:k)
dzk,

(10)
where,

q̂(zk|z0:k−1, y0:k) =
∏

i

q̂(xi
k|x0:k−1, y0:k) = q̂(zk)q̂(µk)q̂(λk).

Minimizing the KLD subject to the constraint
∫
q(zk)dzk =∏

i

∫
q(zik)dz

i
k = 1, the Lagrange multiplier scheme is used

to yield the following approximate distribution [12], [13],

q̂(zik) ∝ exp
[
E (log p(y1:k, zk))∏

j 6=i
q̂(zj

k
)

]
, (11)

whereE(.)
q(zj

k
) denotes the expectation operator relative to

the distributionq(zjk). Therefore, these dependent parameters
can be jointly and iteratively updated. Taking into accountthe
separable approximate distribution̂q(zk−1) at timek− 1, the
posterior distributionp(zk|y1:k) is sequentially approximated
according to the following scheme:

p̂(zk|y1:k) ∝ p(yk|zk)p(zk, λk|µk)qp(µk), (12)

where qp(µk) =

∫
p(µk|µk−1)q̂(µk−1)dµk−1.



Hence, the particles{z(i)0:k}
N
i=1 are sampled according to the

following optimal function:

q̂(z
(i)
0:k|y1:k) =

∫
N (z

(i)
k |µk, λk)p(µk, λk|z

(i)
k−1)p(yk|z

(i)
k )dµkdλk.

(13)
The recursive estimate of the importance weights can be
derived as follows:

ℓ
(i)
k = ℓ

(i)
k−1

p(y1:k|z
(i)
0:k)p(z

(i)
0:k)

q̂(z
(i)
0:k|y1:k)

. (14)

Equation (14) provides a mechanism to sequentially update the
importance weights, given an appropriate choice of proposal
distribution,q̂(z(i)0:k|y1:k). Then, the estimate of the augmented
state ẑk can be approximated by a Monte Carlo scheme as
follows:

ẑk =

N∑

i=1

ℓ
(i)
k z

(i)
k , (15)

The improved particle filter which based on minimizing KLD
for proposal distribution generation within a particle filter
framework is depicted in Algorithm 2.

Algorithm 2: Improved Particle Filtering algorithm
Input : yk, µ0, λ0

Output : ẑk
for i = 1, 2, . . . do

Importance sampling step:
Samplez̃(i)

k
∼ q̂(z

(i)
k

|z
(i)
0:k−1, y1:k), according the equation (13),

and set̃z(i)0:k = (z
(i)
0:k−1, z

(i)
k

);
Compute the approximated joint distribution,p̂(z0:k|y1:k), as the
equation (12);
Evaluate importance weights, as the equation (14);
Normalize importance weights:

ℓ̃
(i)
k

=
ℓ
(i)
k∑N

j=1(ℓ
(j)
k

)

Selection step:
If Neff = 1

∑
N
i=1

(ℓ
(i)
k

)2
< Nthreshold Resample with

replacementN particles{z(i)0:k}
N
i=1 from the set{z̃(i)0:k}

N
i=1

according to the normalised importance weights,ℓ
(i)
k

= ℓ̃
(i)
k

;
Compute the estimated state, as the equation (15);

end

Return the augmented state estimationẑk.

III. S IMULATION RESULTSANALYSIS

In this section, the state estimation techniques (i.e., EKF,
UKF, PF and IPF) are compared through their utilization to
estimate the state variables of the Cad System in E. coli
(CSEC) [14]. First, a description of the CSEC process model
is presented, and then one comparative study is conducted
to assess the performances of the proposed algorithm (IPF)
compared to EKF, UKF, and PF techniques. In the comparative
study, the state estimation techniques are used to estimatethe
four state variables (x1, x2, x3 andx4 for a model of the Cad
System in E. coli (CSEC) [14]) from noisy measurers of these
variables.

Next, the model of CSEC [14], that will be used in our
analysis, will be described.

A. Cad System in E. coli (CSEC) Model

Using the metabolic pathways, one can specify the kinetic
orders that are zero. For instance, ifxj does not directly
affect xi, the corresponding kinetic ordersgij and hij are
zero. Moreover, based on experience [14], the kinetic orders
gii are set to zero to omit a direct reinforcing effect of a
metabolite on its own production. For example, consider the
generic branched pathway which has four dependent variables
x1, ..., x4 and one independent variablex5 [14]. The produc-
tion of x1 depends on the independent variablex5 with an
inhibition effect exerted byx3. Hence, the kinetic ordersg13,
g15 andh11 are only non-zero. Similarly, one can determine for
each metabolite which kinetic orders are non-zero and which
are negative such asg13. These concentrations are the four
dependent variablesx1, ..., x4 in the following S-system [14],
which also involves one independent variablex5:

ẋ1 = α1x
g13
3 xg15

5 − β1x
h11
1

ẋ2 = α2x
g21
1 − β2x

h22
2

ẋ3 = α3x
g32
2 − β3x

h33
3 xh34

4

ẋ4 = α4x
g41
1 − β4x

h44
4

(16)

wherew = [α1, ...., α4, β1, ..., β4, g13, g15, g21, g32, g41, h11, h22,
h33, h34, h44]. Based on the fact that the rate coefficientsαi’s
andβi’s and all the kinetic orders exceptg13 are positive, the
parameter pre-specified set is defined asXw = R

8
+×R

−
×R

9
+.

Eventually, to perform comparison between the techniques,
the estimation root mean square errors (RMSE) criteria will
be used and calculated on the states (with respect to the noise
free data),

RMSE=
√
E ((z− ẑ)2), (17)

wherez (resp.ẑ) is the true state (resp. the estimated state).
The model (16) is used to simulate the responses ofx1, x2,

x3 andx4 for Cad System in E. coli (CSEC) as functions of
time as functions. These simulated states, which are assumed
to be noise free, are then contaminated with zero mean
Gaussian errors, i.e., a measurement noisevk−1 ∼ N (0, σ2

v).
Considering a value ofσ2

v = 0.01 the following data set
can be generated. The sampling time used for discretization
is 0.01min. Figure 1 shows the changes in the four state
variables.

B. Estimation of State Variables from Noisy Measurements
using EKF, UKF, PF and IPF

The objective behind this study is compare the performances
of various he estimation accuracy of EKF, UKF, PF and IPF
algorithms through their application using simulated time-
series metabolic data representing the concentrations of four
metabolites, i.e.,x1, x2, x3 andx4. Hence, we consider the
state vector that we wish to estimate,zk = [x1 x2 x3 x4]

T ,
and the model parameters (i.e.,α1, α2, α3, α4, β1,β2, β3,
β4, g13, g21, g32, g41, h11, h22, h33, h44 ) are assumed
to be known. The simulation results of estimating the four
statesx1, x2, x3, andx4 using EKF, UKF, PF and IPF are
shown in Figures 2(a,b,c,d). Also, the estimation root mean
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Figure 1. Simulated CSEC data used in estimation: state variables (x1, x2, x3, andx4).
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Figure 2. Estimation of state variables using various stateestimation techniques

square errors (RMSE) for the estimated states are shown
in Table I. It can be observed from Figure 2 and Table I
that EKF resulted in the worst performance of all estimation
techniques, which is expected due to the limited ability of
EKF to accurately estimate the mean and covariance matrix
of the estimated states through lineralization of the nonlinear
process model. The results also show that the PF provides a
significant improvement over the UKF, which is due to the
fact that, by using UKF, linearizing the process model does
not necessarily provide good estimates of the mean of the
state vector and the covariance matrix of the estimation error
which are used in state estimation. The results also show that

the IPF provides a significant improvement over the PF, which
is due to the fact that the IPF yields an optimal choice of the
sampling distributionp(zk|zk−1, yk) over the estimated states
by minimizing a KLD criterion that also utilizes the observed
datayk.

IV. CONCLUSIONS

In this paper, we developed an improved particle filtering
algorithm for nonlinear and non-Gaussian states estimation.
In case of standard particle filter, the latest observation is
not considered for the evaluation of the weights of the
particles as the importance function is taken to be equal



Table I
ROOT MEAN SQUARE ERRORS(RMSE)OF ESTIMATED STATES FOREKF,

UKF, PFAND IPF

Technique x1 x2 x3 x4

EKF 0.0694 0.1160 0.1215 0.0311
UKF 0.0593 0.0937 0.1129 0.0195
PF 0.0009 0.0012 0.0009 0.0012
IPF 0.00078 0.0011 0.00079 0.0009

to the prior density function. This choice of importance
sampling function simplifies the computation but can cause
filtering divergence. In cases where the likelihood function
is too narrow as compared to the prior function, very few
particles will have significant weights. Hence a better proposal
distribution that takes the latest observation into account is
desired. The proposed algorithm consists of a particle filter
based on minimizing the Kullback-Leibler divergence distance
to generate the optimal importance proposal distribution.The
proposed algorithm allows the particle filter to incorporate
the latest observations into a prior updating scheme using the
estimator of the posterior distribution that matches the true
posterior more closely.
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