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Abstract High-throughput phenotyping (HTP) 
approaches are potentially useful for designing indi-
rect selection strategies, which consists in the selec-
tion of a primary target trait X based on secondary 
trait Y. Usually, the secondary trait Y is correlated to 
the target trait X and is easier, faster and cheaper to 
measure. In this context, the use of secondary traits 
(such as vegetation indices derived from HTP plat-
forms) could potentially lead to a fast, non-invasive, 
accurate and efficient selection of superior genotypes. 
Considering the lack of information in the literature 
regarding high-throughput phenotyping approaches 

in tropical wheat breeding, this study aimed to (i) 
determine the best stages to carry out image acquisi-
tion for applying multi-spectral vegetation indices for 
genotype evaluation and selection; (ii) evaluate the 
heritability and accuracy of multi-spectral vegetation 
indices; (iii) understand the relationships between 
vegetation indices and target agronomic traits; and 
(iv) evaluate the efficiency of indirect selection via 
UAV-based high-throughput phenotyping. A diver-
sity panel of 49 tropical wheat cultivars was evalu-
ated during the 2022 winter season. Weekly flight 
campaigns were performed to further build the data-
set with multi-spectral vegetation indices, which were 
then analyzed together with four target agronomic 
traits. Statistical analysis based on Mixed Effect 
Model was performed to estimate genetic parameters 
and predict genetic values, which were subjected to 
correlation analysis. Additionally, factor analysis 
was applied, and the factorial scores were used in an 
indirect selection strategy (indirect via HTP). This 
strategy was compared to three alternative strategies: 
direct via grain yield, direct via days to heading, and 
the multi-trait genotype-ideotype distance index. The 
results indicate that vegetation indices are suitable for 
indirect selection strategies and highly efficient for 
the indirect selection of grain yield and cycle. These 
findings will help in the decision making regard-
ing the adoption of remote or proximal sensing-
based approaches in Brazilian public wheat breeding 
programs.

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10681- 024- 03299-1.

C. M. e Silva · J. P. O. Ribeiro · V. S. Signorini · 
G. W. Lima · E. F. T. Vieira · L. de Paula Corredo · 
M. Nardino (*) 
Department of Agronomy, Federal University of Viçosa, 
Viçosa, MG, Brazil
e-mail: nardino@ufv.br

H. C. Mezzomo 
GDM Seeds, Lucas do Rio Verde, MT, Brazil

M. F. Portes 
Department of Agricultural Engineering, Federal 
University of Viçosa, Viçosa, MG, Brazil

G. Morota 
Department of Animal and Poultry Sciences, Virginia 
Polytechnic Institute and State University, Blacksburg, VA, 
USA



 Euphytica          (2024) 220:35 

1 3

   35  Page 2 of 17

Vol:. (1234567890)

Keywords Phenomics · Mixed-model · 
Multivariate-analyses · Triticum aestivum L.

Introduction

Advances in the development of molecular markers 
and genotype sequencing technologies in the last dec-
ades have made high-throughput genotyping possible 
at relatively affordable costs (You et al. 2018). Never-
theless, plant breeding programs still depend on the 
acquisition of high-quality phenotypic information to 
better understand the contribution of genetic varia-
tion to phenotypic variation. In this context, efforts in 
the phenomics field have been focused on developing 
phenotyping platforms to allow accurate evaluation of 
genotypes for further integration of phenotypic infor-
mation with available genomic data (Mir et al. 2019).

Traditional phenotyping methods are commonly 
invasive, laborious, time-consuming, and inefficient, 
limiting genetic gains. Alternatively, phenotyping 
techniques based on remote or proximal sensing allow 
fast and easy acquisition of high-resolution data, as 
well as efficient and accurate evaluation and selection 
of genotypes. Additionally, advances in the develop-
ment of unmanned aerial vehicle (UAV) platforms, 
combined with improvements in computational capa-
bilities for processing UAV-derived image data, have 
enabled the evaluation of several important traits in 
plant breeding programs, including plant height, bio-
mass, leaf area index, tolerance to biotic and abiotic 
stress, nutritional and vegetation indices, for exam-
ple (Volpato et  al. 2021; Feng et  al. 2021). Vegeta-
tion indices are by themselves of particular interest 
because they allow for indirect selection.

In the indirect selection method, a target trait X 
is indirectly selected based on a secondary trait Y, 
which has genetic correlation with the target trait X 
and can be measured via HTP (e.g., vegetation indi-
ces) (Morota et al. 2022). Consequently, selection on 
trait Y can cause corresponding changes on the target 
trait X. In some cases, the indirect selection is a suit-
able strategy to rapidly achieve desired genetic gains 
in the breeding program (Moreira et  al. 2019). This 
is true, especially when measuring the target primary 
trait is costly, laborious and time-consuming.

Several vegetation indices are suitable for being used 
as secondary traits in indirect selection strategies. The 
normalized difference vegetation index (NDVI) (Rouse 

et  al. 1974), one of the most commonly used vegeta-
tion indices in agriculture, is based on the differences 
in reflectance between the near-infrared (NIR) and red 
wavelengths, and can be used to identify vegetation and 
make inferences about vegetative status (Khan et  al. 
2018). NDVI is often associated with higher biomass 
accumulation and growth rate when measured in the 
vegetative stage, and with longer duration of the grain 
filling phase and lower leaf senescence during grain 
filling (Babar et al. 2006). Despite its widespread use, 
NDVI is generally sensitive to the irradiation reflected 
by the soil in areas with low canopy cover (Prudnikova 
et  al. 2019). Therefore, the soil-adjusted vegetation 
index (SAVI) (Huete et al. 1988) has been proposed to 
overcome this problem.

The green normalized difference vegetation index 
(GNDVI), which is based on the differences between 
the NIR and green spectral regions (Gitelson et  al. 
1997), is also widely used. GNDVI, the normalized 
difference red edge index (NDRE) and the simplified 
chlorophyll canopy content index (SCCCI) are sensi-
tive to chlorophyll concentration and highly correlated 
with leaf nitrogen content. For this reason, they have 
been used to monitor nitrogen leaf status (Li et al. 2020;  
Barzin et al. 2022).

In Brazil, some reports highlight the suitability of 
UAV-based image analysis for the evaluation and selec-
tion of genotypes in soybean (Santana et al. 2021; Casa-
grande et al. 2022; Santana et al. 2022a), corn (Santana 
et al. 2022b), elephant grass (Ferreira et al. 2022) and 
eucalyptus (Borges et  al. 2022). However, studies on 
high-throughput phenotyping approaches are needed 
for the evaluation of tropical wheat trials and the design 
of selection strategies. Thus, the present study aimed to 
(i) determine the best stages to carry out image acquisi-
tion for applying multi-spectral vegetation indices; (ii) 
evaluate the heritability and accuracy of multi-spectral 
vegetation indices; (iii) understand the relationships 
between vegetation indices and target agronomic traits; 
and (iv) evaluate the efficiency of indirect selection 
using UAV-based high-throughput phenotyping.

Material and methods

Diversity panel and field trial

Figure  1 summarizes the UAV-based high-through-
put phenotyping process, from the field trial 
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implementation to the analysis of agronomic data and 
vegetation indices.

A diversity panel of 49 tropical wheat genotypes 
released between 1800 and 2021 (Supplementary 
Table  S1) was evaluated in the 2022 winter crop 
season at the Universidade Federal de Viçosa (20° 
45′ 14″ S; 42° 52′ 55″ W; 648  m altitude), Viçosa, 
Minas Gerais State, Brazil. The climate of the region 
is monsoon-influenced humid subtropical climate 
with wet winters and hot summers, average annual 
precipitation between 1300 and 1600 mm, and aver-
age annual temperature of 21 °C (Alvares et al. 2013). 
The genotypes were evaluated in a complete 7 × 7 
lattice design with two replications. The plots were 
two lines with two meters, spaced at 0.20 m, with a 
population density of 350 seeds  m−2. The agronomic 
practices were performed according to the technical 
recommendations for wheat cultivation in the Brazil-
ian Central-South region.

Flight campaign, image acquisition and processing

Eight ground point controls were distributed in the 
experimental area for further geometric correction 
of the orthomosaic map. Their coordinates were 
registered using a global navigation satellite system 
receiver with real-time kinematic correction (Trim-
ble T10 GNSS system, Trimble Inc. Sunnyvale, CA, 
EUA).

The flights were performed using a DJI Matrice 
100 platform (DJI Innovations, Shenzen, China) 
equipped with a MicaSense RedEdge MX multi-
spectral camera (MicaSense, Seattle, WA, EUA). 
The camera has five individual sensors that simul-
taneously capture five spectral bands (one band per 
sensor): 475  nm ± 20  nm (Blue), 560  nm ± 20  nm 
(Green), 668  nm ± 10  nm (Red), 840  nm ± 40  nm 
(NIR) and 717 nm ± 10 nm (RedEdge).

Precision Flight for DJI Drones (PrecisionHawk, 
Raleigh, NC, USA) was used for flight planning. Dur-
ing the planning, an 80% overlap between frontal and 
side photos was defined, as well as a flight height of 
30 m starting from the take-off point. The flights were 
performed once a week, starting from the tillering 
stage until harvesting. All the flights were performed 
under stable light conditions between 11:00 and 
13:00. The radiometric calibration of all the bands 
was performed using images of a reference panel pro-
vided by the manufacturer, which were taken before 

each flight, and the appropriate correction factor was 
extracted from these images with the reference cali-
bration panel. The orthomosaic and georeferencing 
of the images were then performed using Agisoft 
Metashape (Agisoft, 2019) software system.

Agronomic traits and vegetation indices

Days to heading (DH) was evaluated when at least 
50% of the plants in the plots presented exposed 
ears. Five representative plants from each plot were 
collected to evaluate plant height (PH, cm) using a 
graduate ruler. One hundred grains from each plot 
were weighed to assess their mass (HGM, g). After 
physiological maturity, the plots were manually 
harvested to determine grain yield (GY, kg   ha−1). 
Humidity was adjusted to 13% in all plots.

After obtaining and processing the multi-spec-
tral images, the wavelengths available were used to 
calculate six vegetation indices (Table  1) in QGIS 
software, version 3.2. These indices were calculated 
in seven different phenological stages, during the 
development of the crop (Table 2).

Genetic and statistical analyses

Mixed model

The phenotypic values were subjected to mixed effect 
model analysis (Patterson and Thompson 1971; Hen-
derson 1975) to estimate the variance components 
using restricted maximum likelihood (REML) and to 
predict genotypic values using best linear unbiased 
prediction (BLUP). Mixed effect model analysis was 
performed in R software, version 4.2.2 (R Core Team 
2022), using the R package metan (Olivoto and Lúcio 
2020). The following model was considered:

where y is the vector of phenotypic data; r is the vec-
tor of fixed effects of replications added to the over-
all mean; g is the vector of random effects of geno-
types, g ~ N (0,�2

g
 ); b is the vector of random effects 

of blocks nested within replication, b ~ N (0,�2

b
 ); e is 

the vector of random effects of errors, e ~ N (0,�2
e
 ); X, 

Z and W are the incidence matrices of these effects.

y = Xr + Zg +Wb + e
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The significance of the genotype effect was tested 
using the likelihood ratio test (LRT) (Wilks 1938; 
Resende and Alves 2020) as follows:

where LogLF is the logarithm of the restricted like-
lihood function of the full model, and LogLR is the 
logarithm of the restricted likelihood function of the 
reduced model. The significance of the genotype 
effect was tested by the chi-square test at the thresh-
old of 5% and 1%.

The variance components were used to estimate 
the broad-sense heritability as follows:

where h2 is the broad-sense heritability; �̂2
g
 is the gen-

otypic variance and �̂2
p
 is the phenotypic variance.

The selection accuracy was obtained as follows:

where  r̂gg is the selection accuracy; PEV  is the 
prediction error variance; and �̂2

g
 is the genotypic 

variance.

Genetic correlation analysis

The genotypic values were used to estimate the 
genetic correlation coefficients among the traits. 
Genetic correlation analysis was performed using 
basic functions of R (R Core Team 2022), and plots 
were generated using the ggcorrplot package. Corre-
lation coefficients were estimated as follows:

where r̂gxy is the genetic correlation coefficient 
between two phenotypes; Covg is the genotypic covar-
iance; �̂2

g
 is the genotypic variance; and x and y are 

two phenotypes.

LRT = −2(LogLF − LogLR)

h2 =
�̂2
g

�̂2
p

r̂gg =

√
1 −

PEV

�̂2
g

r̂gxy =
Covg(x, y)

√
�̂2
g
(x)×�̂

2

g
(y)

Factor analysis

Factor analysis was performed to reduce the dimen-
sionality of the data and better understand the 
relationship among the traits from a multivariate 
perspective. Factor analysis was performed in R 
software, version 4.2.2 (R Core Team 2022), using 
the R psych package (Revelle 2020). The following 
model was considered (Momen et al. 2021; Yu et al. 
2019):

where Y is the t × n matrix of phenotypic observa-
tions; � is the t × q matrix of factor loadings; F is the 
q × n matrix of factor scores; and U is the t × n vector 
of unique effects that is not explained by underlying q 
common factors. The variance–covariance matrix of 
Y is:

where � is the t × t variance–covariance matrix of 
phenotypes; � , is the variance of factor scores; and � 
is a t × t diagonal matrix of unique variance. The ele-
ments of � , � , and � are parameters of the model to 
be estimated from the data. It was assumed that � = I 
yielding factors each with unit variance (Anderson 
2003; Jöreskog 1967). Parameters � and � were esti-
mated by maximizing the log-likelihood of L(�,�|Y) 
along with a varimax rotation (Kaiser 1958).

Selection strategies

Four different selection strategies were designed: 
direct via grain yield, direct via days to heading, indi-
rect via HTP (using the factor scores obtained in the 
factor analysis), and the multi-trait genotype-ideotype 
distance index (MGIDI) (Olivoto and Nardino 2021). 
For selecting the most suitable genotypes, the 20% 
with best performance were retained in all strategies.

The response to direct selection was obtained as 
follows:

where SGj is the selection gain in trait j; DSj is the 
selection differential in trait j, calculated as the dif-
ference between the mean of the selected genotypes 
(20% best performing genotypes) and the original 

Y = �F + U

� = ���
′ +�

SGj = DSj × hj
2

Fig. 1  UAV-based high-throughput phenotyping workflow of 
a tropical wheat diversity panel

◂
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mean of the diversity panel; and hj2 is the broad-sense 
heritability of trait j.

The correlated response to indirect selection was 
obtained as follows:

where SGj(i) is the selection gain in trait j when selec-
tion was carried out based on trait i; DSj(i) is the selec-
tion differential in trait j when selection was carried 
out based on trait i; and h2

j
 is the broad-sense herita-

bility of trait j.
The efficiency of the indirect selection was assessed 

as follows:

MGIDI requires the planning of an ideotype for the 
analyzed traits. In this work, positive desired gains were 
assumed for GY and HGM, and negative desired gains 
were assumed for PH and DH. MGIDI was performed 
as follows (Olivoto and Nardino 2021):

where MGIDIi is the multi-trait genotype-ideotype 
distance index for the i − th genotype; �ij is the score 
of the i − th genotype in the j − th factor (i = 1, 2,…,g; 
j = 1, 2,…,f); g and f are the number of genotypes and 
factors, respectively; and �j is the jth ideotype score.

SGj(i) = DSj(i) × h2
j

ESI =
SGj(i)

SGj

MGIDIi = [Σ
f

j=1

(
�ij − �j

)2
]0.5

Results

Descriptive analysis of vegetation indices

A descriptive analysis of tendency, dispersion, sym-
metry and outliers for the phenotypic values of the 
vegetation indices is presented in Fig. 2. The median 
phenotypic values widely varied across the differ-
ent phenological stages for most vegetation indices 
throughout the crop development, except for NDVI 
and SAVI. Overall, the greatest phenotypic variabil-
ity was observed in the maturation stage, suggesting 
the occurrence of significant differences in vegetative 
status among the genotypes at this stage. The box-
plots also indicate a symmetric distribution of vegeta-
tion indices values in some phenological stages. This 
trend suggests the existence of suitable genetic vari-
ability between the genotypes in particular stages that 
could be explored in further selection strategies.

Mixed model

The results of the LRT for the random effect of geno-
type, considering all the analyzed traits, are given in 
Table 3. The random effect of genotype was signifi-
cant at the threshold of 1 or 5% for all the agronomic 
traits and vegetation indices, considering all the phe-
nological stages, except for GNDVI, NDRE, NDVI 
and SAVI at tillering; and NDVI and SAVI at stem 
elongation. The highest LRT values were observed 
for the vegetation indices on maturation.

In Fig. 3 it is presented the relative contribution of 
the genotypic variance to the total phenotypic vari-
ance observed for the random effect genotype, con-
sidering the agronomic traits and the vegetation indi-
ces in the different phenological stages. As expected, 
considering the LRT test, the genotypic variance was 
proportionally greater than the residual variance for 
the agronomic traits. The genotypic variance was rel-
atively small for most vegetation indices at tillering 
and stem elongation stages. The highest contribution 
of genotypic variance to the total phenotypic variance 
was observed at the early flowering stage.

Heritability and accuracy

The estimates of heritability and accuracy values for 
the vegetation indices from tillering to maturation 
are shown in Fig. 4. The heritability estimates ranged 

Table 1  Vegetation indices calculated using the multi-spectral 
images

NDVI, normalized difference vegetation index; SAVI, soil 
adjusted vegetation index; GNDVI, green normalized dif-
ference vegetation index; NDRE, normalized difference red 
edge index; SCCCI, simplified chlorophyl canopy content 
index; MSAVI, modified soil adjusted vegetation index; EVI, 
enhanced vegetation index

Vegetation Indices Equation References

NDVI Nir−Red

Nir+Red
Rouse et al. (1974)

SAVI (1 + 0.5)
Nir−Red

Nir+Red+0.5
Huete et al. (1988)

GNDVI Nir−Green

Nir+Green
Gitelson et al. (1997)

NDRE Nir−RedEdge

Nir+RedEdge
Gitelson et al. (1996)

SCCCI NDRE

NDVI
Raper and Varco 

(2014)
EVI Nir−Red

(Nir+6×Red−7.5Green)+1
Justice et al. (1998)
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Table 2  Codes used for 
the vegetation indices 
corresponding to different 
phenological stages in a 
diversity panel of tropical 
wheat genotypes

EVI, enhanced vegetation 
index; GNDVI, green 
normalized difference 
vegetation index; MSAVI, 
modified soil adjusted 
vegetation index; NDRE, 
normalized difference 
red edge index; NDVI, 
normalized difference 
vegetation index; SAVI, 
soil adjusted vegetation 
index; SCCCI, simplified 
chlorophyl canopy content 
index; TIL, tillering; SE, 
stem elongation; BO, 
booting; HE, heading; FLO, 
flowering; GF, grain filling; 
MA, maturation

Vegetation indices Phenological stage Code Phase according 
to Zadoks et al. 
(1974)

EVI Tillering EVI.TIL 20–29
GNDVI GNDVI.TIL
NDRE NDRE.TIL
NDVI NDVI.TIL
SAVI SAVI.TIL
SCCCI SCCCI.TIL
EVI Stem Elongation EVI.SE 30–39
GNDVI GNDVI.SE
NDRE NDRE.SE
NDVI NDVI.SE
SAVI SAVI.SE
SCCCI SCCCI.SE
EVI Booting EVI.BO 40–49
GNDVI GNDVI.BO
NDRE NDRE.BO
NDVI NDVI.BO
SAVI SAVI.BO
SCCCI SCCCI.BO
EVI Heading EVI.HE 50–59
GNDVI GNDVI.HE
NDRE NDRE.HE
NDVI NDVI.HE
SAVI SAVI.HE
SCCCI SCCCI.HE
EVI Flowering EVI.FLO 60–69
GNDVI GNDVI.FLO
NDRE NDRE.FLO
NDVI NDVI.FLO
SAVI SAVI.FLO
SCCCI SCCCI.FLO
EVI Grain Filling EVI.GF 70–89
GNDVI GNDVI.GF
NDRE NDRE.GF
NDVI NDVI.GF
SAVI SAVI.GF
SCCCI SCCCI.GF
EVI Maturation EVI.MA 90–99
GNDVI GNDVI.MA
NDRE NDRE.MA
NDVI NDVI.MA
SAVI SAVI.MA
SCCCI SCCCI.MA
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from 0.01 for NDVI and SAVI at tillering to 0.92 for 
EVI at booting. The highest mean for heritability esti-
mate was observed for the indices in the maturation 
stage (0.87). The accuracy values ranged from 0.10 
for NDVI and SAVI at tillering to 0.96 for EVI at 
booting. The highest mean values for accuracy were 
also observed for the vegetation indices at maturation 
stage (0.93). EVI and SCCCI presented the highest 
and most consistent heritability and accuracy values 
across the different phenological stages.

Genetic correlation

In Fig.  5, it is presented the genetic correlations 
among the agronomic traits and the vegetation indi-
ces on different phenological stages. DH showed a 
high negative correlation with GY (− 0.76) and a 
low negative correlation with HGM (− 0.29). PH 
showed no significant correlation with any of the 
agronomic traits. Most of the vegetation indices 
showed a high positive correlation among them-
selves from tillering to maturation, except for the 
correlations with SCCCI in maturation, where the 
association trends changed. The associations among 

the agronomic traits and most of the vegetation 
indices were not significant from tillering to head-
ing, however, they started to be significant from 
flowering and reached the highest correlation val-
ues in maturation. From flowering to maturation, 
GY and HGM showed a moderate to high negative 
correlation with the vegetation indices, while DH 
showed a moderate to high positive correlation with 
the vegetation indices.

Factor analysis

Four factors were obtained in the factor analysis 
(Table  4), which explained 80% of the total vari-
ance observed. In the first factor, GY and DH were 
grouped with NDVI and SAVI at heading; GNDVI, 
NDVI, and SAVI at flowering; and most vegetation 
indices at grain filling and maturation. In the second 
factor, PH was grouped with most vegetation indices 
at booting and heading; and with some vegetation 
indices at flowering. In the third and fourth factors, 
the vegetation indices at tillering and stem elongation 
were grouped together.

Fig. 2  Boxplot of the phenotypic values of six vegetation indi-
ces on different phenological stages in tropical wheat diversity 
panel. EVI, enhanced vegetation index; GNDVI, green nor-
malized difference vegetation index; MSAVI, modified soil 

adjusted vegetation index; NDRE, normalized difference red 
edge index; NDVI, normalized difference vegetation index; 
SAVI, soil adjusted vegetation index; SCCCI, simplified chlo-
rophyl canopy content index
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Selection gains

In Table 5, it is presented the predicted genetic gains 
for the four agronomic traits using the different selec-
tion strategies: direct via GY, direct via DH, indirect 
via HTP, and MGIDI. The direct selection via GY 
provided the highest percentage genetic gain for GY 
(32.68%) and a desired gain for DH (6.69%). The 
selection gain for PH and HGM by the indirect selec-
tion via GY was a low undesired gain in the case of 
PH, and a low gain in the case of HGM. The selection 
gain achieved for the direct selection via DH, consid-
ering GY and DH, was 25.33% and 10.27%, respec-
tively. The selection gain achieved for this strategy 
was 1.14% for PH and 2.49% for HGM.

The use of HTP resulted in balanced genetic gains 
for all the agronomic traits. For GY, the selection gain 
observed was 27.63%, while for DH, the selection 
gain was 8.78%. The selection gain obtained with this 
strategy was a low desired gain for PH (1.77%) and a 
low gain for HGM (3.52%). The efficiency of indirect 
selection via HTP for GY and DH was 0.85. Simi-
lar to HTP, MGIDI also resulted in balanced desired 
gains for the agronomic traits: the genetic gains for 
GY, DH, PH and HGM were 26.67, 8.45, 3.58 and 
1.04%, respectively.

Discussion

The significance of genotype as random effect in 
the LRT test for the agronomic traits and most of 
the vegetation indices during wheat development 

Table 3  Likelihood ratio test for four agronomic traits and six 
vegetation indices on different phenological stages in a tropical 
wheat diversity panel

Trait χ2 p value

DH 31.45 p < 0.01
GY 25.79 p < 0.01
HGM 37.63 p < 0.01
PH 14.95 p < 0.01
EVI.TIL 21.39 p < 0.01
GNDVI.TIL 3.36 p < 0.05
NDRE.TIL 2.38 p < 0.05
NDVI.TIL 0.00 p < 0.05
SAVI.TIL 0.00 p < 0.05
SCCCI.TIL 15.65 p < 0.01
EVI.SE 43.86 p < 0.01
GNDVI.SE 11.13 p < 0.01
NDRE.SE 14.84 p < 0.01
NDVI.SE 2.02 p < 0.05
SAVI.SE 1.94 p < 0.05
SCCCI.SE 29.99 p < 0.01
EVI.BO 60.76 p < 0.01
GNDVI.BO 24.27 p < 0.01
NDRE.BO 38.41 p < 0.01
NDVI.BO 7.39 p < 0.01
SAVI.BO 7.39 p < 0.01
SCCCI.BO 12.07 p < 0.01
EVI.HE 39.94 p < 0.01
GNDVI.HE 10.92 p < 0.01
NDRE.HE 16.17 p < 0.01
NDVI.HE 22.39 p < 0.01
SAVI.HE 26.80 p < 0.01
SCCCI.HE 10.44 p < 0.01
EVI.FLO 13.87 p < 0.01
GNDVI.FLO 15.68 p < 0.01
NDRE.FLO 12.05 p < 0.01
NDVI.FLO 10.78 p < 0.01
SAVI.FLO 10.77 p < 0.01
SCCCI.FLO 16.34 p < 0.01
EVI.GF 26.73 p < 0.01
GNDVI.GF 21.76 p < 0.01
NDRE.GF 14.12 p < 0.01
NDVI.GF 10.23 p < 0.01
SAVI.GF 10.23 p < 0.01
SCCCI.GF 17.18 p < 0.01
EVI.MA 46.40 p < 0.01
GNDVI.MA 46.84 p < 0.01
NDRE.MA 48.08 p < 0.01
NDVI.MA 48.37 p < 0.01

Table 3  (continued)

Trait χ2 p value

SAVI.MA 48.37 p < 0.01
SCCCI.MA 25.87 p < 0.01

Bold values indicate significance for the random effect of 
genotype at 5 or 1% error probability by the chi-square test: 
�2

5%
 = 3.84; �2

1%
= 6.63GY, grain yield; HGM, hundred grain 

mass; PH, plant height; EVI, enhanced vegetation index; 
GNDVI, green normalized difference vegetation index; 
MSAVI, modified soil adjusted vegetation index; NDRE, nor-
malized difference red edge index; NDVI, normalized differ-
ence vegetation index; SAVI, soil adjusted vegetation index; 
SCCCI, simplified chlorophyl canopy content index; TIL, till-
ering; SE, stem elongation; BO, booting; HE, heading; FLO, 
flowering; GF, grain filling; MA, maturation
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indicates the presence of a wide genetic variability, 
which can be described not only directly measuring 
crop traits but also indirectly via vegetation indices, 
allowing the design of appropriate high-throughput 
selection strategies. The elevated chi-square test 
statistics observed in maturation and the large con-
tribution of the genotypic variance to the pheno-
typic variance regarding the genotype effect for veg-
etation indices from flowering to maturation suggest 
that these stages may be appropriate to capture the 
genetic variability among genotypes using the can-
opy spectral response.

The significance of genotype as random effect for 
most of the vegetation indices (especially in the matu-
ration stage) is related to the wheat varieties included 
in the diversity panel used in this study. Since the 
diversity panel consisted of a set of genotypes 
released in different periods in the Brazilian wheat 
breeding programs (Lima et  al. 2022), it has a huge 
genetic variability for several traits, especially for 
cycle and grain yield. This variability resulted also 
in large variation of different phenotypic traits that 

could be captured by the vegetation indices, resulting 
in different spectral signatures according to genotype.

The heritability and accuracy estimates obtained 
for the vegetation indices can be classified as mod-
erate or high (Resende and Alves 2020) for most of 
the phenological stages evaluated, which can be con-
sidered satisfactory. In practice, these estimates can 
be used to compare alternative selection methods, 
calculate genetic gains with selection and design 
experiments (Resende and Alves 2022). Some stud-
ies have been conducted to evaluate the heritability 
and accuracy of vegetation indices in different phe-
nological stages to make genetic predictions. Hassan 
et  al. (2019) reported moderate or high heritability 
estimates for NDVI in reproductive stages in a set of 
Chinese wheat germplasm evaluated under full and 
limited irrigation systems. Using a panel of elite hard 
winter wheat genotypes, Frels et  al. (2018) reported 
low heritability estimates for most vegetation indices 
evaluated at the heading stage, with increasing herit-
ability estimates as the season progressed. As a result, 
measurements of vegetation indices collected during 

Fig. 3  Contribution of the genotypic, replication/block and 
residual variances to the total phenotypic variance for the ran-
dom effect of genotype for four agronomic traits (A) and six 
vegetation indices applied in different phenological stages 
(from B to H) in a tropical wheat diversity panel. DH, days 
to heading; GY, grain yield; HGM, hundred grain mass; PH, 
plant height; EVI, enhanced vegetation index; GNDVI, green 

normalized difference vegetation index; MSAVI, modified soil 
adjusted vegetation index; NDRE, normalized difference red 
edge index; NDVI, normalized difference vegetation index; 
SAVI, soil adjusted vegetation index; SCCCI, simplified chlo-
rophyl canopy content index; TIL, tillering; SE, stem elonga-
tion, BO, booting; HE, heading; FLO, flowering; GF, grain fill-
ing; MA, maturation
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Fig. 4  Heritability and accuracy values of six vegetation indi-
ces applied in different phenological stages in a tropical wheat 
diversity panel. EVI, enhanced vegetation index; GNDVI, 
green normalized difference vegetation index; MSAVI, modi-

fied soil adjusted vegetation index; NDRE, normalized differ-
ence red edge index; NDVI, normalized difference vegetation 
index; SAVI, soil adjusted vegetation index; SCCCI, simplified 
chlorophyl canopy content index

Fig. 5  Genetic correlation among four agronomic traits and 
six vegetation indices applied on different phenological stages 
of a tropical wheat diversity panel. DH, days to heading; GY, 
grain yield; HGM, hundred grain mass; PH, plant height; EVI, 
enhanced vegetation index; GNDVI, green normalized differ-
ence vegetation index; MSAVI, modified soil adjusted veg-

etation index; NDRE, normalized difference red edge index; 
NDVI, normalized difference vegetation index; SAVI, soil 
adjusted vegetation index; SCCCI, simplified chlorophyl can-
opy content index; (A) TIL, tillering; (B) SE, stem elongation, 
(C) BO, booting; (D) HE, heading; (E) FLO, flowering; (F) 
GF, grain filling; (G) MA, maturation
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the late grain filling stage were considered to be the 
most accurate and least affected by the environment. 
These reports are consistent with the results of this 
study.

Heritability estimates are the proportion of phe-
notypic variance explained by genotypic variance, 
while accuracy is the correlation among predicted 
and observed genotypic values. Although the vegeta-
tion indices are mathematical functions among wave-
lengths, the estimation of heritability and accuracy 
for these traits is justified because vegetation indices 
describe the spectral response of plants to incident 
light, which depends on the vegetative material bio-
chemical and biophysical properties. In fact, veg-
etation indices vary according to multiple factors, for 
example: biophysical and biochemical aspects, dis-
ease incidence/resistance, chlorophyll content, hydric 
stress and canopy cover (Candiago et  al. 2015). 
These traits are largely under genetic control and can 
potentially be improved. Since the vegetation indi-
ces showed moderate to high heritability and accu-
rate estimates, they can be used as secondary traits 
in indirect selection strategies, as long as they have a 
high correlation with the target primary trait (Rutko-
ski et al. 2016).

The correlation analysis showed that the mag-
nitude of the relationship among the agronomic 
traits and the vegetation indices may not be consist-
ent across the different phenological stages. In ear-
lier stages (from tillering to heading), the correla-
tions were not significant. However, as the season 

Table 4  Factor loadings of four agronomic traits and six veg-
etation indices applied in different phenological stages and 
cumulative variance in the first four factors using the factor 
analysis

Trait FA1 FA2 FA3 FA4

DH 0.83 0.14 − 0.04 − 0.08
GY − 0.83 0.13 0.10 0.05
HGM − 0.30 − 0.23 − 0.06 0.12
PH 0.04 − 0.53 0.00 − 0.03
EVI.TIL 0.22 − 0.06 − 0.78 0.12
GNDVI.TIL − 0.03 0.25 0.64 0.66
NDRE.TIL − 0.03 0.24 0.60 0.70
NDVI.TIL 0.13 0.05 0.04 0.99
SAVI.TIL 0.13 0.05 0.04 0.99
SCCCI.TIL − 0.03 0.31 0.71 0.42
EVI.SE 0.19 − 0.34 − 0.86 0.00
GNDVI.SE 0.03 0.27 0.81 0.44
NDRE.SE 0.04 0.32 0.82 0.44
NDVI.SE 0.12 0.17 0.29 0.70
SAVI.SE 0.06 0.31 0.33 0.66
SCCCI.SE 0.06 0.43 0.83 0.24
EVI.BO − 0.07 − 0.77 − 0.47 − 0.05
GNDVI.BO 0.23 0.77 0.50 0.13
NDRE.BO 0.21 0.76 0.48 0.21
NDVI.BO 0.43 0.55 0.26 0.21
SAVI.BO 0.43 0.55 0.26 0.21
SCCCI.BO 0.21 0.65 0.63 0.18
EVI.HE − 0.06 − 0.87 − 0.36 − 0.06
GNDVI.HE 0.10 0.70 0.48 0.12
NDRE.HE 0.37 0.86 0.27 0.18
NDVI.HE 0.61 0.59 0.08 0.21
SAVI.HE 0.61 0.59 0.08 0.21
SCCCI.HE 0.27 0.88 0.32 0.16
EVI.FLO − 0.37 − 0.72 − 0.23 − 0.02
GNDVI.FLO 0.60 0.60 0.13 0.17
NDRE.FLO 0.57 0.64 0.09 0.29
NDVI.FLO 0.68 0.33 0.02 0.29
SAVI.FLO 0.68 0.33 0.02 0.29
SCCCI.FLO 0.51 0.74 0.10 0.20
EVI.GF − 0.44 − 0.66 − 0.27 − 0.18
GNDVI.GF 0.65 0.58 0.09 0.18
NDRE.GF 0.74 0.54 0.12 0.20
NDVI.GF 0.74 0.32 0.03 0.22
SAVI.GF 0.74 0.32 0.03 0.22
SCCCI.GF 0.66 0.62 0.13 0.21
EVI.MA 0.93 0.06 − 0.13 − 0.02
GNDVI.MA 0.95 0.19 − 0.02 0.03
NDRE.MA 0.98 0.18 − 0.05 − 0.01

Table 4  (continued)

Trait FA1 FA2 FA3 FA4

NDVI.MA 0.98 0.16 − 0.06 − 0.02
SAVI.MA 0.98 0.16 − 0.06 − 0.02
SCCCI.MA − 0.75 − 0.01 − 0.03 − 0.04
Accumulated variance 0.28 0.53 0.68 0.80

Factor loadings in bold indicate traits grouped within the same 
factor. Acronyms: FA1, first factor; FA2, second factor; FA3, 
third factor; FA4, fourth factor; GY, grain yield; HGM, hun-
dred grain mass; PH, plant height; EVI, Enhanced vegetation 
index; GNDVI, Green normalized difference vegetation index; 
MSAVI, modified soil adjusted vegetation index; NDRE, Nor-
malized difference red edge index; NDVI, Normalized differ-
ence vegetation index; SAVI, Soil adjusted vegetation index; 
SCCCI, simplified chlorophyl canopy content index; TIL, till-
ering; SE, stem elongation; BO, booting; HE, heading; FLO, 
flowering; GF, grain filling; MA, maturation
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progressed, the correlation coefficients among the 
vegetation indices and the agronomic traits (espe-
cially GY and DH) increased. In early stages, geno-
types seem to have similar reflectance patterns, which 
may lead to the absence of association among veg-
etation indices and agronomic traits. As the season 
progresses, a series of biochemical, metabolic, and 
physiological dynamics triggers different responses 
from genotypes, which are reflected in cycle, disease 
resistance, canopy cover, etc. The vegetation indices 
can capture these features, making them associated to 
the target agronomic traits and contributing to the sig-
nificance of the correlation coefficients.

In this study, negative genetic correlations among 
most of the vegetation indices and GY and positive 
correlations among vegetation indices and DH were 
found from flowering to maturation. These results 
agree with previous studies (e.g., Kyratzis et  al. 
2017). Other studies, however, reported positive cor-
relations among vegetation indices and target agro-
nomic traits (Gizaw et al. 2016; Hassan et al. 2019). 
Most vegetation indices provide insight into the status 
of plants photosynthetic capacity. They are related to 
the duration of the vegetative period, grain filling or 

maturation phases, as well as biomass accumulation. 
Genotypes presenting longer permanence in some 
specific development stages are generally the oldest in 
the panel used in this study and have higher cycle and 
lower grain yield genetic values (Lima et  al. 2022). 
For this reason, genotypes with high genetic values 
for most vegetation indices also present the highest 
genetic values for DH and lower values for GY, which 
explains the genetic correlation results in this study.

Factor analysis is a procedure used to reduce the 
dimensionality of the data and obtain relevant infor-
mation about the relationships between traits. This 
approach was successfully used by Santana et  al. 
(2022b) for a comprehensive analysis of the relation-
ship between vegetation indices and morphological 
and agronomic traits in maize. The results of the fac-
tor analysis obtained in the present study are in line 
with the genetic correlation analysis, i.e., most of the 
vegetation indices from flowering to maturation were 
significantly correlated with GY and DH.

An interesting feature of factor analysis is that, 
based on factor loadings, it allows calculating factor 
scores, which are new variables that can be used in 
selection strategies. In this study, the factor scores 

Table 5  Predicted genetic gains for four agronomic traits, considering four different selection strategies

X
o
 , original mean; X

s
 , mean of the selected genotypes (20% best performing genotypes); DS, differential of selection;  h2, broad sense 

heritability; SG, predicted selection gain. HTP, high-throughput phenotyping; MGIDI, multi trait genotype ideotype distance index; 
DH, days to heading; GY, grain yield; HGM, hundred grain mass; PH, plant height
a Efficiency of indirect selection of GY via HTP = 0.85; bEfficiency of indirect selection of DH via HTP = 0.85

Selection strategy Response X
o

X
s

DS h2 SG SG%

Direct via GY GY 5004.90 7101.97 2097.07 0.78 1635.71 32.68
DH 61.02 56.04 4.98 0.82 4.08 6.69
PH 108.64 109.27 0.63 0.70 0.44 0.41
HGM 4.10 4.12 0.02 0.85 0.02 0.41

Direct via DH GY 5004.90 6630.10 1625.20 0.78 1267.66 25.33
DH 61.02 53.38 7.64 0.82 6.26 10.27
PH 108.64 110.41 1.77 0.70 1.24 1.14
HGM 4.10 4.22 0.12 0.85 0.10 2.49

Indirect via HTP GYa 5004.90 6777.67 1772.77 0.78 1382.76 27.63
DHb 61.02 54.49 6.53 0.82 5.35 8.78
PH 108.64 105.89 2.75 0.70 1.93 1.77
HGM 4.10 4.27 0.17 0.85 0.14 3.52

MGIDI GY 5004.90 6716.27 1711.37 0.78 1334.87 26.67
DH 61.02 54.73 6.29 0.82 5.16 8.45
PH 108.64 103.08 5.56 0.70 3.89 3.58
HGM 4.10 4.15 0.05 0.85 0.04 1.04
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obtained by the first factor, called HTP, were used 
to design an indirect selection strategy. In addi-
tion, the gains achieved in the target agronomic 
traits were compared with other selection strategies. 
Higher balance and increased desired genetic gains 
were observed for the agronomic traits when indirect 
selection was carried out via HTP. The genetic gains 
achieved with HTP for the target agronomic traits 
were as balanced and desirable as those achieved with 
MGIDI, which is an optimal selection index based 
on multiple traits that overcomes the fragility of 
classical linear indices (Olivoto and Nardino 2021). 
These results confirm the potential use of vegetation 
indices for the indirect selection of superior tropical 
wheat genotypes for target agronomic traits, which 
may deliver high-throughput, non-invasive, and less 
expensive selection.

The findings in this study demonstrate how the 
use of indirect selection strategies using vegetation 
indices derived from HTP can impact positively the 
genetic gains in a breeding program. Nevertheless, 
it is important to highlight that the gains with indi-
rect selection is directly connected to the correlation 
between the traits. This fact has important implica-
tions and must be considered by plant breeders before 
adopting the strategies proposed here. Such implica-
tions are discussed below.

It is important to mention that divergences on the 
nature of the correlation coefficients found in differ-
ent studies, as discussed previously, might be 
explained by the fact that genetic correlation can be 
estimated from the resemblance between relatives 
(Lynch and Walsh 1998). As demonstrated by Hill 
(2013) if cov(X, Y) is the simple covariance between 
trait X on the parent and trait Y  on the offspring, 
2cov(X, Y) is an estimate of the (additive) genetic 
covariance (covA) , and 

√
[cov(X,Y)cov(Y ,X)]

[cov(X,X)cov(Y ,Y)]
 is an estimate 

of the genetic correlation (rA) . Consequently, because 
of real differences among populations and species and 
due to sampling error, genetic correlation estimates 
are not all consistent (Hill 2013).

In light if this, the nature and magnitude of the 
genetic correlation among vegetation indices and 
agronomic traits may vary according to the panel 
and the growing and environmental conditions. 
Thus, it is not reasonable to assume that other 
panels (from other species or either wheat panels) 
will follow the same trend of the current panel. 

Consequently, plant breeders and statisticians are 
encouraged to concentrate efforts on the examina-
tion of the interrelationships among the traits in 
their panels prior to any decision-making regarding 
selection.

Because the estimates of the genetic correlations 
between the traits across panels might present dif-
ferent patterns, a comprehensive analysis of the 
relationship between primary target and second-
ary traits in wheat breeding programs is essen-
tial for designing selection strategies to achieve 
desired genetic gains (Silva et  al. 2022; Mezzomo 
et  al. 2020). The use of approaches that allow the 
decomposition of the association between the traits 
into total, direct and indirect effects (Momen et al. 
2019; Suela et  al. 2023) could be potentially used 
in the intermediate stages of the plant breeding pro-
grams to better understand the interrelationships 
between the traits. This could guide the plant breed-
ers regarding the decisions in the selection process, 
i.e., whether to use direct, indirect or index-based 
selection.

Some previous studies highlighted the suit-
ability of UAV-based high-throughput phenotyp-
ing approaches for optimizing the selection process 
in wheat (Krause et  al. 2020; Volpato et  al. 2021). 
However, in tropical wheat breeding, information 
regarding the use of these approaches is scarce. The 
current study is the first attempt to provide insights 
for tropical wheat genotypes regarding: the optimal 
stages to perform image acquisition and capture the 
variability among genotypes, using vegetation indi-
ces; the heritability and accuracy of several vegeta-
tion indices across wheat development; the magni-
tude and direction/nature of the relationship among 
vegetation indices and target agronomic traits; and 
the efficiency of indirect selection to optimize eval-
uation and selection.

Further studies should also be conducted to eval-
uate the suitability of vegetation indices derived 
from UAV-based imagery for selection of tropical 
wheat segregating populations, progenies, and elite 
lines. Also, other target agronomic, physiological, 
and morphological traits should be evaluated. In 
the future, the available phenotypic data may also 
be associated with genomic information, such as 
molecular markers, to better understand the associa-
tions between phenotype and genotype in tropical 
wheat.
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Conclusion

The optimal stages to carry out image acquisition 
using UAV-platforms for building multi-spectral veg-
etation indices are from flowering to maturation. Her-
itability and accuracy estimated for most vegetation 
indices across these wheat development stages were 
high, confirming that vegetation indices can be used 
in selection strategies. The most significant correla-
tions among vegetation indices and target agronomic 
traits were also observed from flowering to matura-
tion. Vegetation indices are potentially suitable to be 
used in indirect selection strategies, in particular for 
grain yield and cycle.

The findings of this study provide exciting insights 
on the application of vegetation indices derived from 
UAV platforms for the indirect selection of tropi-
cal wheat genotypes, and the methods describe here 
could be potentially adopted by other plant breeding 
programs. Nevertheless, we reiterate that prior to any 
decision-making regarding selection, plant breeders, 
along with their multidisciplinary team, should bet-
ter investigate and understand the interrelationships 
between the traits to be improved in their panels.
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