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Abstract. This paper describes a specification and verification tech-
nique for object-oriented programs with invariants, known as the Boogie
approach. The approach is proved to allow sound and modular verifi-
cation. Topics covered by this paper are object hierarchies, subclassing,
and advanced routine specifications. It also includes a discussion about
the concrete implementation of these concepts in Spec# .

1 Introduction

The Spec# programming system [1] consists of a programming language that
extends C# with specification constructs, a compiler that emits run-time checks
for the specification constructs, a static verifier that modularly proves that the
run-time checks never fail, an environment with base class library contracts and
a Visual Studio extension. We will shortly describe the architecture underlying
the Spec# programming system. The main focus of this paper then lies on
the specification concepts underlying the front end of the system, and their
embedding in the source language.

1.1 Architecture

To understand how the Spec# programming system works, we first present its
architecture in Fig. 1.1, referred to as the Boogie pipeline [2]. Input to the
pipeline is the Spec# source code written in the Spec# language, superset of
C# , with additional specification features like method and class contracts [3],
frame conditions, non-null types and enhanced exception categories. The Spec#
compiler does additional static type checks in comparison to C# , and emits
dynamic checks for the contracts as part of the generated byte code.

The output in form of the CIL (Common Intermediate Language 1), the
executable format of the .NET virtual machine, is then translated into BoogiePL
[4], a simple coarsely typed imperative language, along with a logical encoding
of the semantics of the source language, in our case Spec# . This additional
step of transformation allows to separate source-encoding concepts from actual
reasoning. This also leads to a modular architecture which offers the possibility
for different front-ends (e.g. for Java Bytecode [5] or Eiffel source code2).

1 formerly called Microsoft Intermediate Language or MSIL
2 see Ballet at http://se.inf.ethz.ch/people/schoeller/iver.html



BoogiePL can be seen as a high-level front-end to a theorem prover. Before
BoogiePL programs are turned into first order verification conditions, additional
invariants, which seem obvious to the programmer, are inferred [6]. The verifi-
cation conditions are then fed to a theorem prover (e.g. Simplify [7]), and tested
for validity. The aim is to prove that the dynamic checks always succeed.

Fig. 1. The architecture of Boogie

In the next section the specification concepts underlying the front end of the
system are presented.

2 The Boogie Approach

We give a short motivation for the new approach, then we introduce step by step
the different concepts of the approach, where in each increment we enhance the
previous definitions.

2.1 Object Invariants and Information Hiding

An object invariant, specified in [8] as

a relation on an object’s data that the programmer intends for to hold

is often seen as a shorthand for a postcondition on the constructor and pre-
and postcondition on every public method (like in Eiffel[9],[10]). This seems
appropriate, but special care must be taken: A method implementation can not
always violate the object invariant for the duration of the call, in the presence
of reentrance and callbacks. This is illustrated by Listing 1.1, where the call in
method M1 to N, resulting in a callback to M2, breaks the invariant, although each
method, at first sight, doesn’t seem to break the invariant.

Most of the techniques reasoning about object invariants developed in the
last 20 years, called in [11] as the classical technique, have restricted themselves
to invariants on fields of primitive values and are thus very restricted in their
applicability in practice. A notable exception is [12], using as a basis an ownership
type system. The specification technique explained here deals with layered object
structures while retaining modularity.

Another issue with expressing invariants as pre- and postconditions is the
exposure of the internal representation of a class. A combination of good in-
formation hiding and specification completeness has to be found. The solution



class T {
private bool x , y ;
invariant x == y ;
public T()
{

x = fa l se ; y = fa l se ;

}
public void M1(U u)
{

x = ! x ;
u .N( this ) ; // c a l l s M2( ) ;
y = ! y ;

}
public void M2( )
{

i f ( x )
y = x ;

}
}
Listing 1.1. Invariant breaking in the
presence of callbacks

class T {
private bool x , y ;
invariant x == y ;
public T()

ensures s t = Valid ; {
x = fa l se ; y = fa l se ;
pack this ;

}
public void M1(U u)

modifies x , y ; {
unpack this ;
x = ! x ;
u .N( this ) ; // c a l l s M2( ) ;
y = ! y ;
pack this ;

}
public void M2( )

requires s t = Valid ;
modifies y ; {
unpack this ;
i f ( x )

y = x ;
unpack this ;

}
}

Listing 1.2. Annotated same program

presented here achieves this by introducing a publicly available abstraction of
whether or not invariants hold.

2.2 Validity

In this first version of the concepts, subclasses are ignored. A special field state,
abbreviated by st, of type {Valid,Invalid} is introduced for each object. It is
restricted to appear only in routine specifications, not in invariant declarations
or in implementations. The idea here is to make sure that an object’s invariant
holds whenever its state field is set to Valid. An object is allocated in the invalid
state. We further define InvT (o) for an object o of type T as the predicate that
holds iff the object invariant declared in T holds for o in that state. For example,
in Listing 1.1, we have InvT (o) ≡ o.x == o.y

To influence the state field by the implementation, two new statements, pack
and unpack (Def. 1 & 2) are introduced, validating and unvalidating an object.
For an object o of type T :



pack o ≡
assert o 6= null ∧ o.st = Invalid ;
assert InvT (o);
o.st := Valid

(1)

unpack o ≡
assert o 6= null ∧ o.st = Valid ;
o.st := Invalid

(2)

The pack statement first checks the object invariant InvT (o) and changes st
from Invalid to Valid. unpack does the opposite and invalidates the state again.
Both statements are not idempotent, so packing or unpacking two times the
same object leads to an error (e.g. pack this; pack this;). As final step in this
chapter, object invariants are restricted to rely only on fields (of simple type)
of this, and thus field updates are restricted to invalid objects, as only these
can lead into breaking the invariant. The resulting specification is illustrated in
Listing 1.2, which makes the implicit knowledge in Listing 1.1 explicit. Now,
there are some possibilities for this program to go wrong. If u.N requires the
parameter to be in a valid state, the precondition of N is not fulfilled at the
calling site M1. The other possibility is that u.N does not require the parameter
to be in a valid state, resulting in a precondition violation of M2 at the place the
callback occurs (in N). Another possibility, as M2 states as precondition that st
must be Valid, is to pack our object of type T in N, leading to an error because
the invariant does not hold. The only possibility for a valid execution of M1 here
is for N to reestablish the invariant (by doing changes to x or y), pack the object,
make the callback to M2, unpack the object again, make a change to x or y such
that x == ˜y and return.

2.3 Components

As we want our invariants, contrary to the classical approach, to contain relations
between objects being part of a same component, a new field modifier rep is
introduced that identifies the component objects of an object. The following
restriction is now imposed: An component object can only be unpacked if the
object it belongs to is unpacked first (see Fig. 2).

An object in return can only be packed if its component objects are valid.
This is achieved by introducing a new value Committed for state and further
restraining of pack and unpack (Def. 3 & 4). Let CompT (o) denote the set of
expressions o.f for each rep field f in T. Then, for any expression o of type T :



Fig. 2. States of a component consisting of an object t owning an object u. For sim-
plicity, it is assumed that t.u is not null

pack o ≡
assert o 6= null ∧ o.st = Invalid ;
assert InvT (o);
foreach p ∈ CompT (o){assert p = null ∨ p.st = Valid ; }
foreach p ∈ CompT (o){if (p 6= null){p.st := Committed ; }}
o.st := Valid

(3)

unpack o ≡
assert o 6= null ∧ o.st = Valid ;
o.st := Invalid
foreach p ∈ CompT (o){if (p 6= null){p.st := Valid ; }}

(4)

What has changed to the previous definitions of pack and unpack is that
component objects are taken into consideration. Then the invariant 5 holds in
every reachable state of the program: For any class T

∀o : T • o.st = Invalid ∨
(InvT (o) ∧ (∀p ∈ CompT (o) • p = null ∨ p.st = Committed))

(5)

This can be proved by induction over the structure of program statements
resulting from the definitions of pack and unpack.

In contrast to other methodologies (see [11],[12]) , no restrictions have been
made on copying object references or on allowing multiple references to a com-
ponent object. This methodology also enables ownership transfer, meaning an
object can be owned by different owners over time. This transfer can occur if
the object is not in the Committed state, e.g. not being owned.

2.4 Subclasses

The methodology presented also handles subclasses. A class frame is defined
by a class and the set of fields and invariants defined in that class. If we allow



subclassing, an object can now have multiple class frames, and be valid or invalid
for a certain class frame as invariants can be specified at different levels of the
class hierarchy. To represent the subset of valid class frames, a special field inv
is introduced, whose value is the most derived class whose class frame is valid
for the object. By this definition, we allow a class frame only to be valid when
the class frames higher in the class hierarchy are valid too. Another special
field comitted of type boolean, indicating whether the object is committed, is
introduced. This results from the problem of encoding the information of whether
an object is in the Comitted state or not. The old state field is thus superfluous
but we have to ensure that comitted is true only if inv is equal to the dynamic
type of that object. Packing and unpacking can now be done for each class frame
by pack o as T and unpack o from T (see Def. 6 & 7), where T stands for the set
of classframes: For an object o of type T with S being an immediate superclass
of T :

pack o as T ≡
assert o 6= null ∧ o.inv = S ;
assert InvT (o);
foreach p ∈ CompT (o){
assert p = null ∨ (p.inv = type(p) ∧ ¬p.committed); }
foreach p ∈ CompT (o){if (p 6= null){p.committed := true; }}
o.inv := T

(6)

unpack o from T ≡
assert o 6= null ∧ o.inv = T ∧ ¬o.committed;
o.inv := S
foreach p ∈ CompT (o){if (p 6= null){p.committed := false; }}

(7)

These definitions combine the concepts of component objects and subclassing.
This means, when packing an object with a set of classframes T, we only put
the component object belonging to this set into the committed state. It is first
required that the invariant holds for the smaller set of classframes s. To put the
component objects into the committed state, it is also required that the invariant
holds for the dynamic type of the component object (denoted by type(p)). This
is the intuitive meaning, as we want our component object to be completely
packed.

From these definitions, program invariants (see Def. 8) guaranteeing the
soundness of the approach can be derived:



∀o, T • o.committed ⇒ o.inv = type(o)
∀o, T • o.inv <: T ⇒ InvT (o)
∀o, T • o.inv <: T ⇒ (∀p ∈ CompT (o) • p = null ∨ p.committed)
∀o, T, o′, T ′, q • (∀p ∈ CompT (o), p′ ∈ CompT ′(o′)•

o.inv <: T ∧ o′.inv <: T ′ ∧ q.committed ∧ p = p′ = q ⇒ o = o′ ∧ T = T ′)
(8)

where quantifications over references range over non-null objects, and <: de-
noting the reflexive and transitive subclass relation.

It can be proved that the statements, which can extend the range of the
quantifications, namely pack, unpack, object creation and field updates, do not
break the invariants. The detailed proofs can be found in [8]. With the newly
introduced concepts two new innovations are introduced in the next chapter.

2.5 Routine Specifications

Routine specifications describe what is expected of the caller at the time of the
call and what is expected of the implementation at the time of return. We first
describe a partial solution to the information hiding versus specification com-
pleteness problem. Having a layered program, as denoted by our rep keyword, we
allow the routine to modify layers of private state without explicitly mentioning
this state in the modifies clause. The proposed policy lets a routine modify the
state of any object that is committed at the time the routine is called (but of
course unpack must be used in the implementation). An additional idea is the
use of expressions of the form E.{T} in modifies clauses, denoting all fields of
object E declared in class T and its superclasses.

The second innovation comes from the problem that stating in a precondi-
tion the exact value desired for an object’s inv field seems incompatible with
dynamically dispatched methods. The innovation here is to introduce a new ex-
pression, 1, with the meaning of type(this) for the caller, and meaning T for
an implementation of the method given in class T . Thus, upon calling a method
with precondition inv = 1, a caller invoking the method on an object o knows
that o is entirely valid, without having to know the dynamic type of o. We thus
provide a way for the specification of a dynamically dispatched method to talk
about the entire-validity of an object without forcing implementations to reason
about possible subclasses.

2.6 Summary

As a brief summary, we have seen that the presented methodology permits object
invariants to depend on fields declared in superclasses and on fields of transitively
owned objects. However, as we require these special field to be annotated with



the modifier rep, there is a static limit on the number of owned objects an owning
object can have. Another drawback is that we have not considered concurrency,
and that the components are accessible only through fields. For more advanced
language features as exceptions and final methods, this methodology has to be
adapted further. However, the soundness of the current methodology allows a
programmer to make strong assumptions about program correctness.

3 Application to Spec#

The aforementioned specification technique leads to rather long specifications, so
syntactic sugar and good defaults have to be found in order for it to be applicable
in practice. The Spec# language specifies among others the following constructs.
The construct expose(o) {...} with o of static type T models our conceptual
pack o as T ; ... unpack o from T;. and rep is modeled by the [Rep] modifier.
For an expression o of reference type T , o.IsConsistent is the corresponding to
InvT (o).

3.1 An Example

We give as an example the specification of an Integer Stack class in Listing
1.3. Our stack is implemented with the help of an array elems which stores
the values pushed onto the stack and and integer storing the current size of
the stack. The elems array is marked with the [Rep] modifier, as we want the
IntStack class to own the elems. Spec# also allows to specify non-null types ,
as for the elems field which never points to the null value, which is indicated by
the exclamation mark at the type definition. size is marked by the [SpecPublic]

modifier3 which makes the field usable in our contracts. Our invariant for the
IntStack class then specifies that the size must be non-negative and smaller or
equal to the capacity of the IntStack, which corresponds to the length of the
array. The IntStack constructor takes as argument the capacity for which the
IntStack will be initialized and states as precondition that the capacity must be
strictly positive. As we want to use the capacity in our contract specifications,
we introduce a so-called getter method Cap. The constructor is marked by the
[NotDelayed] modifier as we have to initialize the non-null elems field before
calling the super-constructor by base().

The methods to push or pop an integer from the stack are then specified and
implemented. We specify that the size increases respectively decreases with each
call, and that there has to be sufficient capacity in case of a push and the stack
must not be empty in case of a pop action. We can also specify which fields are
to be modified by the implementation using the modifies clause.

Now that we have specified and implemented the integer stack, we demon-
strate how the static checker can be used to find errors in our program. Assume
we have written a program using the integer stack like in Listing 1.4. We can

3 precisely a Spec# annotation



using System ;
using Microso f t . Contracts ;

class IntStack {
[ Rep ] int [ ] ! e lems ;
[ SpecPubl ic ] int s i z e ;
invariant 0 <= s i z e &&

s i z e <= elems . Length ;

public int Cap {
get {

return elems . Length ; }
}

[ NotDelayed ] public
IntStack ( int cap )

requires cap > 0;
ensures s i z e == 0;
ensures Cap == cap ;

{
s i z e = 0 ;
elems = new int [ cap ] ;
base ( ) ;

}

public void Push ( int e )
requires s i z e < Cap ;
modifies this . ∗ ;
ensures s i z e == old ( s i z e )+1;
ensures Cap == old (Cap ) ;

{
expose ( this ) {

elems [ s i z e ++] = e ;
}

}

public int Pop ( )
requires 0 < s i z e ;
modifies this . ∗ ;
ensures s i z e == old ( s i z e )−1;
ensures Cap == old (Cap ) ;

{
expose ( this ) {

return elems[−− s i z e ] ;
}

}
}
Listing 1.3. Integer stack implemen-
tation in Spec# , inspired by [13]

introduce assert statements which the static checker then tries to verify. For ex-
ample we want to check that the capacity remains unchanged after pushing an
element on the stack. This can be proved by the statical checker, as we specified
for Pop() that Cap == old(Cap). However we have pushed two elements onto the
stack and tried to pop three elements off.

public class Program
{

stat ic void Main ( )
{

IntStack s = new IntStack ( 2 ) ;
s . Push ( 1 0 0 ) ;
assert s . Cap == 2;
s . Push ( 2 0 0 ) ;
s . Pop ( ) ;
s . Pop ( ) ;
s . Pop ( ) ; // error

}
}

Listing 1.4. Using the IntStack



The static checker finds this bug and correctly reports the warning Call of
IntStack.Pop(), unsatisfied precondition: 0 < size. Even if not every-
thing can be verified statically, we can be sure that at runtime, due to the
compiler emitted runtime checks, our program will not enter a non specified
state unnoticed, e.g. break an invariant.

4 Conclusion

After a short introduction to the Spec# programming system, a solution to the
classical approach has been presented, where objects don’t even have to be pro-
tected from aliasing. The presented approach makes it clear to the programmer
at what program points an object invariant can be relied upon. While field up-
dates are restricted, there are no restrictions on read operations (in comparison
to read-only references in [14]). The only restriction imposed is that each object
must have at most one valid owner at any time, which is enforced at the time of
pack operations.

In the second part of the paper, we have had a look at the constructs the
Spec# language defines. Some more constructs not presented have been intro-
duced to ease the use of the presented specification technique combined with
other concepts. As we haved used the Spec# programming tools, it was not
always clear why certain more advanced examples would statically verify and
others not. To get a good feeling for what can be done with the current tools, we
point to [13]4. However, one has to note that sometimes even small changes to
the specifications can change the outcome of the static verification completely.
As writing specifications in a way that they are statically verifiable seems to be
hard at times, the programmer should not rely on them.

The runtime checks are currently the most important feature which can be
put into use in a test environment, where they can help the programmer to detect
the program states, which were never intended for to be reached by the program.
Another shortcoming of the current approach is the lack of documentation for
the more advanced specification statements. In order to use the specification
technique successfully for larger examples, we had problems to grasp the exact
semantics of different statements, as the defaults on different program constructs
were not obvious to us.

4 Textbook Examples Verified Using Spec# available at
http://www.rosemarymonahan.com/specsharp/
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