Likelihood inference in generalized linear mixed measurement error models

Mahmoud Torabi *
Department of Community Health Sciences, University of Manitoba, MB, R3E 0W3, Canada

ARTICLE INFO

Article history:
Received 16 December 2011
Received in revised form 7 July 2012
Accepted 23 July 2012
Available online 25 July 2012

Keywords:
Bayesian computation
Exponential family
Hierarchical models
Measurement error
Random effects

ABSTRACT

The generalized linear mixed models (GLMMs) for clustered data are studied when covariates are measured with error. The most conventional measurement error models are based on either linear mixed models (LMMs) or GLMMs. Even without the measurement error, the frequentist analysis of LMM, and particularly of GLMM, is computationally difficult. On the other hand, Bayesian analysis of LMM and GLMM is computationally convenient in both cases without and with the measurement error. Recent introduction of the method of data cloning has made frequentist analysis of mixed models also equally computationally convenient. As an application of data cloning, we conduct a frequentist analysis of GLMM with covariates subject to the measurement error model. The performance of the proposed approach which yields the maximum likelihood estimation is evaluated by two important real data types, Normal and logistic linear mixed measurement error models, and also through simulation studies.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Generalized linear mixed models (GLMMs) have become very popular for analyzing correlated and overdispersed data (Breslow and Clayton, 1993). Depending on the data, either linear mixed models (LMMs) (Searle et al., 1992; Torabi et al., 2009; Datta et al., 2010; Torabi, 2011, 2012a) or GLMMs (McCulloch et al., 2008) are used. Parameters of the LMM can be estimated using either maximum likelihood (ML) or restricted ML (REML), among other approaches. A potential difficulty in making inference in GLMMs is that a full-likelihood analysis is burdened by often intractable numerical integration (McCulloch, 1997). Parameter estimation under GLMM is then extremely difficult using the frequentist approach. The Bayesian approach, especially the non-informative Bayesian approach, has become quite popular because of its computational convenience. Implementation of the non-informative Bayesian approach, however, requires substantial care. The inferences may also depend on the choice of the prior.

A common problem for analyzing correlated data is also the presence of covariate subject to measurement error (Carroll et al., 2006). The measurement error with independent observations has been extensively reviewed in the literature in the context of linear models (Fuller, 1987). The GLMMs and non-linear models with covariates subject to measurement error have also been studied in the literature (Carroll et al., 2006). In the frequentist approach, there are a few studies on the effects of measurement error to analyze the clustered data which are mainly based on some approximation approaches such as regression calibration (RCA) and simulation based such as simulation extrapolation (SIMEX) (Wang et al., 1998). However, likewise GLMMs, the Bayesian approach, especially the non-informative Bayesian approach, has also become quite popular in generalized linear mixed measurement error models (GLMMMeMs) because of its computational convenience (Carroll et al., 2006).
Recently, Lele et al. (2007) introduced an alternative approach, called data cloning (DC), to compute the ML estimates and their standard errors for general hierarchical models. Similar to the Bayesian approach, data cloning avoids high dimensional numerical integration and requires neither maximization nor differentiation of a function. Extending this work to the GLMM situation, Lele et al. (2010) described an approach to compute prediction and prediction intervals for the random effects. Torabi (2012b) also extended the DC approach to the GLMM with two components of dispersion. The data cloning approach was also extended to cross-sectional and time-series data in the context of small area estimation (Torabi and Shokoohi, 2012).

The data cloning approach, thus, is well suited to offer a frequentist approach in the context of measurement error. The advantages of DC are that the model parameters estimates are independent of the choice of priors, non-estimable parameters are flagged automatically and the possibility of improper posterior distribution is completely avoided.

In this paper, we use data cloning in the context of GLMMs with covariates subject to measurement error. We first describe the measurement error problem in general (Section 2). We, then, describe how data cloning can be used to analyze GLMMeMs (Section 3). In Section 4, we compare the performance of data cloning which yields to maximum likelihood estimation (MLE) with the non-informative Bayesian approach for two real datasets when the responses are Normal and binary. In Section 5, the performance of data cloning is also studied through two simulation studies. Finally, some concluding remarks are given in Section 6.

2. Generalized linear mixed measurement error model

The basic model in measurement error can be described as follows. Let \(y_{ij} \) be the variable of interest for the \(j \)th unit within the \(i \)th cluster \((i = 1, \ldots, m; j = 1, \ldots, n_i)\). The \(y_{ij} \)s are assumed to be conditionally independent with exponential family p.d.f.

\[
 f(y_{ij} | \theta_i, \phi) = \exp\{y_{ij} \theta_i - c(\theta_i)\}/\phi + d(y_{ij}, \phi)),
\]

\((i = 1, \ldots, m; j = 1, \ldots, n_i) \). The density (2.1) is parameterized with respect to the canonical parameters \(\theta_i \), known scale parameters \(\phi \) and functions \(c(\cdot) \) and \(d(\cdot) \). The exponential family (2.1) covers well-known distributions including Normal, binomial and Poisson distributions. The GLM of \(y_{ij} \) given \(x_i \) and \(z_i \) is constructed by assuming that the conditional mean \(\theta_i \) is related to \(x_i \) and \(z_i \) through a generalized linear model:

\[
 g(\theta_i) = \beta_0 + \beta_1 x_i + \beta_2 z_i + u_i \quad (i = 1, \ldots, m; j = 1, \ldots, n_i),
\]

where \(g(\cdot) \) is a monotonic differentiable link function, \(x_i(p_1 \times 1) \) are unobserved true covariates, \(z_i(p_2 \times 1) \) are observed covariates, \(\beta_0, \beta_1, \beta_2 \) are vectors of unknown regression coefficients, and \(u_i \) are random effects with \(u_i \overset{i.i.d.}{\sim} N(0, \sigma_u^2) \). We also need to define the measurement error structure. In general, there are two different modeling approaches that differ according to distributional assumptions made on error-prone covariates: structural and functional approaches to modeling GLMMeMs. In the structural approach, the specific assumptions are made about the distributional structure of the unobserved covariates, while in the functional approach nothing is assumed about the unobserved covariates.

The most convenient structure is additive error, so that

\[
 X_{ij} = x_{ij} + V_{ij},
\]

where \(V_{ij} \) are independent \(\overset{i.i.d.}{\sim} N(0, \Sigma_{xy}) \) which are also independent of \(x_{ij} \). In this paper, we consider the structural approach to modeling GLMMeMs which \(x_{ij} \) are not observed, but \(X_{ij} \) are observed instead, with \(X_{ij} \sim N(\mu_{ij}, \Sigma_{xx}) \). When \(X \) and \(\xi \) are scalar, we write the measurement variance \(\Sigma_{xy} \) simply as \(\sigma_u^2 \). Define \(y_i = (y_{i1}, \ldots, y_{in_i})^T, x_i = (x_{i1}, \ldots, x_{in_i})^T, \) and similarly for \(z_i, \xi_i, \) and \(\eta_i \). The joint integrated likelihood in the \(i \)th cluster is

\[
 L(y_i, x_i | z_i) = \int L_i(y_i | x_i, z_i) L_i(x_i | \xi_i, z_i) L_i(\xi_i | \eta_i) d\xi_i,
\]

where \(L_i(x_i | \eta_i) \) is the likelihood function of \(x_i \) and \(L_i(x_i | \xi_i, z_i) \) is the error distribution, which is often assumed to be independent of \(z_i \) as in (2.3). The dependence of the likelihood on the within-cluster conditional distribution of the unobserved \(x \)s leads to the issue of model robustness. In particular, the problem of model misspecification may occur in most applications including but not limited to LMM or GLMM and it involves not only the distribution of the unknown \(x \), but also a more general problem starting with the linear model in \(y \) and involving all the components of the likelihood function (Roeder et al., 1996; Carroll et al., 1999a,b; Guolo, 2008a,b).

It has been shown that ignoring the measurement error may result in misspecifying the structure of both fixed and random effects. The cluster size \(n_i \) also plays an important role in the asymptotic bias in MLE under a misspecified model as \(m \rightarrow \infty \) (Wang et al., 1998). Suppose that \(x_{ij} \) is scalar, and define the vector \(\xi_i = (\xi_{i1}, \ldots, \xi_{in_i})^T, \) and \(z_i, \xi_i, \eta_i \) are defined similarly, and also assume that

\[
 x_{ij} = 1_{n_i} \eta_{i0} + z_{ij} \eta_z + e_{ij},
\]

where \(1_{n_i} \) is an \(n_i \times 1 \) vector of ones and \(e_{ij} \) given \(z_i \) is Normal variate with mean 0 and variance–covariance \(\Sigma_{xx} \). We also define the reliability matrix by \(\Lambda_i = \Sigma_{xx}^{-1} \Sigma_{xx} + \text{cov}(V_i)^{-1}. \) Then

\[
 \eta_i = (I - \Lambda_i)(1_{n_i} \eta_{i0} + z_{ij} \eta_z) + \Lambda_i \xi_i + 1_{n_i} u_i^*.
\]
or
\[x_{ij} = \alpha_{0j} + \eta_j z_{ij} + X_i \alpha_{aj} + u_i^* , \]
for some \(\alpha_{0j}, \alpha_{aj}, u_i^* \) and \(u_i^* \) is independent of \(u_i \) and \(X_i \) (Wang et al., 1998). It then follows from (2.2) that
\[
g(\theta_i) = \beta_0 + (\alpha_{0j} + X_i \alpha_{aj} + \eta_j z_{ij} + u_i^*) \beta_1 + z_{ij} \beta_2 + u_i. \tag{2.4} \]
It is clear by comparing (2.2) and (2.4) that the variance structure of the \(x_{ij} \) plays an important role when properly handling a GLMMeM.

3. Inference using data cloning

Let \(y = (y_1, \ldots, y_m)' \) be the observed data vector and, conditionally on the random effects, \(b \), assume that the elements of \(y \) are independent and drawn from a distribution in the exponential family with parameters \(\alpha \). It is also assumed that the distribution for \(b \) depends on parameters \(\alpha_2 \):
\[
y_i | b \sim f_{y_i | b}(y_i | b, \alpha_1) \quad \text{and} \quad b \sim g_b(b | \alpha_2). \tag{3.1} \]
The goal of the analysis is to estimate the model parameters \(\alpha = (\alpha_1, \alpha_2)' \) and predict the random effects \(b \) or its function. The likelihood of \(y_i \) given \(\alpha \) is given by
\[
L(\alpha; y) = \int \prod_{i=1}^m f_{y_i | b}(y_i | b, \alpha_1) g_b(b | \alpha_2) db. \tag{3.2} \]
To illustrate the DC approach, we start with the standard Bayesian approach to inference for hierarchical models. Denote \(\pi(\alpha) \) as prior distribution on the parameter space. The posterior distribution \(\pi(\alpha | y) \) is given by
\[
\pi(\alpha | y) = \frac{L(\alpha; y) \pi(\alpha)}{C(y)}, \tag{3.3} \]
where \(C(y) = \int L(\alpha; y) \pi(\alpha) d\alpha \) is the normalizing constant. There are computational tools, Markov chain Monte Carlo (MCMC) algorithms, that facilitate generation of random variates from the posterior distribution \(\pi(\alpha | y) \) without computing the integrals in the numerator or the denominator of (3.2) (Gilks et al., 1996; Spiegelhalter et al., 2004).

The DC method uses the Bayesian computational approach for frequentist purposes. In DC, one pretends that the observations \(y \) are repeated independently by \(K \) different individuals and all these individuals obtain exactly the same set of observations \(y \) called \(y^{(K)} = (y, y, \ldots, y) \). The posterior distribution of \(\alpha \) conditional on the data \(y^{(K)} \) is then given by
\[
\pi_K(\alpha | y^{(K)}) = \frac{[L(\alpha; y)^K \pi(\alpha)]}{C(y^{(K)})}, \tag{3.3} \]
where \(C(y^{(K)}) = \int [L(\alpha; y)]^K \pi(\alpha) d\alpha \) is the normalizing constant. The expression \([L(\alpha; y)]^K \) is the likelihood for \(K \) copies of the original data. Lele et al. (2007, 2010) showed that, for \(K \) large enough, \(\pi_K(\alpha | y^{(K)}) \) converges to a multivariate Normal distribution with mean equal to the MLE of the model parameters and the variance–covariance matrix equal to \(1/K \) times the inverse of the Fisher information matrix for the MLE. Hence, this distribution is nearly degenerated at the MLE \(\hat{\alpha} \) for large \(K \). Moreover, the sample mean vector of the generated random numbers from (3.3) provides the MLE of the model parameters, and \(K \) times their sample variance–covariance matrix is an estimate of the asymptotic variance–covariance matrix for the MLE \(\hat{\alpha} \). Lele et al. (2010) also provided various checks to determine the adequate number of clones \(K \). For instance, one may plot the largest eigenvalue of the posterior variance as a function of the number of clones \(K \) to determine if the posterior distribution has become nearly degenerate. As another criterion, it is approximately true that with increasing number of clones, we have
\[
(\alpha - \hat{\alpha}) V^{-1}(\alpha - \hat{\alpha}) \sim \chi_p^2, \tag{3.4} \]
where \(V \) is the variance of the posterior distribution and \(p \) is the dimension of \(\alpha \). One may compute the following two statistics: (a) \(\xi = \frac{1}{K} \sum_{K=1}^K (O_b - E_b)^2 \), where \(O_b \) and \(E_b \) are observed and estimated quantiles for \(\chi_p^2 \) random variable, and (b) \(F^2 = 1 - \rho^2 \), where \(\rho \) is the correlation between \((O_b, E_b) \). If these statistics are close to zero, it indicates that the approximation (3.4) is reasonable.
3.1. Prediction of random effects

Prediction of random effects, particularly from the frequentist viewpoint, is usually problematic. If the parameters α are known, then one can clearly use the conditional distribution of b, the latent variables, given the observed data. That is, one can use $\pi(b|y, \alpha^*)$ where α^* is the true value of the parameter. A naive approach, when α is estimated using the data, is to use $\pi(b|y, \hat{\alpha})$. However, this approach does not take into account the variability introduced by the model parameter estimates. An approach that has been suggested in the literature (e.g., Hamilton, 1986; Lele et al., 2010) to take into account the variation of the estimator is to use the density:

$$\pi(b|y) = \frac{\int f(y|b, \alpha_1)g(b|\alpha_2)\phi(\alpha, \hat{\alpha}, I^{-1}(\hat{\alpha}))d\alpha}{C(y)},$$

(3.5)

where $\phi(., \mu, \sigma^2)$ denotes Normal density with mean μ and variance σ^2, which are equal to the MLE and the inverse of the Fisher information matrix here. In this paper, we obtain the prediction of b using the density in Eq. (3.5) along with MCMC sampling.

In this paper, the performance of DC and hierarchical Bayes (HB) is evaluated through data analysis and simulation studies. In general, the vague, but proper, priors are used for regression effects and variance components. In particular, the independent Normal distribution is assigned for the regression coefficient with zero mean and variance 10^6, and gamma distribution for the inverse of variance component with shape and scale parameter 0.001. To monitor the convergence of the model parameters, we use several diagnostic methods implemented in the Bayesian output analysis (BOA) program (Smith, 2007), a freely available package created for R (R Development Core Team, 2011). We also use diagnostic methods described in Section 3, implemented in the clonr package (Sólymos, 2010) in R, to monitor the convergence of the model parameters in terms of the number of clones (K).

4. Data analysis

4.1. OPEN study

We study the performance of the data cloning approach by applying to a real dataset from the National Cancer Institute’s OPEN Study, which is one of the largest biomarker studies ever done (Subar et al., 2001, 2003; Kipnis et al., 2003). In the National Cancer Institute’s OPEN Study, one interest is to measure the logarithm of dietary protein intake. However, true long-term log-intake cannot be observed in practice. Instead, a biomarker of log-protein intake X, namely urinary nitrogen, is measured. In this study, $m = 223$ subjects had replicated urinary nitrogen measurements. There is evidence from feeding studies that the protein biomarker captures true protein intake with added variability. Then, the classical measurement error model (2.3) holds in this context. Let x_i be the true log-protein intake for individual i, and let X_{ij} be the jth biomarker log-protein measurement for individual i. The classical measurement error model is given by

$$X_{ij} = x_i + V_{ij}. \quad (4.1)$$

Each individual completed up to two ($n_i = 2$) food frequency questionnaires (FFQ) which measured reported protein intake, and also up to two biomarkers for protein intake. Let y_{ij} denote the logarithm of FFQ, the model is then given by

$$y_{ij} = \beta_0 + \beta_1 x_i + u_i + \epsilon_{ij}, \quad (i = 1, \ldots, m; j = 1, \ldots, n_i), \quad (4.2)$$

where $u_i \sim N(0, \sigma_u^2)$, $\epsilon_{ij} \sim N(0, \sigma_\epsilon^2)$, $V_{ij} \sim N(0, \sigma_V^2)$, $x_i \sim N(\mu_{x_i}, \sigma_{x_i}^2)$ with $\mu_{x_i} = \alpha_0 + \alpha_1 Age_i + \alpha_2 BMI_i$, where Age, and BMI, are age and body mass index (bmi) of an individual i.

Table 1 shows the estimates of the model parameters by employing MLE and HB approaches. It seems that for some model parameters the MLE provides better results than HB in terms of efficiency, noting that the MLE results do not also depend on the choice of priors unlike the HB approach. In particular, the relative efficiency of MLE compared to HB, $\text{var}(\hat{\alpha}_{HB})/\text{var}(\hat{\alpha}_{MLE})$, ranges from 100% to 291%. For this specific application, we used $K = 40$ to obtain MLE, and the number of iterations for convergence of the model parameters was 15 000.

4.2. Framingham Heart Study

We also study the performance of data cloning by applying to a real dataset (Framingham Heart Study) which has been studied by Kannel et al. (1986), among others. Note that the Framingham Heart Study is a logistic measurement error model without random effects, as indicated later in this section, which falls in the class of generalized linear measurement error models. However, since this study is very popular in the context of measurement error, we decided to analyze it using the data cloning approach; noting that more complex models (GLMMs) will be studied with an extensive simulation study in Section 5.2.

The Framingham Heart Study is a large study following individuals for the development of coronary heart disease (CHD). It consists of a series of exams taken over two years. We use exam number 3 as the baseline. There are $m = 1615$ men...
aged between 31 and 65 in this dataset, with the outcome, \(y \), indicating the occurrence of CHD within an eight-year period following exam 3; there were 128 cases of CHD. Predictors employed in this example are the patient’s age at exam 2, smoking status at exam 1, serum cholesterol at exam 3, and systolic blood pressure (SBP), the last is the average of two measurements taken by different examiners during the same visit. In this analysis, the error-free covariates \(z \), are age, smoking status, and serum cholesterol. The analysis uses the replicate SBP measurements from exams 2 and 3 for all study participants. The main surrogate \(X \) is the measurement of \(\log(SBP - 50) \). In particular, the transformed data are \(X_{ij} \), where \(i \) denotes the individual and \(j = 1, 2 \) refers to the transformed SBP at exams 2 and 3, respectively. The overall surrogate is the sample mean for each individual. The model is then given by

\[
\begin{align*}
\text{logit}(p_i) &= \beta_1 \text{Age}_i + \beta_2 \text{Smoke}_i + \beta_3 \text{Chol}_i + \beta_4 x_i, \\
X_{ij} &= x_i + V_{ij},
\end{align*}
\]

where \(p_i = \Pr(y_i = 1|x_i, z_i) \), \(x_i \sim N(\mu_x, \sigma^2_x) \) and \(X_{ij}|x_i \sim N(x_i, \sigma^2_x) \). The model parameters in this case are \(\alpha = (\beta_1, \beta_2, \beta_3, \beta_4, \sigma^2_x, \sigma^2_\epsilon)^T \). We then estimate the model parameters and corresponding standard errors by MLE through data cloning as well as the HB method. For this specific application, the number of clones was \(K = 20 \) to obtain MLE with number of iterations 100,000 for the convergence of the model parameters. We also adopt the results of RCA and SIMEX for this dataset from Carroll et al. (2006). In the following, we briefly describe the procedures of RCA and SIMEX.

The basis of RCA, which was initially suggested by Carroll and Stefanski (1990) and Gleser (1990), is the replacement of \(x \) by the regression of \(x \) on \((z, X)\). One can then perform a standard analysis. Obviously, the simplicity of this algorithm masks its power. Although RCA tends to be most useful for GLMMs, however, this approach can be rather poor for highly nonlinear models.

The SIMEX, which was initially proposed by Cook and Stefanski (1994), is indeed a simulation-based method of estimating and reducing bias due to measurement error. In this approach, the estimates are obtained by adding additional measurement error to the data in a resampling-like stage, then establishing a trend of measurement error-induced bias versus the variance of the added measurement error, and then extrapolating this trend back to the case of no measurement error. The SIMEX is ideally suited to problems with additive measurement error.

Table 2 shows the inference results for MLE, RCA, SIMEX, and HB methods. It seems that the results in four methods agree reasonably closely on most parameters except the estimate of variance component \(\sigma^2_\epsilon \) which is 0.002 for the MLE compared to 0.013 for the HB method. Note that also using data cloning, we get the unique MLE based on the likelihood, while RCA is based on an approximate approach and SIMEX is a simulation-based method. Also, note that in the HB approach one may get different results than MLE with using different priors, while the inferences in the MLE method are invariant to the choice of priors. To show this fact, we also considered uniform distribution \(U(0, 1000) \) for \(\sigma_x \) in the HB approach and observed that the estimate of variance component \(\sigma^2_x \) is 0.003 while this value for gamma distribution is 0.013 as shown in Table 2. Note that Carroll et al. (2006) did not estimate the variance component \(\sigma^2_x \) due to large degrees of freedom for estimating \(\sigma^2_\epsilon \), and also they were not interested in estimating the standard error of \(\hat{\sigma}^2_\epsilon \) for the RCA and SIMEX methods.
Fig. 1. The 95% prediction bands for the first 100 CHD rates in Framingham Heart Study for the MLE approach. The bullet represents prediction rates with corresponding lower and upper prediction bands.

Table 3
Mean values and variances (VAR), and simulated VAR of the estimates based on 1000 simulated datasets in the OPEN Study for MLE and HB methods.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MLE</th>
<th>HB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>VAR</td>
</tr>
<tr>
<td>β_0</td>
<td>2.432</td>
<td>0.620</td>
</tr>
<tr>
<td>β_1</td>
<td>0.483</td>
<td>0.024</td>
</tr>
<tr>
<td>α_0</td>
<td>5.746</td>
<td>0.143</td>
</tr>
<tr>
<td>α_1</td>
<td>0.010</td>
<td>0.00003</td>
</tr>
<tr>
<td>α_2</td>
<td>0.004</td>
<td>0.0001</td>
</tr>
<tr>
<td>σ^2_x</td>
<td>0.266</td>
<td>0.003</td>
</tr>
<tr>
<td>σ^2_u</td>
<td>0.311</td>
<td>0.008</td>
</tr>
<tr>
<td>σ^2_ϵ</td>
<td>0.876</td>
<td>0.007</td>
</tr>
<tr>
<td>σ^2_v</td>
<td>0.458</td>
<td>0.002</td>
</tr>
</tbody>
</table>

As indicated in Section 3, one of the main features of data cloning is the ability to predict the random effects. We provided the 95% prediction bands for the first 100 CHD rates (Fig. 1) while the remaining predictions show similar patterns; noting that the CHD rates are predicted not estimated since they are random effects.

5. Simulation study

5.1. Simulation study based on linear mixed measurement error model

We conduct a simulation study on the performance of model parameters estimates for the MLE approach via data cloning. We use a real dataset given in the OPEN Study to simulate samples from models (4.1)–(4.2).

We first obtain the estimates of model parameters from the dataset, using for example the MLE approach, and then treat them as known for the simulation study. In particular, $m = 223$, $n_i = 2$, and we choose $\beta_0 = 2.45$, $\beta_1 = 0.48$, $\alpha_0 = 5.72$, $\alpha_1 = -0.01$, $\alpha_2 = -0.003$, $\sigma^2_x = 0.27$, $\sigma^2_u = 0.33$, $\sigma^2_\epsilon = 0.87$, and $\sigma^2_v = 0.46$. Using those parameter values, estimates are obtained using MLE and HB analyses of $R = 1000$ datasets $(y_{ij}^{(r)}, X_{ij}^{(r)}, \text{Age}_i, \text{BMI}_i)$, $r = 1, \ldots, R$ generated from models (4.1)–(4.2). For this simulation set-up, the average number of clones was $K = 50$ to obtain MLE, and the average number of iterations for convergence of the model parameters was about 20,000.

Table 3 presents the mean values and variances of the fixed parameters and variance component parameters, as well as corresponding simulated variances of the model parameters estimate for two methods, MLE and HB. It seems that the MLE approach produces estimates with small bias for the model parameters, and their variances are comparable with corresponding simulated variances. On the other hand, the bias for the model parameters in the HB method is relatively large with also underestimating variances of some model parameters estimates. Overall, it seems that the MLE approach provides reasonable point estimates and corresponding variances for this set-up, and its performance is much better than the HB method.
We also conduct a simulation study to evaluate the performance of the proposed MLE approach in the context of the logistic mixed measurement error model. Binary observations y_{ij} are generated within each cluster with conditional success probabilities satisfying the following logit model

$$
\logit(\Pr(y_{ij} | x_{ij}, z_{ij}, u_i)) = \beta_0 + \beta_1 x_{ij} + \beta_2 z_{ij} + u_i,
$$

(5.1)

$$
X_{ij} = x_{ij} + V_{ij}, \quad (i = 1, \ldots, m; j = 1, \ldots, n),
$$

(5.2)

where $x_{ij} \sim N(\mu_x, \sigma^2_x)$, $u_i \sim N(0, \sigma^2_u)$, $V_{ij} \sim N(0, \sigma^2_v)$. We set $m = 50$ and $n = 3$ which is a common sample size in longitudinal studies, for example. The exactly measured covariate z is generated independently from a standard Normal distribution. Other parameters used to specify $y|x$ and $X|x$ models are $\beta_0 = 0$, $\beta_1 = 2$, $\beta_2 = 1$, $\mu_x = 0$, $\sigma^2_x = 1$, and $\sigma^2_u = 0.5$. We consider different values of $\sigma^2_v = 0.5$, 1.0, 2.0, and also generate x_{ij} from different distributions: Normal distribution with mean μ_x and variance σ^2_x, and chi-square distribution with one degree of freedom. We generate 1000 simulations from models (5.1)–(5.2). The results for Normal and chi-square distributions, for different values of σ^2_v, are displayed in Tables 4 and 5, respectively. In general, in the case of Normal distribution, for different values of σ^2_v, the MLE method performs well with very small bias for regression coefficients and variance components, and also their variances are estimated very well and are comparable with the corresponding simulated variances (Table 4). On the other hand, the HB approach performs poorly with relatively large bias particularly for variance component σ^2_v, and also the variances of model parameters estimates are generally underestimated. The variances of model parameters estimates are also increased with increasing the values of σ^2_v for both DC and HB methods. We are also interested to check the robustness of the DC approach in terms of misspecification of the measurement error x. Table 5 reports means, variances, and simulated variances of model parameters estimates for both DC and HB methods when the measurement error x is generated from the chi-square distribution with one degree of freedom but normal specification of x in the likelihood approach would be appreciated. It seems that we have relatively large bias for μ_x and σ^2_x for both MLE and HB methods; however, in the case of the MLE approach the bias terms for other model parameters estimates are reasonably small and the variances of the model parameters estimates are also estimated well. Similarly, the variances of the model parameters estimates are increased with increasing the values of σ^2_v. Note that for this simulation set-up, the average number of clones was $K = 50$ to obtain MLE, and the average number of iterations for convergence of the model parameters was about 20,000.

Table 4
Mean values and variances (VAR), and simulated VAR of the estimates for different measurement error variances based on 1000 simulated datasets in logistic mixed measurement error model for MLE and HB methods.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MLE Mean</th>
<th>MLE VAR</th>
<th>Simulated VAR</th>
<th>HB Mean</th>
<th>HB VAR</th>
<th>Simulated VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_0 = 0$</td>
<td>-0.012</td>
<td>0.086</td>
<td>0.092</td>
<td>-0.014</td>
<td>0.084</td>
<td>0.104</td>
</tr>
<tr>
<td>$\beta_1 = 2$</td>
<td>2.119</td>
<td>0.253</td>
<td>0.320</td>
<td>2.376</td>
<td>0.342</td>
<td>0.534</td>
</tr>
<tr>
<td>$\beta_2 = 1$</td>
<td>1.049</td>
<td>0.103</td>
<td>0.116</td>
<td>1.072</td>
<td>0.099</td>
<td>0.124</td>
</tr>
<tr>
<td>$\mu_x = 0$</td>
<td>0.002</td>
<td>0.022</td>
<td>0.023</td>
<td>0.002</td>
<td>0.020</td>
<td>0.023</td>
</tr>
<tr>
<td>$\sigma^2_1 = 1$</td>
<td>0.969</td>
<td>0.052</td>
<td>0.062</td>
<td>0.865</td>
<td>0.043</td>
<td>0.056</td>
</tr>
<tr>
<td>$\sigma^2_2 = 0.5$</td>
<td>0.570</td>
<td>0.512</td>
<td>0.620</td>
<td>0.502</td>
<td>0.062</td>
<td>0.052</td>
</tr>
<tr>
<td>$\sigma^2_v = 0.5$</td>
<td>0.497</td>
<td>0.005</td>
<td>0.008</td>
<td>0.502</td>
<td>0.005</td>
<td>0.008</td>
</tr>
</tbody>
</table>

5.2. Simulation study based on logistic mixed measurement error model

6. Concluding remarks

There are many situations where responses are proportions or counts and covariates are measured with error. Often, for fitting complex models in a measurement error context, approximate methods such as RCA or simulation-based approaches such as SIMEX are used in the frequentist paradigm; a potential difficulty in making inferences based on MLE is that a
Table 5
Mean values and variances (VAR), and simulated VAR of the estimates for different measurement error variances based on 1000 simulated datasets in logistic mixed misspecified measurement error model for MLE and HB methods.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MLE</th>
<th>HB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>VAR</td>
</tr>
<tr>
<td>β_0 = 0</td>
<td>0.238</td>
<td>0.132</td>
</tr>
<tr>
<td>β_1 = 2</td>
<td>1.554</td>
<td>0.259</td>
</tr>
<tr>
<td>β_2 = 1</td>
<td>1.057</td>
<td>0.106</td>
</tr>
<tr>
<td>μ_x = 0</td>
<td>0.999</td>
<td>0.043</td>
</tr>
<tr>
<td>σ^2_x = 1</td>
<td>1.057</td>
<td>0.106</td>
</tr>
<tr>
<td>σ^2_u = 0</td>
<td>0.5</td>
<td>0.005</td>
</tr>
<tr>
<td>σ^2_v = 2</td>
<td>1.057</td>
<td>0.106</td>
</tr>
</tbody>
</table>

full-likelihood analysis is burdened by often intractable numerical integration. However, Bayesian methods are advocated because they are computationally more convenient than the ML method. Analysis based on data cloning overcomes the computational difficulties of the ML method. Under the Normal and logistic mixed models, the data cloning, which yields the MLE, may also lead to better inferential solutions to the model parameters, compared to existing frequentist approaches such as RCA and SIMEX, where the covariates are measured with error. Under GLMMeM, data cloning can also provide prediction intervals similar to the Bayesian approach with added advantages that the answers are invariant to the choice of priors.

Although, in this paper our focus was on a classical, additive, unbiased and non-differential measurement error model, the data cloning approach can also be easily extended to different situations such as heteroscedastic, Berkson or differential measurement error structures (Carroll et al., 2006). We have planned to develop these models.

Acknowledgments

I would like to thank two referees and an Associate Editor for constructive comments and suggestions. This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. I also thank Amy F. Subar for providing the OPEN Study dataset.

References

Smith, B.J., 2007. BOA user manual (version 1.1.7). Department of Biostatistics, College of Public Health, University of Iowa, Ames.

