Mahmoud Reza PishvaieSharif University of Technology | SHARIF · Department of Chemical and Petroleum Engineering
Mahmoud Reza Pishvaie
PhD
About
85
Publications
12,410
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,442
Citations
Introduction
Publications
Publications (85)
Biological conversion of waste methane to biodegradable plastics is a way of reducing their production cost. This study addresses the computational modeling of the growth phase reactor of the process of polyhydroxybutyrate production. The model was used for investigating the effect of gas recycling and inlet gas retention time on the reactor perfor...
Biological conversion of waste methane to biodegradable plastics is a way of reducing their production cost due to expensive raw materials. This study addresses the computational modeling of the growth phase reactor of this innovative process. The model was used for investigating the effect of gas recycling and inlet gas retention time on the perfo...
There are uncertainties in both inherent geological properties and IOR/EOR performance parameters of low permeability greenfield reservoirs. Therefore, efforts to reduce uncertainties in the appraisal phase are necessary for the development and production phases. An adequate selection of the appraisal area in the hydrocarbon field is an imperative...
In this study, ensemble Kalman filter (EnKF) is first applied to estimate absolute and relative permeabilities jointly under three-phase flow condition in the porous media. By assimilating historical data, absolute permeability field is adjusted progressively towards its reference. However, assimilation process does not improve the estimation of al...
In this study, impact of initial ensembles on posterior distribution of ensemble-based assimilation methods is statistically analyzed. Along with, sampling performance as well as uncertainty quantification of these methods are compared in terms of their ability to accurately and consistently evaluate unknown reservoir model parameters and reservoir...
Ensemble-based assimilation methods are the most promising tools for dynamic characterization of reservoir models. However, because of inherent assumption of Gaussianity, these methods are not directly applicable to channelized reservoirs wherein the distribution of petrophysical properties is multimodal. Transformation of facies field to level set...
Presence of fracture roughness and occurrence of nonlinear flow complicate fluid flow through rock fractures. This paper presents a qualitative and quantitative study on the effects of fracture wall surface roughness on flow behavior using direct flow simulation on artificial fractures. Previous studies have highlighted the importance of roughness...
This paper presents the design and part-load operation of a molten carbonate-micro gas turbine (MCFC/MGT) hybrid system (HS), and proposes a multiloop control strategy for the HS. A mathematical model of the system is introduced. Then, the structure of process is changed and the performance of HSs at part-load operation is studied. The novelty incl...
Majority of commercial and academic compositional reservoir simulators are Finite Difference based. Low order methods such as FD suffer from numerical dispersion which makes them highly mesh quality and mesh orientation dependent; therefore, using them can result in inaccurate capture of shock fronts in processes such as gas injection. Recent works...
In this study, the ensemble Kalman filter is used to characterize threephase flow in porous media through simultaneous estimation of three-phase relative permeabilities and capillary pressures from production data. Power-law models of relative permeability and capillary pressure curves are used and the associated unknown parameters are estimated by...
The semi-empirical Kozeny–Carman (KC) equation is the widely used equation for determining permeability of porous media. Recent studies have shown that KC coefficient (CKC ) is a function of porous media parameters. In this study, the relation between parameters of randomly generated porous media is investigated to improve permeability prediction....
In the optimization of naturally fractured reservoirs, it is required to take into account their complex flow behavior due to high conductivity fractures. In this regard, the possible effects of fractures must be included in the optimization procedure. In a water-flooding project, fast water breakthrough from injection to production wells may be oc...
The formation of crystals from solutions plays a key role in various industrial applications. In this study, a new approach is presented into the optimal control of batch cooling crystallizers through a genetic algorithm. The Population balance is formularized for a typical batch crystallizer. The objective functions considered here are related to...
The Ensemble Kalman Filter (EnKF) is a Monte Carlo based method to assimilate the measurement data sequentially in time. Although, EnKF has some advantages over the other Kalman based methods to deal with non-linear and/or high dimensional reservoir models, it also suffers from deficiency in estimation of non-Gaussian parameters. In this work, we p...
An ensemble-based, sequential assimilation procedure is developed and successfully applied to estimate absolute and relative permeabilities jointly under multi-phase (oil, gas and water) flow condition in the porous media. Two-phase oil-water and gas-oil relative permeabilities are represented by power-law models, and Stone's Model II is used to ca...
In this paper, a 3-dimensional mathematical model for one cell of an anode-supported SOFC (solid oxide fuel cells) is presented. The model is derived from the partial differential equations representing the conservation laws of ionic and electronic charges, mass, energy, and momentum. The model is implemented to fully characterize the steady state...
Field evidence indicates that the thermal and chemical regimes in wellbore considerably affect the wellbore stability. This study presents a general coupled model for transport of solute, solvent and heat including their combined effects on the wellbore stability. Optimization of drilling fluid parameters is crucial for wellbore stability analysis...
- Robust optimization (RO) approach is inherently a multi-objective paradigm. The proposed multi-objective optimization formulation would attempt to find the optimum - yet robust - water injection policies. Two multi-objective, Pareto-based robust optimization scenarios have been investigated to encounter the permeability uncertainties. These multi...
Determining the optimal location of wells with the aid of an automated search algorithm is a significant and difficult step in the reservoir development process. It is a computationally intensive task due to the large number of simulation runs required. Therefore, the key issue to such automatic optimization is development of algorithms that can fi...
Ensemble Kalman filter, EnKF, as a Monte Carlo sequential data assimilation method has emerged promisingly for subsurface media characterization during past decade. Due to high computational cost of large ensemble size, EnKF is limited to small ensemble set in practice. This results in appearance of spurious correlation in covariance structure lead...
This paper develops a two dimensional green element simulator based on a “compatibility-equation” algorithm for simulation of counter-current spontaneous imbibition (COUCSI) process. The Green element method is a novel computational approach based on the boundary integral theory, which is regarded as a hybrid combination of both boundary and finite...
The presence of asphaltene means additional difficulties related to transport and processing due to the increased crude oil viscosity caused by the asphaltene. For a better knowledge of the flow properties of asphaltene containing crude oils, it is necessary to understand how asphaltene affects the rheological properties. The aim of this article is...
This paper is a continuation of our previous paper (part 1; 10.1021/ef401857t), which discussed the roles of different phenomena effecting the deposition of asphaltene from model oil systems and before the onset of asphaltene precipitation. The study in this paper is to understand the depositional tendency of asphaltene using a quartz crystal micro...
The aim of the present work is to propose an eco-design method for sustainable development of methanol production by implementing a multi-objective optimization model based on CO2-efficiency. Two different approaches for the methanol production, i.e. a conventional reference methanol case (RMC) and proposed green integrated methanol case (GIMC) wer...
In this article, a genetic algorithm is used to optimize the separator pressures in a multistage crude oil and multistage gas condensate production unit with four and three separators respectively. This leads to the generation of more accurate results for the quality and quantity of oil remaining in the stock tank for both crude oil and gas condens...
To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain para...
The petroleum industry tends to paint an optimistic picture with respect to future petroleum availability. In order to anticipate demand, the size of connected volume of hydrocarbon of fields needs to be known. During the early stage of life of a reservoir, due to the lake of certain data, connected volume of hydrocarbon is usually based on analogu...
This article presents a method for optimizing and controlling an oil production system using a natural gas lift concept. Ever increasing development of Smart Well technology and various applications of down-hole monitoring and controlling instruments along with new methods of data acquisition/transmission make it possible for the natural gas lift s...
Asphaltenes are a polydisperse fraction of the crude oil, the phase behavior of which is significantly affected by the changes in pressure, temperature and composition. The focus of this study is to model the polydisperse asphaltenes' precipitation onset condition and the amount of precipitate from solvent-diluted crude oils using the Perturbed Cha...
Optimal well placement is a crucial step in reservoir development process. The key points in such an optimization process are using a fast function evaluation tool and development of an efficient optimization algorithm. This study presents an approach that uses particle swarm optimization algorithm in conjunction with streamline simulation to deter...
In this work, a new automatic workflow for accurate optimal pseudo-component generation from gas condensate mixtures with a large number of components is presented. This workflow has a good insight into thermo-physical and critical properties and introduces only a small amount of loss of information and EOS flexibility. In this regard, the fuzzy cl...
Among the asphaltene flow assurance issues, the most major concern because of asphaltene is its potential to deposit in reservoir, well tubing, flow lines, separators, and other systems along production lines causing significant production losses. Hence, the focus of this study is to understand the depositional tendency of asphaltene using quartz c...
In the upstream asphaltene flow assurance community, both academics and industries are actively involved to predict the asphaltene deposit profile in wellbores and pipelines. Essential information for such a study is the amount of asphaltenes that can precipitate and, hence, deposit. In this work, the perturbed chain form of the statistical associa...
Most of the reported robust and non-robust optimization works are formulated based on a single-objective optimization, commonly in terms of net present value. However, variation of economical parameters such as oil price and costs forces such high computational optimization works to regenerate their optimum water injection policies. Furthermore, dy...
Fuel cells belong to an avant-garde technology family for a wide variety of applications including micro-power, transportation power, stationary power for buildings and other distributed generation applications. The first objective of this contribution is to find a suitable reduced model of a Solid Oxide Fuel Cell (SOFC). The derived reduced model...
Oxidative coupling of methane in a bench scale fixed bed tubular reactor over Mn-Na2WO4/SiO2 catalyst has been studied. Four kinetic models have been considered for oxidative coupling of methane reactions and compared through experimental data, and the best kinetic model has been selected. For removing the heat of reaction, a molten salt bath syste...
Complicated sedimentary processes control the spatial distribution of geological heterogeneities. This serves to make the nature of the fluid flow in the hydrocarbon reservoirs immensely complex. Proper modeling of these heterogeneities and evaluation of their connectivity are crucial and affects all aspects of fluid flow. Since the natural variabi...
The strong bases statistical associated fluid theory (SAFT) equations of state allow modeling for a wide range of scales and applications. The equilibrium calculations are very time-consuming in SAFT-based family of equations of state; therefore the number of components used in describing a fluid mixture must be reduced by grouping. On the other ha...
In this work, the goal is to find the optimum working point for intelligent wells that is equipped with down-hole chokes and producing from a multi-layer reservoir under pressure maintenance process. Two evolutionary optimization algorithms are used and results are compared from different points of view. Therefore, the differential evolution techni...
Wellbore stability is a main concern in drilling operation. Troublesome drilling issues are chemically active formations and/or high-pressure–high-temperature environments. These are mainly responsible for most of wellbore instabilities. Wellbore failure is mostly controlled by the interaction between active shales and drilling fluid in shale forma...
Curing of thermoset-based composites experience substantial temperature overshoot, especially at the center of thick parts and large temperature gradient exists through the whole part due to large amount of heat released and low conductivity of the composite. This leads to non-uniformity of cure, residual stress and consequently composite cracks an...
BACKGROUND: A new design for a methanol plant is proposed in which CO2 addition, as one of the important parameters, is used to optimize the synthesis gas composition. An attempt has been made to assess the environmental features as well as the process operability of the proposed plant, in which the required CO2 is provided from reformer flue gas....
Reservoir characterization, especially during early stages of reservoir life, is very uncertain, due to the scarcity of data. Reservoir connectivity and permeability evaluation is of great importance in reservoir characterization. The conventional approach to addressing this is computationally very expensive and time consuming. Therefore, there is...
Optimal well placement is a crucial step in efficient reservoir development process which significantly affects the productivity and economical benefits of an oil reservoir. However, it is a complex and challenging problem due to the different engineering, geological and economical variables involved. This leads to a very large number of potential...
A Real-Time Optimization (RTO) strategy incorporating the fuzzy sets theory is developed, where the problem constraints obtained from process considerations are treated in fuzzy environment. Furthermore, the objective function is penalized by a fuzzified form of the key process constraints. To enable using conventional optimization techniques, the...
A new and general procedure for history matching that uses streamline simulation and a gradual deformation technique has been proposed. Streamline trajectories define the major flow paths and help the algorithm to modify the reservoir model only in the regions that cause the mismatch between simulation results and field observations. The use of a g...
Simulation of the in-situ combustion process is one of the most complex simulations amongst other reservoir flow simulations. Accurate simulation of the process is critical to obtain a successful implementation of the in-situ combustion process. Several factors impact performance of the simulation of this process. First are all the numerical models...
Reservoir connectivity and effective permeability evaluation is of great importance in reservoir forecast that is used for decision making on various possible development scenarios. During the early stage of life of a field when data are scares, these parameters are usually based on analogues or rules of thumb and not detailed reservoir modeling. T...
Oil reservoirs are very complex with geological heterogeneities that appear on all scales. Proper modeling of the spatial distribution of these heterogeneities is crucial, affecting all aspects of flow and, consequently, the reservoir performance. Reservoir connectivity and conductivity evaluation is of great importance for decision-making on vario...
The connectivity of high conductivity pathways in geological formations depend on the spatial distribution of geological heterogeneities that may appear on various length scales. Appropriate modeling of this is crucial within in hydrology and petroleum systems. The approach taken in this study is to use percolation theory to quantify the connectivi...
Computer aided history matching techniques are increasingly playing a role in reservoir characterization. This article describes the implementation of a differential evolution optimization algorithm to carry out reservoir characterization by conditioning the reservoir simulation model to production data (history matching). We enhanced the different...
When latent heat is transferred in a heat exchanger network, the formation of the second phase creates an opportunity for separation. This network is known as a Heat Induced Separation Network (HISEN). HISENs have been extended to include pressure adjusting devices for improving the thermodynamic feasibility of the network. This extended network is...
Pore network modeling uses a network of pores connected by throats to model the void space of a porous medium and tries to predict its various characteristics during multiphase flow of various fluids. In most cases, a non-realistic regular lattice of pores is used to model the characteristics of a porous medium. Although some methodologies for extr...
Transmission line congestion in electricity market is lead to increase the energy cost and change in local marginal prices. So, it is probable that the market power is manifested. Market power may prevent the full competition in Electricity Market. Moreover, in this condition, with operating of power system in its boundary conditions, the system ma...
Considering the non-ideal behavior of and their eeects on hydrodynamic and mass transfer in multiphase is very essential. Simulations were performed that take into account the eeects of mass transfer and mixture non-ideality on the hydrodynamics reported by Bozorgmehry et al. In this paper, by assuming the density of phases to be constant and using...
This paper is concerned about islanding of network and observability of these islands in power system restoration. It is assumed that a black out happened on a system which have minimum PMUs (phasor measurement units) for measuring network's parameters. To restore this system an algorithm of islanding that keeps all islands observable to make the r...
A Green Element numerical formulation is used to solve the time-dependent nonlinear one-dimensional counter-current spontaneous imbibition diffusion equation in which water enters a water wet rock spontaneously while oil escapes by flowing in the opposite direction. The Green Element Method (GEM) is an element by element approach of the boundary el...
The role of initiators with different reactivities on the process cycle of nonisothermal resin transfer molding (RTM) was examined using the numerical simulation. A new process model was developed based on flow, heat and mass transfer equations combined with an appropriate mechanistic kinetics model which elucidates the functions of the initiators...
During power system restoration, it is necessary to check the phase angle between two buses before closing circuit breakers to connect a line between them. A novel approach for reducing large standing phase angle (SPA) based on Genetic Algorithm (GA) is presented in this paper. The proposed approach starts with a state estimation on Wide Area Monit...
Thermal recovery by steam injection has proven to be an effective means of recovering heavy oil. Forecasts of reservoir response to the application of steam are necessary before starting a steam drive project. Thermal numerical models are available to provide forecasts. However, these models are expensive and consume a great deal of computer time....
Development of pore network models for real porous media requires a detailed understanding of physical processes occurring on the microscopic scale and a complete description of porous media morphology. In this study, the microstructure of porous media has been represented by three dimensional networks of interconnected pores and throats which are...
Minimizing Hydrogen waste into fuel gas within the H2 network in a refinery is the objective function of an optimization problem in this paper. The superstructure obtained for a refinery wide concept, is first solved and validated for literature cases, then is reduced by heuristic rules, based on engineering judgment. The reduced superstructure con...
In pore network modeling, the void space of a rock sample is represented at the microscopic scale by a network of pores connected by throats. Construction of a reasonable representation of the geometry and topology of the pore space will lead to a reliable prediction of the properties of porous media. Recently, the theory of multi-cellular growth (...
Considering non-ideal behavior of fluids and its effects on hydrodynamic and mass transfer in multiphase flow is very essential. Simulations were performed that takes into account the effects of mass transfer and mixture non-ideality on hydrodynamics reported by Irani et al. In this paper, by assuming the density of phases to be constant and Raullt...
Integrated seismic attributes, coherency, acoustic impedance (AI), lambda–rho (λρ) and mu–rho (μρ), were used to delineate and to characterize a complex regional channel deposition system in a carbonate reservoir interval in the upper part of the Sarvak Formation. The study area incorporates three adjacent oil fields in SW Iran (Khuzestan Province)...
Two different approaches of the dynamic optimization for chemical process control engineering applications are presented. The first approach is based on discretizing both the control region and the time interval. This method, known as the Region Reduction Strategy (RRS), employs the previous solution in its next iteration to obtain more accurate re...
A stochastic real time optimization (SRTO) which has an efficient result has been implemented on the Tennessee Eastman (TE) challenging problem. In this article a novel stochastic optimization method, the so-called heuristic random optimization (HRO) proposed by Li & Rhinehart is used which attempts to rationally combine features of both determinis...
The optimization of chemical syntheses based on superstructure modeling is a perfect way for achieving the optimal plant design. However, the combinatorial optimization problem arising from this method is very difficult to solve, particularly for the entire plant. Relevant literature has focused on the use of mathematical programming approaches. So...
Tortuosity and cementation factor are two critical parameters that significantly affect estimates of reservoir properties. Tortuosity factor can be used to estimate permeability using the Carman–Kozeny equation and is an important parameter for formation resistivity factor calculation using a modified version of Archie's formula. It is also used to...
Scheduling models are one of the main parts of computer-aided process design research in recent years. One of the novel applications of scheduling models is their usage for in-site utility management of a process plant. It is very common for huge process plants to provide their utility by themselves; therefore, they shall make decision on utility s...
For large and complex reacting systems, computational efficiency becomes a critical issue in process simulation, optimization and model-based control. Mechanism simplification is often a necessity to improve computational speed. We present a novel approach to simplification of reaction networks that formulates the model reduction problem as an opti...
During the last decade, the importance of process development has persuaded researchers to propose a great number of optimization models on “production planning” and “production scheduling” for different productive processes. Although many scheduling and planning models are proposed in the past decade, there are few models that handle various appli...
The behaviour of an industrial refrigeration cycle with refrigerant propane has been investigated by the exergy method. An natural gas liquid recovery unit with its refrigeration cycle has been simulated to prepare the exergy analysis. Using a typical actual work input value; the exergetic efficiency of the refrigeration cycle is determined to be 2...
Model-based pH control is a difficult problem due to its inherent nonlinearity and time-varying characteristics. This is specially the case when the pH regulation of streams consisting hundreds of constituents with varying concentrations is desired. The pH process can be modeled by using conservation laws and neutrality condition. An alternative to...
One of the most important and practical aspects of rock physics study is to make some feasible models (theoretical, empirical or semi-theoretical) which can be used to predict the body wave velocities (specifically shear wave velocity) in the fluid saturated reservoir rocks. Using of shear wave velocity information give rise to improve the hydrocar...
On-line optimization for the base case of the Tennessee Eastman (TE) challenge problem is presented; furthermore, an interesting operating condition near base case has been obtained, which results in a lower cost function. The proposed method is based on the estimation of the internal states and the time varying parameters of the process model base...
Changes in the physicochemical conditions of process unit, even under control, may lead to what are generically referred to as faults. The cognition of causes is very important, because the system can be diagnosed and fault tolerated. In this article, we discuss and propose an artificial neural network that can detect the incipient and gradual faul...
In this article the methodology proposed by Li and Wang for mixed qualitative and quantitative modeling and simulation of temporal behavior of processing unit is reexamined and extended to more complex case. The main issue of their approach considers the multivariate statistics of principal component analysis (PCA), along with clustered fuzzy digra...
pH control is known to be a challenging problem due to its highly nonlinear nature. Several control strategies are proposed for controlling pH processes among which is the strong acid equivalent scheme. Although this technique is robust to modeling error, the controller performance is degraded if the titration curve undergoes large changes. To over...
Advanced model-based control of pH processes is noticeably a chemical modeling issue, because it can have a profound effect on the attainable control quality. This is especially the case when the pH regulation of streams, consisting of hundreds of constituents with varying concentrations, is encountered. The severe non-linear behavior of pH process...
Control of polymerization reactors is a challenging problem due to
nonlinear behavior of most polymer reactions. When the reaction is
carried out in a batch reactor, the problem becomes even more difficult.
In this work, the temperature control of batch polymerization of
methylmetacrylate (MMA) is considered. The mathematical model developed
by Ros...