
Mahmoud Hajj ChehadeAtomic Energy and Alternative Energies Commission | CEA · Centre d'Etudes de Grenoble
Mahmoud Hajj Chehade
Doctor of Philosophy
About
19
Publications
2,093
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
200
Citations
Citations since 2017
Introduction
Publications
Publications (19)
Coenzyme Q10 (CoQ10) is a lipid-soluble compound with important physiological functions and is sought after in the food and cosmetic industries owing to its antioxidant properties. In our previous proof of concept, we engineered for CoQ10 biosynthesis the industrially relevant Corynebacterium glutamicum, which does not naturally synthesize any CoQ....
Francisella tularensis is the causative agent of tularemia. Because of its extreme infectivity and high mortality rate, this pathogen was classified as a biothreat agent. Francisella spp are strict aerobe and ubiquinone (UQ) has been previously identified in these bacteria. While the UQ biosynthetic pathways were extensively studied in Escherichia...
Francisella tularensis is the causative agent of tularemia. Because of its extreme infectivity and high mortality rate, this pathogen was classified as a biothreat agent. Francisella spp are strict aerobe and ubiquinone (UQ) has been previously identified in these bacteria. While the UQ biosynthetic pathways were extensively studied in Escherichia...
The three presently known enzymes responsible for arsenic-using bioenergetic processes are arsenite oxidase (Aio), arsenate reductase (Arr) and alternative arsenite oxidase (Arx), all of which are molybdoenzymes from the vast group referred to as the Mo/W-bisPGD enzyme superfamily. Since arsenite is present in substantial amounts in hydrothermal en...
In order to colonize environments with large O 2 gradients or fluctuating O 2 levels, bacteria have developed metabolic responses that remain incompletely understood. Such adaptations have been recently linked to antibiotic resistance, virulence, and the capacity to develop in complex ecosystems like the microbiota. Here, we identify a novel pathwa...
Most bacteria can generate ATP by respiratory metabolism, in which electrons are shuttled from reduced substrates to terminal electron acceptors, via quinone molecules like ubi quinone. Dioxygen (O 2 ) is the terminal electron acceptor of aerobic respiration and serves as a co-substrate in the biosynthesis of ubi quinone. Here, we characterize a no...
Ubiquinone (UQ), also called coenzyme Q, is a polyprenylated lipid that is conserved from bacteria to humans and is crucial to cellular respiration. How the cell orchestrates the efficient synthesis of UQ, which involves the modification of extremely hydrophobic substrates by multiple sequential enzymes, remains an unresolved issue. Here, we demons...
Ubiquinone (UQ), also referred to as coenzyme Q, is a widespread lipophilic molecule in both prokaryotes and eukaryotes in which it primarily acts as an electron carrier. Eleven proteins are known to participate in UQ biosynthesis in Escherichia coli, and we recently demonstrated that UQ biosynthesis requires additional, nonenzymatic factors, some...
Quinones are essential building blocks of respiration, a universal process dedicated to efficient harvesting of environmental energy and its conversion into a transmembrane chemiosmotic potential. Quinones differentiate mostly by their midpoint redox potential. As such, γ-proteobacteria such as Escherichia coli are characterised by the presence of...
Ubiquinone (coenzyme Q or Q8) is a redox active lipid which functions in the respiratory electron transport chain and plays a crucial role in energy-generating
processes. In both Escherichia coli and Salmonella enterica serovar Typhimurium, the yigP gene is located between ubiE and ubiB, all three being likely to constitute an operon. In this work,...
Coenzyme Q (ubiquinone or Q) is a redox-active lipid found in organisms ranging from bacteria to mammals in which it plays a crucial role in energy-generating processes. Q biosynthesis is a complex pathway that involves multiple proteins. In this work, we show that the uncharacterized conserved visC gene is involved in Q biosynthesis in Escherichia...