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Abstract: This paper presents an effective hybrid optimization technique based on a chaotic sine 

cosine algorithm (CSCA) and pattern search (PS) for the coordinated design of power system stabi-

lizers (PSSs) and static VAR compensator (SVC)-based controllers. For this purpose, the design 

problem is considered as an optimization problem whose decision variables are the controllers’ pa-

rameters. Due to the nonlinearities of large, interconnected power systems, methods capable of han-

dling any nonlinearity of power networks are preferable. In this regard, a nonlinear time domain-

based objective function was used. Then, the proposed hybrid chaotic sine cosine pattern search 

(hCSC-PS) algorithm was employed for solving this optimization problem. The proposed method 

employed the global search ability of SCA and the local search ability of PS. The performance of the 

new hCSC-PS was investigated using a set of benchmark functions, and then the results were com-

pared with those of the standard SCA and some other methods from the literature. In addition, a 

case study from the literature is considered to evaluate the efficiency of the proposed hCSC-PS for 

the coordinated design of controllers in the power system. PSSs and additional SVC controllers are 

being considered to demonstrate the feasibility of the new technique. In order to ensure the robust-

ness and performance of the proposed controller, the objective function is evaluated for various 

extreme loading conditions and system configurations. The numerical investigations show that the 

new approach may provide better optimal damping and outperforms previous methods. Nonlinear 

time-domain simulation shows the superiority of the proposed controller and its ability in provid-

ing efficient damping of electromechanical oscillations. 

Keywords: sine cosine algorithm; pattern search; PSS; SVC; optimization; oscillation 

 

1. Introduction 

The stability of power systems has become a key study area as a result of the integra-

tion of power systems. As a result, the power system has been upgraded with more com-

plex control technology and stronger protective mechanisms to improve stability. Electro-

mechanical oscillations, which can be categorized into inter-area and local modes, are de-

tected in the power system as a result of mechanical and electrical torque imbalances at 

the synchronous generator, which are induced by changes in the power system topology 

or loads [1]. The generator rotor shaft and power transfers are severely damaged when 

these low frequency oscillations (LFOs) are insufficiently damped. These oscillations have 

a significant impact on the dependability and security of a power supply. Power system 

stabilizers (PSSs) have long been used to increase power system stability and boost system 

damping of oscillation modes in order to combat these negative phenomena. These stabi-

lizers are used to add damping torque to the generator rotor oscillations that are caused 

by the generator’s speed, frequency, or power. However, power networks are nonlinear 
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and complex, making the use of nonlinear models instead of linear approximations more 

advisable to treat any nonlinearity in the tuning problem. Moreover, recent research has 

revealed that if only one PSS is tuned, the required damping level cannot be reached. 

Thus, it is advised to ensure coordination between the design processes of all PSSs. From 

the literature review, such as in [1], it is shown that PSSs regulators may fail sometimes to 

provide adequate damping torque for inter-area modes. Unfortunately, some weakness is 

encountered in the damping of inter-area oscillations, and other solutions need to be in-

volved. 

In recent years, power electronic-based flexible AC transmission systems (FACTS) 

controllers, which are based on power electronics, have been considered as efficient alter-

native solutions [2]. Generally, FACTS devices have been employed for handling different 

power system control problems [3]. In other words, they can increase power transfer ca-

pability, and improve power system stability and controllability. Thus, power flow will 

be better controlled, and the voltages will be better maintained within their rated limits, 

which will make it possible to increase the stability margins and to tend towards the ther-

mal limits of the lines. However, the combination of PSSs and FACTS devices in the same 

network has raised a new problem in terms of coordination between these regulators. In-

deed, it is essential to ensure that there is a good coordination between these devices in a 

way that their actions are not negative in view of the security of the network. 

One of the well-known shunt FACTS devices, named static VAR compensator (SVC), 

is considered a competent device to provide adequate damping of the LFOs in modern 

power systems after the apparition of disturbances [4]. It also has the capability of regu-

lating bus voltage at its terminals by injecting controllable reactive power into the power 

network through the bus where it is connected. In the last few years, many studies have 

proposed design techniques for SVC devices to enhance power system stability. Further-

more, other proprieties of the power system can be improved, such as the dynamic control 

of power flow, steady-state stability limits, and damping of electromechanical oscillations 

[5]. Most of these studies have been focused on the coordinated design of SVC and PSS 

controllers. Uncoordinated design between SVC and PSS causes the system to become 

unstable. Therefore, stability and damping modes are essential for optimal coordinated 

design between PSS and SVC-based controllers. A comprehensive study of the PSS and 

SVC controllers when applied in a coordinated manner and also separately has been in-

vestigated in [6]. The problem of designing the power system controller’s parameters is 

formulated as a non-differentiable, large-scale nonlinear problem. This optimization prob-

lem is hard to solve by employing traditional optimization techniques such as sequential 

quadratic programming (SQP) techniques due to their high sensitivity to the initial point 

[7]. Furthermore, these methods require a long convergence process. To overcome the 

drawbacks mentioned, intelligent techniques are involved in real-life engineering prob-

lems, including power system stability [8–14].  

Most of this research has been focused on the coordinated design of SVC and PSS 

controllers. For the coordinated design of power system controllers, a large number of 

such algorithms have recently been offered, including: Teaching–Learning Algorithm 

(TLA) [15], Bacterial Foraging Optimization (BFO) [16], Brainstorm optimization algo-

rithm (BOA) [17], Coyote Optimization Algorithm (COA) [18], ant colony optimization 

(ACO) [19], bat algorithm (BAT) [20], bee colony algorithm (BCA) [7], Genetic Algorithm 

(GA) [21], particle swarm optimization (PSO) [22], flower pollination algorithm (FPA) 

[23], gravitational search algorithm (GSA) [24,25], sine-cosine algorithm (SCA) [26], grey 

wolf optimizer (GWO) [27], firefly algorithm (FA) [28], Differential Evolution (DE) [29], 

Biogeography-Based Optimization (BBO) [30], Cuckoo Search (CS) algorithm [31], Har-

mony Search (HS) [32], Seeker Optimization Algorithm (SOA) [33],Imperialist Competi-

tive Algorithm (ICA) [34], Harris Hawk Optimization (HHO) [35], Sperm Swarm Optimi-

zation (SSO) [36], Tabu Search (TS) [37], Simulated Annealing [38], Multi-Verse Optimizer 

(MVO) [39], Moth-flame Optimization (MFO) [40], Tunicate Swarm Algorithm (TSA) [41] 

and collective decision optimization (CDO) [42]. Although metaheuristics algorithms 
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could provide relatively satisfactory results, no algorithm could provide superior perfor-

mance than others in solving all optimizing problems. Therefore, several studies have 

been carried out to improve the performance and efficiency of the original metaheuristic 

algorithms in some ways and apply them for a specific purpose [43–48].  

The SCA is a relatively new meta-heuristic optimization approach introduced by 

Mirjalili in 2016 [49]. Compared with other meta-heuristic, the SCA has a simple concept 

and structure and does not have complicated mathematical functions. In the SCA, the for-

mulas for updating the population rely solely on sine and cosine functions. SCA is better 

than other competitive methods at finding optimal solutions and is suitable for tackling 

real-world optimization problems [50]. However, SCA tends to become trapped in local 

optima and, in some complex cases, is unable to successfully converge [51]. In addition, 

according to the No-Free-Lunch theorem [52], even though various optimization algo-

rithms are introduced in the literature, there is no guarantee that an optimization algo-

rithm could solve every kind of optimization problem. In other words, one algorithm or 

method cannot outperform others in all optimization problems. An optimization method 

may have satisfied results for some problems, but not for others. As a result, opportunities 

to introduce new methods will always exist. Therefore, in the current study an effective 

hybrid algorithm is developed based on the chaotic version of the SCA and pattern search 

(PS) method called hCSC-PS. The proposed hybrid algorithm utilizes the exploration abil-

ity of SCA and exploitation ability of PS, which can significantly improve the finding re-

sults. SCA and pattern search offer complementary benefits and the combination these 

two techniques can result in a faster and more reliable algorithm. To validate the efficacy 

of the new hybrid approach, a set of benchmark functions as well as controller design 

problems of a multi-machine power system are studied. Simulation results validate the 

superiority of the new method in design controllers under several loading situations. 

The rest of this paper is organized as follows: Section 2 explains the proposed hybrid 

optimization algorithm. The problem is formulated as an optimization problem in Section 

3. Section 4 discusses model verification. Section 5 contains a description of the simulation 

results. Finally, in Section 6, the study’s findings are summarized. 

2. Proposed Hybrid Algorithm 

2.1. CSCA 

SCA is a population-based metaheuristic technique based on the mathematical prop-

erties of sine and cosine functions [49]. This algorithm begins the search process with a 

collection of randomly generated solutions in the search space, as shown in the following 

equation. 

𝑥𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖);  𝑖 = 1 .2. … . 𝑁 (1) 

where 𝑥𝑖 is the placement of ith solution in the search space. Furthermore, 𝑢𝑏𝑖 and 𝑙𝑏𝑖 

represent the solution’s lower and upper bounds, respectively. The parameters are de-

fined in Appendix B. Following the generation of the random starting solutions, each so-

lution dynamically modifies the positions using the equations below: 

{
𝑥𝑖

𝑡+1 = 𝑥𝑖
𝑡 + 𝐴 × 𝑠𝑖𝑛(𝑟1) × |𝑟2 × 𝑥𝐵𝑒𝑠𝑡 − 𝑥𝑖

𝑡|   𝑖𝑓 𝑟3 < 0.5

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐴 × 𝑐𝑜𝑠(𝑟1) × |𝑟2 × 𝑥𝐵𝑒𝑠𝑡 − 𝑥𝑖
𝑡|   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

where, 𝑥𝑖
𝑡 is the position of ith solution at iteration t, 𝑥𝐵𝑒𝑠𝑡 represents the best solution in 

the population, r1 is a random numbers in the range of [0, 2π], r2 is a random weight of the 

best solution among -2 and 2, r3 is a random number among 0 and 1, and the symbol | . | 

signifies absolute value. If the parameter r3 is lesser than 0.5, the applicant solution selects 

the sine function to update its position. The parameter A is a function that may be defined 

as follows to help balance the exploration and exploitation of a search space: 
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𝐴 = 2 − 2(
𝑡

𝑡𝑚𝑎𝑥
) (3) 

where, 𝑡𝑚𝑎𝑥 is the maximum number of iterations. The aim of the current research is to 

implement the global search ability of the SCA. Therefore, to increase the exploration abil-

ity of the algorithm and to avoid premature convergence in early iterations, the chaotic 

sequence is applied in the updating position equation (Equation (2)). Chaotic systems are 

deterministic systems that present randomness, irregularity and the stochastic property, 

depending on the initial conditions. Chaotic variables can oscillate through certain ranges 

based on their own irregularity without repetition. A chaotic map is a map that presents 

some kind of chaotic behavior, capable of generating chaotic motion. In the current study, 

a well-known logistic map is applied based on the following equation: 

λ (t +1) = a × λ (t) × (1 – λ (t)) (4) 

In this equation, λ (t) is the chaotic map and t denotes the iteration number. λ (0) is 

in the range of (0 ,1) and should not be equal to 0, 0.25, 0.5, 0.75 and 1. a is a constant equal 

to 4. In the CSCA, to increase the stochastic behavior of the algorithm and avoid prema-

ture convergence, the random parameters r1 and r2 in Equation (2) are changed with the 

chaotic map of Equation (4). Therefore, the updated position of the tunicate with respect 

to the position of the food source is evaluated using the Equation (5). The steps of the 

proposed CSCA are presented in Algorithm 1. 

{
𝑥𝑖

𝑡+1 = 𝑥𝑖
𝑡 + 𝐴 × 𝑠𝑖𝑛(𝜆1) × |𝜆2 × 𝑥𝐵𝑒𝑠𝑡 − 𝑥𝑖

𝑡|   𝑖𝑓 𝑟3 < 0.5

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐴 × 𝑐𝑜𝑠(𝜆1) × |𝜆2 × 𝑥𝐵𝑒𝑠𝑡 − 𝑥𝑖
𝑡|   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

Algorithm 1. CSCA 

Initialization algorithm parameters: population size (N), maximum iteration number (𝒕𝒎𝒂𝒙).  

Initialize random population X  

For i=1 to N 

        Calculate the fitness of each random solution 

        Record the optimal individual as Xbest 

End  

     While (t ≤ 𝒕𝒎𝒂𝒙) 

          Update A using Eq. (3) 

          Update λ using Eq. (4) 

          For i=1 to N 

              For j=1 to dim 

                  Update r3 

                   If r3 < 0.5 

                       Update X by the sine part of equation (5) 

                  Else 

                       Update X by the cosine part of equation (5) 

                  End if 

               End for 

              Calculate the fitness of the updated X 

             Update Xbest  

         End for 

         t= t + 1 
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      End  

Return the best solution 

2.2. Pattern Search (PS) 

PS is a derivative-free algorithm that can be simply implemented to fine-tune local 

search. The PS algorithm generates a set of points that may or may not be close to the 

optimum [53]. To begin, a mesh (a collection of points) is created around an existing point. 

If a new point in the mesh has a lower value of objective function, it becomes the current 

point in the following iteration. The PS starts the search with an initial point X0 defined 

by the user. At the first iteration, the mesh size is considered equal to 1 and the pattern 

vectors (or direction vectors) are constructed as [0 1] + X0, [1 0] + X0, [−1 0] + X0 and [0 −1] 

+ X0, and new mesh points are added as presented in Figure 1. Then, the objective function 

is calculated for produced trial points until a value smaller than X0 is found. If there is 

such a point (f (X1) < f (X0)), the poll is successful, and the algorithm sets this point as a 

source point. The method multiplies the current mesh size by 2 (called the expansion fac-

tor) after a successful poll and moves on to iteration 2 with the following new points: 2 × 

[0 1] + X1, 2 × [1 0] + X1, 2 × [−1 0] + X1 and 2 × [0 −1] + X1. If a value lesser than for X1 is 

created, X2 is defined, the mesh size is improved by two, and iterations continue. The 

current point is not modified if the poll is unsuccessful at any stage (i.e., no point has an 

objective function lesser than the greatest latest rate) and the mesh size is reduced by mul-

tiplying by a reduction factor. This process is repeated until the minimum is found or a 

terminating conditions is met. The steps of the PS method are presented in Algorithm 2. 

 

Figure 1. Pattern search mesh points with pattern. 

Algorithm 2. Pattern search method 

Initialization: 

  Initialize the starting point X0 and step size factor SF 

  Set t = 0 

Iteration: 

1. Search step: evaluate f at a finite number of points with the goal of decreasing the objective function value 

at Xk . If Xk+1 is found satisfying f (Xk+1) < f (Xk ), go to step 4. 

Otherwise, go to step 2. 

2. Poll step: If f (Xk ) ≤ f (X) for every X in the mesh neighborhood, go to step 3.  

    Otherwise, choose a point Xk +1  such that f (Xk+1 ) < f (Xk ), go to step 4. 

3. Mesh reduction: let SFk+1 = 1/2 × SFk . Set k ← k + 1 and return to step 1 for a new iteration. 

4. Mesh expansion: let SFk+1 = 2 × SFk. Set k ← k + 1 and return to step 1 for a new 

iteration 
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2.3. Proposed Method (hCSC-PS) 

The original SCA has some advantages compared with other optimization algo-

rithms. It has a simple structure and fewer parameters. In addition, the performance of 

the algorithm depends on the sine and cosine functions for iteration to find the optimal 

solution. Although the original SCA has h 

igh global search capabilities, its parameters are incompatible with the search process 

in the latter stages of the algorithm. This will reduce the rate of convergence and popula-

tion diversity. In this study, a hybrid algorithm combining the CSCA with the PS algo-

rithm, called hCSC-PS, is proposed for the coordinated design of PSSs and SVC-based 

controllers. The hybrid algorithm may take advantage of both the CSCA’s strong global 

searching capacity and the PS’s strong local searching ability. The chaotic sine cosine 

method has excellent global optimal performance and is easy to escape from local minima. 

Theoretically, increasing the numbers of CSCA iteration can improve the search accuracy. 

When the number of iterations is great enough, however, CSCA is unable to enhance pre-

cision. As a result, CSCA’s local search capability is still insufficient. Pattern search is a 

local optimization approach, and the initial point has a significant impact on the algo-

rithm’s output. However, if a good starting point is chosen, pattern search will be a simple 

and effective strategy. In this study, we integrate the CSCA’s benefits as global optimiza-

tion and PS’s advantages as the local optimization to effectively find the optimal solution. 

The proposed hybrid algorithm begins with the CSCA since the PS is sensitive to the initial 

solution. The searching process continues with the CSCA for a specific number of itera-

tions. The PS is then turned on to conduct a local search using the current best solution 

obtained by CSCA as its starting point. The suggested hCSC-PS algorithm’s flowchart is 

given in Figure 2. 
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Figure 2. The flowchart of the proposed hCSC-PS algorithm. 

3. Optimization Problem Formulation 

The general form of a constraint optimization problem can be expressed mathemati-

cally as follows: 

       𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑓(𝑋) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

               𝑔𝑖(𝑋) ≤ 0.     𝑖 = 1.2.⋯ . 𝑝 

               ℎ𝑗(𝑋) ≤ 0.     𝑗 = 1.2.⋯ .𝑚 

 𝑋𝐿 ≤ 𝑋 ≤ 𝑋𝑈 

(6) 

where X is n dimensional vector of design variables, f(X) is the fitness function which 

returns a scalar value to be minimized, g(X) and h(X) are inequality and equality con-

straints, respectively. Boundary constraints, XL and XU, are the boundary constraints. 

Many optimization methods have been developed over the last few decades. Metaheuris-

tics are a new generation of optimization methods that are proposed to solve complex 

problems. 

3.1. Power System Model 

The standard modeling for power systems is based on a set of nonlinear differential 

algebraic calculations, which are as follows: 

𝑋̇ = 𝑓(𝑋. 𝑈) (7) 
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where 𝑥 = [𝛿, 𝜔, 𝐸′𝑞, 𝐸𝑓𝑑 ]  is the state variables vector and 𝑢 = [𝑢𝑃𝑆𝑆, 𝑢svc] is the input 

control parameters vector. The linear equation with PSSs and SVC controllers is obtained 

by Eq (8). 

𝑋̇ = 𝐴𝑋 + 𝐵𝑈 (8) 

At a certain operating point, both A and B are evaluated. The goal of the optimum 

design is to put the state matrix modes on the left side. 

3.1.1. PSS Structure  

PSS compensates for the phase lag between exciter input and machine electrical 

torque. An additional stabilizing signal is presented through the excitation system to 

achieve this goal. PSS generates the necessary torque on the machine’s rotor. The addi-

tional stabilizing signal and the speed are proportional. As shown in Figure 3, this stabi-

lizer style contains of a washout filter and a dynamic compensator. The washout filter, 

which is primarily a high pass filter, will remove the mean component of PSS’s output. In 

general, the constant value of time can be anywhere between 0.5 and 20 s. 

refV
1
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+ + +  
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max

fdE


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PSSu
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v

+

+

−

Lead-Lag PSS
 

Figure 3. Lead/Lag PSS. 

3.1.2. SVC Based Damping Controller Model 

Figure 4 shows the SVC structure in this study, which is a fixed capacitor thyristor-

controlled reactor. The firing angle varies between 90 and 180 degrees depending on the 

capacitor voltage. 

 

Figure 4. Modeling the SVC. 

Figure 5 shows an SVC-based damping controller that acts as a lead-lag compensator 

and consists of two stages of the lead-lag compensator: a signal-washout block, and a 

gains block. SVC has the following dynamic equation:  

𝐵̇𝑆𝑉𝐶 = (𝐾𝑠(𝐵𝑆𝑉𝐶
𝑟𝑒𝑓

− 𝑢𝑆𝑉𝐶) − 𝐵𝑆𝑉𝐶)/𝑇𝑠      (9) 
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Figure 5. SVC with lead–lag controller. 

3.2. Problem Formulation 

The optimum parameters are obtained using the suggested technique under a variety 

of operating conditions and disturbances. For the optimal setting of PSSs and SVC con-

trollers, a nonlinear time domain objective function called ITAE is used in this study. The 

equation can be used to define ITAE based on system performance characteristics (10).  

𝐽 = ∑∑ ∫ 𝑡(|∆𝜔𝑖|)𝑑𝑡

𝑡𝑠𝑖𝑚

0

𝑀

𝑖=1

𝑁

𝑗=1

 (10) 

where Δ𝜔 is the speed deviation of rotor, 𝑡𝑠𝑖𝑚 is the time of simulation, 𝑁 and M are the 

number of machine and the operating points respectively. The objective function and con-

strained optimization problem can be described by the following equation for various 

loading conditions: 

m𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝐽   
                        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                         

 𝐾𝑖
𝑚𝑖𝑛 ≤ 𝐾𝑖 ≤ 𝐾𝑖

𝑚𝑎𝑥 

       𝑇𝑗𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑗𝑖 ≤ 𝑇𝑗𝑖

𝑚𝑎𝑥     𝑗 = 1. … .4                                                        

(11) 

hCSC-PS determines the gain (K) and time constants (T) of controllers. The washout time 

constant for both PSS and SVC controllers is TWi =10 s in most previous works. The deci-

sion variables’ typical ranges are [1, 100] for Ki and [0.01, 1.5] for T1i to T4i. 

4. Performance Verification of hCSC-PS 

In this section the effectiveness verification of the proposed hybrid method will be 

investigated. To this aim, the performance of hCSC-PS is compared with the standard 

version of the algorithm as well as some well-known metaheuristic algorithms on a col-

lection of benchmark test functions from the literature. These are all minimization prob-

lems that can be used to assess the robustness and search efficiency of new optimization 

algorithms. Tables 1–3 show the mathematical formulation and features of these test func-

tions.  

Table 1. Description of unimodal benchmark functions. 

Function Range 𝒇𝒎𝒊𝒏 n (Dim) 3D view 

𝐹1(𝑋) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 

 
[−100, 100]𝑛 0 30 
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𝐹2(𝑋) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝑛

𝑖=1

𝑛

𝑖=1
 

 
[−10, 10]𝑛 0 30 

 

𝐹3(𝑋) = ∑ (∑ 𝑥𝑗

𝑖

𝑗=1
)

2𝑛

𝑖=1
 

 

[−100, 100]𝑛 0 30 

 

𝐹4(𝑋) = max
𝑖

 {|𝑥𝑖|. 1 ≤ 𝑖 ≤ 𝑛 } 

 
[−100, 100]𝑛 0 30 

 

𝐹5(𝑋) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1
 

 

[−30, 30]𝑛 0 30 

 

𝐹6(𝑋) = ∑ ([𝑥𝑖 + 0.5])2
𝑛

𝑖=1
 

 
[−100, 100]𝑛 0 30 

 

𝐹7(𝑋) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0.1)

𝑛

𝑖=1
 

 
[−1.28, 1.28]𝑛 0 30 
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Table 2. Description of multimodal benchmark functions. 

Function Range 𝒇𝒎𝒊𝒏 n (Dim) 3D view 

𝐹8(𝑋) = ∑ −𝑥𝑖sin (√|𝑥𝑖|)
𝑛

𝑖=1
 

 
[−500, 500]𝑛 428.9829 × n 30 

 

𝐹9(𝑋) = ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 

 

[−5.12, 5.12]𝑛 0 30 

 

 𝐹10(𝑋) = −20 exp (−0.2√
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) −

𝑒𝑥𝑝 (
1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛
𝑖=1 ) + 20 + 𝑒      

 [−32, 32]𝑛 0 30 

 

𝐹11(𝑋) =
1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1
− ∏ cos (

𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1
 

 

[−600, 600]𝑛 0 30 

 
𝐹12(𝑋) = 

𝜋

𝑛
{10 sin(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)2[1 + 10 sin2(𝜋𝑦𝑖+1)]

𝑛−1

𝑖=1

+ (𝑦𝑛 − 1)2} + ∑ 𝑢(𝑥𝑖 . 10. 100. 4)
𝑛

𝑖=1
 

             𝑦𝑖 = 1 +
𝑥𝑖+4

4
  𝑢(𝑥𝑖 . 𝑎. 𝑘.𝑚) =

{

𝑘(𝑥𝑖 − 𝑎)𝑚                   𝑥𝑖 > 𝑎   
0                           𝑎 <   𝑥𝑖 < 𝑎 

𝑘(−𝑥𝑖 − 𝑎)𝑚                𝑥𝑖 < −𝑎
 

[−50, 50]𝑛 0 30 
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𝐹13(𝑋) = 0.1 {sin2(3𝜋𝑥1)

+ ∑ (𝑥𝑖 − 1)2[1
𝑛

𝑖=1

+ sin2(3𝜋𝑥𝑖 + 1)]

+ (𝑥𝑛 − 1)2[1 + sin2(2𝜋𝑥𝑛)]}

+ ∑ 𝑢(𝑥𝑖 . 5. 100. 4)
𝑛

𝑖=1
 

[−50, 50]𝑛 0 30 

 

Table 3. Description of fixed-dimension multimodal benchmark functions. 

Function Range 𝒇𝒎𝒊𝒏 n (Dim) 3D view 

𝐹14(𝑋) = (
1

500
+ ∑

1

𝑗 + (𝑥𝑖 − 𝑎𝑖𝑗)
6

25

𝑗=1
)

−1

 

 

[−65.53, 65.53]2 1 2 

 

𝐹15(𝑋) = ∑ [𝑎𝑖 −
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

]

2
11

𝑖=1
 

 

[−5, 5]4 0.00030 4 

 

𝐹16(𝑋) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2

+ 4𝑥2
4 

 

[−5, 5]2 -1.0316 2 

 

𝐹17(𝑋) = (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) cos 𝑥1 + 10 

 

[−5, 5]2 0.398 2 

 
𝐹18(𝑋) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1

+ 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2

+ 3𝑥2
2)]

× [30
+ (2𝑥1 − 3𝑥2)

2

× (18 − 32𝑥1 + 12𝑥1
2

+ 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)] 

 

[−2, 2]2 3 2 
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𝐹19(𝑋) = −∑ 𝑐𝑖 𝑒𝑥𝑝 (−∑ 𝑎𝑖𝑗(𝑥𝑗

3

𝑗=1

4

𝑖=1

− 𝑝𝑖𝑗))

2

 

 

[1, 3]3 −3.86 3 

 

𝐹20(𝑋) = −∑ 𝑐𝑖 𝑒𝑥𝑝(−∑ 𝑎𝑖𝑗(𝑥𝑗

6

𝑗=1

4

𝑖=1

− 𝑝𝑖𝑗))

2

 

 

[0, 1]6 −3.32 6 

 

𝐹21(𝑋) = −∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
5

𝑖=1
 

 

[0, 10]𝑛 −10.1532 4 

 

𝐹22(𝑋) = −∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
7

𝑖=1
 

 
[0, 10]𝑛 −10.4028 4 

 

𝐹23(𝑋) = −∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
10

𝑖=1
 [0, 10]𝑛 −10.5363 4 

 

The results and performance of the proposed hCSC-PS is compared with original 

SCA and other well-established optimization algorithms include GSA [54], TSA [55] and, 

GWO [56]. For both hCSC-PS and SCA the size of solution (N) is considered equal to 50. 

As the proposed algorithm required extra function evaluation, the same value of maxi-

mum number of iterations may cause an unfair comparison. Therefore, to have a fair com-

parison between the algorithms, the same number of function evaluations equal to 50,000 

is considered in all experiments. The parameters of the hCSC-PS and other methods are 

presented in Table 4. Because metaheuristics approaches are stochastic, the findings of a 

single run may be erroneous, and the algorithms may find better or worse solutions than 

those previously found. As a result, statistical analysis should be used to make a fair com-

parison and evaluate the algorithms’ effectiveness. In order to address this issue, 30 sep-

arate runs were carried out for the specified algorithms and the statistical outcomes are 

described in Tables 5–7. 
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Table 4. Bound setting of the proposed methods. 

Year Algorithm Parameter Specifications 

2021 hCSC-PS 

Search agents 

Number of elites 

Number of function evaluations 

50 

2 

50,000 

2016 SCA 

Search agents 

Number of elites 

Number of function evaluations 

50 

2 

50,000 

2009 GSA 

Search agents 

Gravitational constant 

Alpha coefficient 

Number of function evaluations 

50 

100 

20 

50,000 

2014 GWO 

Search agents 

Control parameter ( ⃗𝑎) 

Number of function evaluations 

50 

[2,0] 

50,000 

2020 TSA 

Search agents 

Parameter 𝑃𝑚𝑖𝑛  

Parameter 𝑃𝑚𝑎𝑥 

Number of function evaluations 

50 

1 

4 

50,000 

Table 5. Comparison of other techniques in resolving multimodal test functions in Table 1. 

Function Statistics hCSC-PS SCA GSA TSA GWO 

F1 

Best 

Worst 

Mean 

Median 

Std. 

0.000 

0.000 

0.000 

0.000 

0.000 

1.551 × 10−6 

2. 030 × 10−3 

2.340 × 10−5 

1.874 × 10−4 

7.929 × 10−5 

1.101 × 10−17 

3.186 × 10−17 

2.117 × 10−17 

2.007 × 10−17 

5.815 × 10−17 

5.145 × 10−60 

1.058 × 10−55 

8.215 × 10−55 

7.401 × 10−55 

2.390 × 10−55 

2.391× 10−61 

3.564× 10−58 

4.116× 10−59 

1.153× 10−59 

1.123× 10−58 

F2 

Best 

Worst 

Mean 

Median 

Std. 

0.000 

0.000 

0.000 

0.000 

0.000 

1.500 × 10−6 

9.830 × 10−6 

1.687 × 10−6 

5.402 × 10−7 

2.304 × 10−6 

1.528 × 10−8 

3.331 × 10−8 

2.393 × 10−8 

2.347 × 10−8 

4.002 × 10−8 

1.119 × 10−35 

3.281 × 10−32 

2.151 × 10−33 

3.104 × 10−34 

6.023 × 10−33 

8.362 × 10−36 

5.340 × 10−34 

8.361 × 10−35 

5.929 × 10−35 

9.850 × 10−35 

F3 

Best 

Worst 

Mean 

Median 

Std. 

0.000 

0.000 

0.000 

0.000 

0.000 

7.172 × 10 

2.660 × 103 

7.991 × 102 

6.294 × 102 

7.562 × 102 

1.029 × 102 

4.686 × 102 

2.454 × 102 

2.211 × 102 

1.001 × 102 

2.568 × 10−32 

2.449 × 10−17 

8.174 × 10−19 

1.869 × 10−24 

4.471 × 10−18 

1.253 × 10−19 

3.557 × 10−13 

1.509 × 10−14 

2.074 × 10−17 

6.554 × 10−14 

F4 

Best 

Worst 

Mean 

Median 

Std. 

0.000 

0.000 

0.000 

0.000 

0.000 

1.161  

3.467 × 10 

9.208  

6.080  

8.672  

2.230 × 10−9 

5.085 × 10−9 

3.303 × 10−9 

3.200 × 10−9 

7.444 × 10−9 

3.235 × 10−8 

6.342 × 10−5 

1.011 × 10−5 

2.027 × 10−6 

1.692 × 10−5 

9.821 × 10−16 

2.441 × 10−13 

1.948 × 10−14 

6.381 × 10−15 

4.491 × 10−14 

F5 

Best 

Worst 

Mean 

Median 

Std. 

5.061 × 10−1 

8.123 × 10−1 

7.183 × 10−1 

7.270 × 10−1 

1.063 × 10−1 

2.712 × 10 

4.951 × 10 

2.911 × 10 

2.900 × 10 

4.152  

2.574 × 10 

2.209 × 102 

4.228 × 10 

2.617 × 10 

4.544 × 10 

2.562 × 10 

2.954 × 10 

2.844 × 10 

2.891 × 10 

7.619 × 10−1 

2.521 × 10 

2.872 × 10 

2.690 × 10 

2.713 × 10 

8.408 × 10−1 

F6 
Best 

Worst 

0.000 

0.000 

3.457  

4.843  

9.712 × 10−18 

8.642 × 10−17 

2.054  

4.772  

2.456 × 10−1 

1.291  
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Mean 

Median 

Std. 

0.000 

0.000 

0.000 

4.436  

4.457  

2.850 × 10−1 

3.097 × 10−17 

2.933 × 10−17 

6.169 × 10−17 

3.670  

3.561 

0.693  

6.476 × 10−1 

7.252 × 10−1 

3.053 × 10−1 

F7 

Best 

Worst 

Mean 

Median 

Std. 

3.305 ×10−10 

1.221 × 0−14 

7.280 × 0−16 

3.300 × 0−10 

2.488 × 10−5 

4.150 × 10−2 

3.100 × 10−3 

4.116 × 10−1 

8.780 × 10−2 

5.010 × 10−2 

8.100 × 10−3 

9.620 × 10−2 

3.370 × 10−2 

1.220 × 10−2 

8.800 × 10−3 

6.710 × 10−4 

3.100 × 10−2 

4.800 × 10−2 

5.800 × 10−2 

7.7266 × 10−4 

1.523 × 10−4 

4.200 × 10−2 

7.995 × 10−4 

7.069 × 10−4 

4.678 × 10−4 

Table 6. Comparison of other techniques in resolving multimodal test functions in Table 2. 

Function 
Statis-

tics 
hCSC-PS SCA GSA TSA GWO 

F8 

Best 

Worst 

Mean 

Median 

Std. 

−1.100 × 104 

−1.001 × 104 

−1.100 × 104 

−1.102 × 104 

1.734 × 102 

−5.399 × 103 

−3.432 × 103 

−4.576 × 103 

−3.672 × 103 

3.768 × 102 

−3.627 × 

103 

−2.103 × 

103 

−2.882 × 

103 

−2.846 × 

103 

3.754 × 102 

−7.999 × 103 

−5.376 × 103 

−6.412 × 103 

−6.513 × 103 

5.692 × 1023 

−8.917 × 103 

−4.878 × 103 

−6.357 × 103 

−6.426 × 103 

8.524 × 1023 

F9 

Best 

Worst 

Mean 

Median 

Std. 

0.000 

0.000 

0.000 

0.000 

0.000 

1.066 × 10−6 

4.143 × 10 

5.969  

8.339 × 10−4 

1.124 × 10 

8.854 

2.788 × 10 

1.672 × 10 

1.531 × 10 

3.204 

7.877 × 10 

2.949 × 102 

1.014 × 102 

1.096 × 102 

3.387 × 10 

0.000 

1.105 × 10 

8.553 × 10−1 

0.000 

2.4938 

F10 

Best 

Worst 

Mean 

Median 

Std. 

8.881 × 10−16 

8.881 × 10−16 

8.881 × 10−16 

8.881 × 10−16 

0.000 

1.556 × 10−5 

2.121 × 10 

1.336 × 10 

2.112 × 10 

7.977  

2.428 × 

10−9 

4.582 × 

10−9 

4.691 × 

10−9 

3.486 × 

10−9 

5.133 × 

10−10 

1.569 × 10−14 

4.012 

2.409 

2.765 

1.097 

1.560 × 10−14 

2.020 × 10−14 

1.547 × 10−15 

1.459 × 10−14 

2.376 × 10−15 

F11 

Best 

Worst 

Mean 

Median 

Std. 

0.000 

0.000 

0.000 

0.000 

0.000 

4.348 × 10−7 

7.654 × 10−1 

2.148 × 10−1 

1.320 × 10−2 

2.218 × 10−1 

1.654 

1.028 × 10 

4.452 

3.565 

2.023 

0.00 

1.090 × 10−2 

6.700 × 10−2 

7.200 × 10−2 

5.700 × 10−2 

0.000 

8.400 × 10−2 

9.400 × 10−3 

0.000 

4.100 × 10−3 

F12 

Best 

Worst 

Mean 

Median 

Std. 

4.611 × 10−32 

4.611 × 10−32 

4.611 × 10−32 

4.611 × 10−32 

1.044 × 10−47 

2.456× 10−1 

5.632 

9.654 × 10−1 

4.209 × 10−1 

1.144 

8.214 × 

10−20 

1.343 × 

10−1 

4.580 × 

10−2 

1.303 × 

10−19 

2.876 × 10−1 

1.398 × 10 

6.094 

6.765 

3.409 

2.540 × 10−2 

4.200 × 10−2 

6.640 × 10−2 

8.290 × 10−2 

5.010 × 10−2 
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4.230 × 

10−2 

F13 

Best 

Worst 

Mean 

Median 

Std. 

1.245 × 10−32 

1.000 × 10−2 

5.000 × 10−3 

1.000 × 10−2 

4.000 × 10−3 

1.945 

2.298× 10− 

3.541 

2.366 

3.980 

1.354× 

10−18 

1.000× 10−2 

6.334× 10−4 

2.109× 

10−18 

1.800× 10−2 

1.9876 

3.2305 

1.9976 

1.8574 

6.436× 10−1 

1.001× 10−1 

1.041 

5.283× 10−1 

5.235× 10−1 

3.351× 10−1 

Table 7. Comparison of other techniques in resolving multimodal test functions in Table 3. 

Function Statistics hCSC-PS SCA GSA TSA GWO 

F14 

Best 

Worst 

Mean 

Median 

Std. 

9.980 × 10−1 

9.980 × 10−1 

9.980 × 10−1 

9.980 × 10−1 

1.472 × 10−11 

9.980 × 10−1 

2.982 

1.196 

9.980 × 10−1 

6.054 × 10−1 

9.980 × 10−1 

8.085 

3.621 

3.045 

2.194 

9.980 × 10−1 

1.267 × 10 

7.665 

1.076 × 10 

4.884 

9.980 × 10−1 

1.267× 10 

4.131 

2.982 

4.144 

F15 

Best 

Worst 

Mean 

Median 

Std. 

3.138 × 10−4 

3.968× 10−4 

3.364 × 10−4 

3.232 × 10−4 

2.458 × 10−5 

3.406 × 10−4 

1.400 × 10−2 

8.597 × 10−4 

7.309 × 10−4 

3.808 × 10−4 

1.200 × 10−2 

1.180 × 10−1 

2.500 × 10−2 

2.100 × 10−2 

1.900 × 10−2 

3.751 × 10−4 

5.660 × 10−2 

4.300 × 10−2 

4.539 × 10−4 

1.160 × 10−1 

3.174 × 10−4 

2.040 × 10−2 

4.400 × 10−2 

3.075 × 10−4 

8.100 × 10−2 

F16 

Best 

Worst 

Mean 

Median 

Std. 

−1.031 

−1.031 

−1.031 

−1.031 

1.859 × 10−6 

−1.031 

−1.031 

−1.031 

−1.031 

1.039 × 10−5 

−1.031 

−1.031 

−1.031 

−1.031 

5.608 × 10−5 

−1.031 

−1.000 

−1.030 

−1.031 

5.800 × 10−2 

−1.031 

−1.031 

−1.031 

−1.031 

4.738 × 10−9 

F17 

Best 

Worst 

Mean 

Median 

Std. 

3.979 × 10−1 

3.979 × 10−1 

3.979 × 10−1 

3.979 × 10−1 

0.000 

3.979 × 10−1 

3.992 × 10−1 

3.982 × 10−1 

3.982 × 10−1 

3.488 × 10−4 

3.979 × 10−1 

3.979 × 10−1 

3.979 × 10−1 

3.979 × 10−1 

0.000 

3.979 × 10−1 

3.980 × 10−1 

3.979 × 10−1 

3.979 × 10−1 

1.371 × 10−5 

3.979 × 10−1 

3.979 × 10−1 

3.979 × 10−1 

3.979 × 10−1 

1.105 × 10−6 

F18 

Best 

Worst 

Mean 

Median 

Std. 

3.000 

3.000 

3.000 

3.000 

1.098 × 10−14 

3.000 

3.000 

3.000 

3.000 

5.349 × 10−6 

3.000 

3.000 

3.000 

3.000 

1.592 × 10−15 

3.000 

8.400× 10 

5.700 

3.000 

14.7885 

3.000 

3.000 

3.000 

3.000 

9.505 × 10−6 

F19 

Best 

Worst 

Mean 

Median 

Std. 

−3.862 

−3.862 

−3.862 

−3.862 

4.186 × 10−16 

−3.862 

−3.854 

−3.875 

−3.806 

2.800 × 10−2 

−3.862 

−3.862 

−3.862 

−3.862 

2.479 × 10−5 

−3.862 

−3.954 

−3.062 

−3.962 

1.500 × 10−2 

−3.862 

−3.954 

−3.962 

−3.962 

2.100 × 10−2 

F20 

Best 

Worst 

Mean 

Median 

Std. 

−3.322 

−3.322 

−3.322 

−3.322 

1.355 × 10−15 

−3.191 

−2.048 

−3.015 

−3.013 

1.974 × 10−1 

−3.322 

−1.855 

−2.953 

−2.987 

2.446 × 10−1 

−3.321 

−3.088 

−3.253 

−3.202 

6.710 × 10−2 

−3.322 

−3.029 

−3.249 

−3.262 

8.210 × 10−2 

F21 

Best 

Worst 

Mean 

−1.015 × 10 

−.1015 × 10 

−1.015 × 10 

−8.137 

−8.800 ×10−1 

−4.318 

−1.015 × 10 

−2.682 

−6.396 

−1.013 × 10 

−2.666 

−7.287 

−1.015 × 10 

−5.099 

−9.479 
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Median 

Std. 

−1.015 × 10 

2.499 × 10−17 

−4.905 

2.078 

−3.954 

3.590 

−7.419 

2.859 

−1.015 × 10 

1.746 

F22 

Best 

Worst 

Mean 

Median 

Std. 

−1.040 × 10 

−1.040 × 10 

−1.040 × 10 

−1.040 × 10 

5.420 × 10−15 

−9.054 

−9.064 ×10−1 

−5.415 

−5.037 

1.738 

−1.040 × 10 

−1.040 × 10 

−1.040 × 10 

−1.040 × 10 

4.661 × 10−6 

−1.039 × 10 

−2.748 

−7.838 

−1.025 × 10 

3.184 

−1.040 × 10 

−5.085 

−1.022 × 10 

−1.040 × 10 

9.723 × 10−1 

F23 

Best 

Worst 

Mean 

Median 

Std. 

−1.053 × 10 

−1.053 × 10 

−1.053 × 10 

−1.053 × 10 

2.485 × 10−18 

−9.3851 

−3.2531 

−5.2925 

−5.0398 

1.0982 

−1.053 × 1.0 

−1053 × 10 

−1.053 × 10 

−1.053 × 10 

1.836 × 10−15 

−1.051 × 10 

−1.675 

−7.673 

−1.041 × 10 

3.7585 

−1.053× 10 

−1.053× 10 

−1.053× 10 

−1.053× 10 

2.585 × 10−4 

The results of Tables 5–7 show that, for all functions, hCSC-PS could provide better 

solutions in terms of the best and the mean value of the objective functions compared with 

the standard SCA and also other optimization algorithms. The results show that hCSC-PS 

is a more stable approach than the other methods in terms of standard deviation, which 

indicates the algorithm’s stability. Based on the findings, it can be inferred that hCSC-PS 

outperforms the standard algorithm as well as alternative optimization methods. 

5. Practical Applications 

Figure 6 shows a single-line diagram of the 3-machine 9-bus (WSCC), which is used 

to demonstrate the proposed technique’s efficacy and robustness [5,57]. Different strate-

gies for determining the best location for SVCs devices have been described in the litera-

ture [5]. The WSCC system was subjected to two strategies based on the effect of load 

percentage and line outage on load bus voltages, with bus number 5 being selected as the 

best location for the SVC device. The proposed controllers’ performance is evaluated us-

ing four different loading conditions. Table 8 shows four operating conditions (cases), 

which they are considered as representative cases in the literature [5,15,18,44], for evalu-

ating the performance of the proposed controllers. These operating conditions are consid-

ered for the WSCC test system in the design process. The dynamics model of the system 

is given in Appendix A. 

 

Figure 6. 3-machine, 9-bus power system from WSCC. 
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Table 8. System operating conditions. 

Generator Normal Case Case 1 Case 2 Case 3 

 P(p.u) Q(p.u) P(p.u) Q(p.u) P(p.u) Q(p.u) P(p.u) Q(p.u) 

G1 1.79 0.28 2.11 1.19 0.33 1.12 1.47 1.05 

G2 1.65 0.08 1.22 0.57 2.00 0.57 2.01 0.6 

G3 0.85 −0.11 1.29 0.38 1.50 0.38 1.5 0.7 

Load         

A 1.25 0.54 2.10 0.70 1.50 0.90 1.5 0.9 

B 0.90 0.31 1.81 0.450 1.20 0.80 1.2 0.8 

C 1.10 0.25 1.70 0.80 1.00 0.5 1 0.5 

The objective function given in Equation (10) is minimized with two scenarios of se-

vere fault disturbances under the loading conditions described above in order to find the 

optimum values of controllers’ parameters. Scenario 1: The line 5–7 close bus 5 experi-

ences a 6-cycle fault disturbance. The fault is cleared by tripping line 5–7 and reclosing it 

successfully after 1.0 s. Scenario 2 is the same as scenario 1, except for a 0.2 (pu) step in-

crease in mechanical power. Lines 5–7 are tripped to clear the fault and reclosing success-

fully after 1.0 s. The optimum controller parameters obtained using the nonlinear time 

domain based objective function are shown in Table 9. To obtain the results presented in 

this table, the problem has been solved 30 times using the proposed hCSC-PS and the best 

results are presented in Table 9. After the proposed hCSC-PS technique had converged, 

these results were obtained. To demonstrate the robustness of the coordination between 

PSSs and SVC controllers, an individual design is also carried out.  

Table 9. Optimal parameters obtained by hCSC-PS. 

Algorithm  K T1 T2 T3 T4 

Uncoordinated design PSS1 20.45 0.070 0.073 0.030 0.045 

PSS2 19.36 0.128 0.050 0.068 0.055 

SVC 65.56 0.028 0.121 0.523 0.048 

Coordinated design PSS1 24.06 0.095 0.043 0.283 0.050 

PSS2 15.03 0.056 0.050 0.054 0.029 

SVC 25.02 0.028 0.230 0.058 0.493 

Figure 7 shows the speed deviation response for various loading conditions under 

two scenarios to demonstrate the contribution of the coordinated design versus the unco-

ordinated design. When compared to when no controllers are used, Figure 8 clearly shows 

that SVC-based controllers fail to provide adequate damping of system oscillations when 

used alone. Furthermore, when compared to SVC controllers, PSSs regulators provide 

good damping of system oscillations with a short settling time. The suggested coordinated 

controllers, on the other hand, remain the most effective at damping oscillations and re-

ducing their settling times. The coordinated design of the suggested method outperforms 

the uncoordinated design, according to the simulation results. 
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(a) (b) 

  
(c) (d) 

Figure 7. Speed deviation response for various loading conditions. (a) Normal case scenario 1; (b) 

Case 1 under scenario 2; (c) Case 2 under scenario 1; (d) Case 3 under scenario 2. 

To determine the robustness of the suggested controllers, the parameters of the con-

trollers are also tuned using SCA, TSA, and GSA methods. The values of these parameters 

are shown in Table 10. Figure 8 depicts the rate of convergence for the best controller 

tuning. By minimizing a time domain objective function with speed deviations, the pro-

posed method is used to solve the problem of controller parameter design in a multi-ma-

chine power system. In addition, when a controller is designed with HCSC-PS, GSA, TSA, 

and SCA, over the simulation period, the speed divergence is calculated, as shown in Fig-

ure 9. Note that w12 = w2− w1 and w13 = w3− w1. The PSS and SVC controllers built by hCSC-

PS provide good damping for the study system and have a superior feature than those 

designed by SCA, GSA, and TSA, as seen in these graphs. Obtained minimum damping 

ratios are presented in Table 11 for different loading conditions. The higher values of min-

imum damping ratio depict the higher capability of the controller to damp out the LFOs. 

As can be seen from Table 11, proposed method give the larger value of minimum damp-

ing ratio compared to the other methods. This means that PSS and SVC controllers opti-

mized by hCSC-PS are capable of providing better damping to the LFOs. The damping 

ratio is a dimensionless parameter which describes how an oscillating comes to rest. The 

damping ratio describes how rapidly the amplitude of a vibrating system decays with 

respect to time. By increasing the system damping ratio, the forced oscillation amplitude 

can be reduced. The damping ratio of the oscillation is defined as:  

𝜉 =
−𝜎

√𝜎2 + 𝜔2
 (12) 
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Table 10. Optimal parameters obtained by SCA, TSA, and GSA. 

Algorithm  K T1 T2 T3 T4 

Coordinated by SCA 

PSS1 20.30 0.254 0.854 0.221 1.214 

PSS2 17.24 0.052 0.563 0.034 0.376 

SVC 36.92 0.058 0.034 0.031 0.098 

Coordinated by TSA 

PSS1 18.24 0.021 0.267 0.181 0.276 

PSS2 26.08 0.854 0.189 0.023 1.149 

SVC 18.65 0.523 0.123 0.081 0.100 

Coordinated by GSA 

PSS1 25.45 0.283 0.854 0.63 1.312 

PSS2 18.05 0.054 0.561 0.101 0.734 

SVC 51.23 0.058 0.034 0.045 0.087 

Table 11. Damping ratio comparison for different loading conditions. 

 
Uncoordinated 

Design 

Coordinated 

Design 

Coordinated by 

SCA 

Coordinated 

by TSA 

Coordinated 

by GSA 

Case 1 0.0696 0.7779 0.5654 0.5412 0.2524 

Case 2 0.2868 0.8379 0.5003 0.5177 0.5215 

Case 3 0.2139 0.7686 0.4538 0.4417 0.5459 

 

Figure 8. Fitness Convergence with hCSC-PS, GSA, TSA, GWO, SCA. 
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(a) (b) 

  

(c) (d) 

Figure 9. Speed deviation response for various loading conditions. (a) Normal Case under sce-

nario 1; (b) Case 1 under scenario 2; (c) Case 2 under scenario 1; (d) Case 3 under scenario 2 

6. Conclusions 

In this paper, a novel hybrid optimization algorithm called hCSC-PS is suggested for 

the simultaneous coordinated design of PSSs and SVC controllers in multi-machine power 

system. The proposed hCSC-PS combines two search techniques: the chaotic CSA as an 

effective global optimization, and pattern search as a robust local search method. Firstly, 

the performance comparison of the proposed hCSC-PS algorithm on a set of benchmark 

functions reveals that the proposed method outperforms the standard SCA and also other 

algorithms. Then, the problem is formulated as an optimization problem where the con-

trollers’ parameters are the decision variables of the problem. The enhancement of the 

system stability is taken into account in the objective function in which the time responses 

of the speeds’ deviations of machines are involved. Then, the hCSC-PS algorithm is used 

to optimize the objective function for four operating conditions (representative cases) and 

severe fault scenarios. The performance and robustness of the proposed controller are as-
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sessed on a power network test, frequently used in power system stability studies. Simu-

lation results showed that the proposed coordinated design of PSSs and SVC controllers 

greatly improved the damping characteristics of power system oscillations, compared to 

the individual design. 
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Appendix A 

The dynamics model of power system is given by [57]: 

Appendix A.1. Generator 

𝛿𝑖̇ = 𝜔𝑏(𝜔𝑖 − 1) (A1) 

𝜔𝑖̇ =
1

𝑀𝑖

(𝑃𝑚𝑖 − 𝑃𝑒𝑖 − 𝐷𝑖(𝜔𝑖 − 1)) (A2) 

𝐸́𝑞𝑖
̇ =

1

𝑇𝑑𝑜𝑖
́

(𝐸𝑓𝑑𝑖 − (𝑥̇𝑑𝑖 − 𝑥𝑑𝑖́ )𝑖𝑑𝑖 − 𝐸𝑞𝑖
́ ) (A3) 

𝑃𝑒𝑖 = 𝑣𝑑𝑖𝑖𝑑𝑖 + 𝑣𝑞𝑖𝑖𝑞𝑖 (A4) 

Appendix A.2. Exciter and PSS 

𝐸́𝑓𝑑𝑖
̇ =

1

𝑇𝐴𝑖
́

(𝐾𝐴𝑖(𝑣𝑟𝑒𝑓𝑖 − 𝑣𝑖 + 𝑢𝑃𝑆𝑆𝑖) − 𝐸𝑓𝑑𝑖) 
(A5) 

𝑣𝑖 = (𝑣2
𝑑𝑖 + 𝑣2

𝑞𝑖)
1/2 (A6) 

𝑣𝑑𝑖 = 𝑥𝑞𝑖𝑖𝑞𝑖 
(A7) 

𝑣𝑞𝑖 = 𝐸𝑞𝑖
́ − 𝑥𝑑𝑖𝑖𝑑𝑖́  (A8) 

𝑇𝑒𝑖 = 𝐸𝑞𝑖
́ 𝑖𝑞𝑖((𝑥𝑞𝑖 − 𝑥𝑑𝑖́ )𝑖𝑑𝑖𝑖𝑞𝑖 

(A9) 

Appendix A.3. SVC- Based Controller 

𝐵̇𝑆𝑉𝐶 = (𝐾𝑠(𝐵𝑆𝑉𝐶
𝑟𝑒𝑓

− 𝑢𝑆𝑉𝐶) − 𝐵𝑆𝑉𝐶)/𝑇𝑠 (A10) 
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Appendix A.4. Linearized Model 

[
 
 
 
 

𝛥𝛿̇
𝛥𝜔
𝛥𝐸̇′

𝑞

𝛥𝐸̇𝑓𝑑]
 
 
 
 

=

[
 
 
 
 

0 𝜔0𝐼 0 0

−𝑀−1𝐾1 −𝑀−1𝐷 −𝑀−1𝐾2 0

−𝑇′
𝑑𝑜
−1

𝐾4 0 −𝑇′
𝑑𝑜
−1

𝐾3 𝑇′
𝑑𝑜
−1

−𝑇𝐴
−1𝐾𝐴𝐾5 0 −𝑇𝐴

−1𝐾𝐴𝐾6 𝑇𝐴
−1 ]

 
 
 
 

[
 
 
 

𝛥𝛿
𝛥𝜔
𝛥𝐸′

𝑞

𝛥𝐸𝑓𝑑]
 
 
 

+

[
 
 
 
 

0 0
0 −𝑀−1𝐾𝑝𝐵

0 −𝑇′
𝑑𝑜
−1

𝐾𝑞𝐵

𝑇𝐴
−1𝐾𝐴 −𝑇𝐴

−1𝐾𝐴𝐾𝑣𝐵]
 
 
 
 

[
𝑢𝑃𝑆𝑆𝑖

𝛥𝐵
]

 (A11) 

𝑲𝟏 =
𝝏𝑷𝒆

𝝏𝜹
,𝑲𝟐 =

𝝏𝑷𝒆

𝝏𝑬𝒒
́ , 𝑲𝟑 =

𝝏𝑬𝒒

𝝏𝑬𝒒
́ , 𝑲𝟒 =

𝝏𝑬𝒒

𝝏𝜹
, 𝑲𝟓 =

𝝏𝒗

𝝏𝜹
, 𝑲𝟔 =

𝝏𝒗

𝝏𝑬𝒒
́ , 𝑲𝒑𝑩 =

𝝏𝑷𝒆

𝝏𝑩
, 𝑲𝒒𝑩 =

𝝏𝒗

𝝏𝑬𝒒
́ , 𝑲𝒗𝑩 =

𝝏𝒗

𝝏𝑩
 (A12) 

Appendix B 

Table A1. Nomenclature and Abbreviation. 

Variables & Ab-

breviation 

 

Description 

Variables & Ab-

breviation 

 

Description 

f(X) Fitness function dim Dimension 

g(X) Inequality constraints SF Size factor 

h(X) Equality constraints 𝑷𝒎𝒊 Mechanical input power 

X Dimensional vector of design variables 𝑷𝒆𝒊 Active power 

XL & XU Boundary constraints M Machine inertia 

𝛿 Rotor angle D Damping the coefficient 

𝜔 Speed deviation 𝒗𝒓𝒆𝒇𝒊 Reference voltage 

𝐸′𝑞 Internal voltages 𝑻𝒅𝒐𝒊 Open circuit field time constant 

𝐸𝑓𝑑 Field voltages 𝒊𝒅𝒊, 𝒊𝒒𝒊 Stator currents in d- and q -axis circuits 

𝑢 Input control parameters x Vector of state variables 

𝑡𝑠𝑖𝑚 time of simulation y Vector of algebraic variables 

N Number of machines BSVC Susceptance of SVC 

M Number of operating points 𝜉 Damping ratio 

K Gain Fmin Minimum value of the objective function 

T1 -T4 Time constants dim dimension 

TWi Time constant of washout A 4𝑛 × 4𝑛 matrix 

𝒙𝒊 Placement of ith solution in the search space B 4𝑛 × 𝑚 matrix 

𝒖𝒃𝒊 Upper bounds 𝑎 Control parameter 

𝒍𝒃𝒊 Lower bounds 𝑚 PSS and SVC 

r3 Random number among 0 and 1 𝑋 4𝑛 × 1 state vector 

𝒙𝒊
𝒕 Position of ith solution at iteration t SF Size factor 

𝒙𝑩𝒆𝒔𝒕 Best solution in the population PSS Power system stabilizer 

r1 Random numbers in the range of [0, 2π] SVC Static VAR compensator 

r2 Random weight of the best solution CSCA Chaotic sine cosine algorithm 

𝒕𝒎𝒂𝒙 Maximum number of iterations PS Pattern search 

λ (t) Chaotic map FACTS Flexible AC transmission systems 

t Iteration number hCSC-PS Hybrid CSCA and PS 

a Constant equal to 4 LFO Low frequency oscillations 

W12 Speed difference response of G1–G2 SQP Sequential quadratic programming 

W13 Speed difference response of G1–G3 SCA Sine cosine algorithm 

K1-K6 Linearization constants  Kp, Kq, KB Linearization constants  
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