Magnus Ivarsson

Magnus Ivarsson
Swedish Museum of Natural History · Department of Palaeobiology

PhD

About

148
Publications
31,581
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,829
Citations
Citations since 2017
74 Research Items
1449 Citations
2017201820192020202120222023050100150200250300
2017201820192020202120222023050100150200250300
2017201820192020202120222023050100150200250300
2017201820192020202120222023050100150200250300

Publications

Publications (148)
Article
Full-text available
We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of...
Article
Full-text available
Techniques enabling in situ elemental and mineralogical analysis on extraterrestrial planets are strongly required for upcoming missions and are being continuously developed. There is ample need for quantitative and high-sensitivity analysis of elemental as well as isotopic composition of heterogeneous materials. Here we present in situ spatial and...
Article
Full-text available
Detection of extraterrestrial life is an ongoing goal in space exploration, and there is a need for advanced instruments and methods for the detection of signatures of life based on chemical and isotopic composition. Here, we present the first investigation of chemical composition of putative microfossils in natural samples using a miniature laser...
Article
Full-text available
Fungi have been recognized as a frequent colonizer of subseafloor basalt but a substantial understanding of their abundance, diversity and ecological role in this environment is still lacking. Here we report fossilized cryptoendolithic fungal communities represented by mainly Zygomycetes and minor Ascomycetes in vesicles of dredged volcanic rocks (...
Article
Full-text available
The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a...
Article
Full-text available
The enigmatic fossil Prototaxites found in successions ranging from the Middle Ordovician to the Upper Devonian was originally described as having conifer affinity. The current debate, however, suggests that they probably represent gigantic algal–fungal symbioses. Our re-investigation of permineralized Prototaxites specimens from two localities, th...
Article
Full-text available
Serpentinization is a geological process involving the interaction of water and ultramafic rock, the chemical byproducts of which can serve as an energy source for microbial communities. Although serpentinite systems are known to host active microbial life, it is unclear to what extent fossil evidence of these communities may be preserved over time...
Article
Samples of active chimneys, chimney flanges and massive sulfides from the Daiyon-Yonaguni Knoll hydrothermal field are composed of major barite and minor stibnite and orpiment. Barite is inferred to precipitate from focused-discharge fluids composed of >40% hydrothermal end-member fluid at T = 100-240°C, whereas the stibnite and orpiment are later...
Article
Full-text available
A growing literature of deep but also surficial fossilized remains of lithobiological life, often associated with igneous rocks, necessitates the unfolding of a sub-discipline within paleobiology. Here, we introduce the term paleolithobiology as the new auxiliary sub-discipline under which fossilized lithobiology should be handled. We present key c...
Article
Full-text available
Micrometer sized stromatolitic structures called Frutexites are features observed in samples from the deep subsurface, and hot-spring environments. These structures are comprised of fine laminations, columnar morphology, and commonly consist of iron oxides, manganese oxides, and/or carbonates. Although a biological origin is commonly invoked, few r...
Article
Full-text available
Earth’s crust contains a substantial proportion of global biomass, hosting microbial life up to several kilometers depth. Yet, knowledge of the evolution and extent of life in this environment remains elusive and patchy. Here we present isotopic, molecular and morphological signatures for deep ancient life in vein mineral specimens from mines distr...
Article
Full-text available
Nickel isotope fractionation patterns in continental ultramafic environments generally show a depletion of δ60Ni in weathered rocks and an enrichment in bedrock samples. The present study focuses on stable Ni isotope fractionation patterns in carbonate-rich, ultramafic ophiolite samples with concomitant fluids at an active serpentinization site in...
Article
Full-text available
The search for a fossil record of Earth's deep biosphere, partly motivated by potential analogies with subsurface habitats on Mars, has uncovered numerous assemblages of inorganic microfilaments and tubules inside ancient pores and fractures. Although these enigmatic objects are morphologically similar to mineralized microorganisms (and some contai...
Preprint
Full-text available
Micrometer sized stromatolitic structures called Frutexites are features observed in samples from the deep subsurface, and hot-spring environments. These structures are comprised of fine laminations, columnar morphology, and commonly consist of iron oxides, manganese oxides, and/or carbonates. Although a biological origin is commonly invoked, few r...
Article
Full-text available
Recent discoveries of extant and fossilized communities indicate that eukaryotes, including fungi, inhabit energy-poor and anoxic environments deep within the fractured igneous crust. This subterranean biosphere may constitute the largest fungal habitat on our planet, but knowledge of abyssal fungi and their syntrophic interactions with prokaryotes...
Article
Full-text available
Modern marine hydrothermal vents occur in a wide variety of tectonic settings and are characterized by seafloor emission of fluids rich in dissolved chemicals and rapid mineral precipitation. Some hydrothermal systems vent only low-temperature Fe-rich fluids, which precipitate deposits dominated by iron oxyhydroxides, in places together with Mn-oxy...
Article
We present chemical depth profiling studies on mineralogical inclusions embedded in amygdale calciumcarbonate by our Laser Ablation Ionisation Mass Spectrometer designed forin situspace research. An IRfemtosecond laser ablation is employed to generate ions that are recorded by a miniature time-of-flightmass spectrometer. The mass spectra were measu...
Article
Full-text available
The oceanic and continental lithosphere constitutes Earth’s largest microbial habitat, yet it is scarcely investigated and not well understood. The physical and chemical properties here are distinctly different from the overlaying soils and the hydrosphere, which greatly impact the microbial communities and associated geobiological and geochemical...
Article
Accurate isotope ratio measurements are of high importance in various scientificfields, ranging from radio isotope geochronology of solids to studies of element iso-topes fractionated by living organisms. Instrument limitations, such as unresolved iso-baric inferences in the mass spectra, or cosampling of the material of interesttogether with the m...
Article
A growing awareness of life in deep igneous crust expands our appreciation for life's distribution in the upper geosphere through time and space, and extends the known inhabitable realm of Earth and possibly beyond. For most of life's history, until plants colonized land in the Ordovician, the deep biosphere was the largest reservoir of living biom...
Poster
Full-text available
The proposed Special Issue emphasizes the powerful role of microbial biomineralization in low-temperature ore genesis. It highlights crucial questions to enable a wide and truly interdisciplinary viewpoint, by combining concepts and new high-resolution methods from different areas, e.g., geochemistry, mineralogy, biology, to build a comprehensive p...
Article
Full-text available
Understanding microbial mediation in sediment-hosted Mn deposition has gained importance in low-temperature ore genesis research. Here we report Mn oxide ores dominated by todorokite, vernadite, hollandite, and manjiroite, which cement Quaternary microbially induced sedimentary structures (MISS) developed along bedding planes of shallow-marine to t...
Research
Full-text available
The proposed Special Issue emphasizes the powerful role of microbial biomineralization in low-temperature ore genesis. It highlights crucial questions to enable a wide and truly interdisciplinary viewpoint, by combining concepts and new high-resolution methods from different areas, e.g., geochemistry, mineralogy, biology, to build a comprehensive p...
Conference Paper
Full-text available
Identification of terrestrial hydrothermal processes, as signals of volcanic unrest or causes of explosive volcanic behaviour, is crucial in volcanic hazard assessment. However, the role of hydrothermal processes in triggering volcanic hazards in the marine environment remain poorly understood, hindering effective assessment. Hydrothermal vents in...
Article
Full-text available
Graphite formation temperatures in the "Los Pobres" mine within the Ronda peridotite, Spain, previously reported to be between 770° to 820°C, have been reinterpreted based on new temperature measurements using Raman spectroscopy. Additional in-situ and bulk stable carbon isotopic measurements and fluid inclusion studies contributed to improved unde...
Article
Full-text available
A growing awareness of a subsurface fossil record of mostly hyphal fungi organisms stretching back through the Phanerozoic to ≈400 megaannum (Ma) and possibly earlier, provides an alternative view on hyphal development. Parallel with the emergence of hyphal fungi during Ordovician–Devonian times when plants colonized the land, which is the traditio...
Article
Full-text available
The production of H2 in hydrothermal systems and subsurface settings is almost exclusively assumed a result of abiotic processes, particularly serpentinization of ultramafic rocks. The origin of H2 in environments not hosted in ultramafic rocks is, as a rule, unjustifiably linked to abiotic processes. Additionally, multiple microbiological processe...
Data
1. Summary of Fluid Inclusion Microthermometry for the Cape Vani Fe-Ba-Mn deposit. 2. SIMS analyses of S isotopes in barite, Cape Vani ore deposit. 3. SIMS analyses of O isotopes in barite, Cape Vani ore deposit.
Article
Full-text available
The last decade has revealed the igneous oceanic crust to host a more abundant and diverse biota than previously expected. These underexplored rock-hosted deep ecosystems dominated Earth’s biosphere prior to plants colonized land in the Ordovician, thus the fossil record of deep endoliths holds invaluable clues to early life and the work to decrypt...
Article
Full-text available
Fractured rocks of impact craters may be suitable hosts for deep microbial communities on Earth and potentially other terrestrial planets, yet direct evidence remains elusive. Here, we present a study of the largest crater of Europe, the Devonian Siljan structure, showing that impact structures can be important unexplored hosts for long-term deep m...
Article
Full-text available
Clay authigenesis associated with the activity of microorganisms is an important process for biofilm preservation and may provide clues to the formation of biominerals on the ancient Earth. Fossilization of fungal biofilms attached to vesicles or cracks in igneous rock, is characterized by fungal-induced clay mineralization and can be tracked in de...
Article
Diverse micro‐organisms populate a global deep biosphere hosted by rocks and sediments beneath land and sea, containing more biomass than any other biome except forests. This paper reviews emerging palaeobiological archive of these dark habitats: microfossils preserved in ancient pores and fractures in the crust. This archive, seemingly dominated b...
Article
Full-text available
We review the abundance and diversity of terrestrial rock hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for the biomarkers of rock hosted life on Mars. Key finds are metabolic pathways for chemolithotrophic microorganisms evolved much earlier in Earth history...
Article
Full-text available
Micrometer‐scale maps of authigenic microstructures in submarine basaltic tuff from a 1979 Surtsey volcano, Iceland, drill core acquired 15 years after eruptions terminated describe the initial alteration of oceanic basalt in a low‐temperature hydrothermal system. An integrative investigative approach uses synchrotron source X‐ray microdiffraction,...
Article
Full-text available
: Impact-generated hydrothermal systems have been suggested as favourable environments for deep microbial ecosystems on Earth, and possibly beyond. Fossil evidence from a handful of impact craters worldwide have been used to support this notion. However, as always with mineralized remains of microorganisms in crystalline rock, certain time constrai...
Article
Full-text available
The exploration of Mars is largely based on comparisons with Earth analog environments and processes. The up-coming NASA Mars mission 2020 and ExoMars 2020 has the explicit aim to search for signs of life on Mars. During preparations for the missions, glaring gaps in one specific field was pointed out: the lack of a fossil record in igneous and vol...
Article
Full-text available
The toxicity of arsenic (As) towards life on Earth is apparent in the dense distribution of genes associated with As detoxification across the tree of life. The ability to defend against As is particularly vital for survival in As-rich shallow submarine hydrothermal ecosystems along the Hellenic Volcanic Arc (HVA), where life is exposed to hydrothe...
Preprint
Full-text available
We review the abundance and diversity of terrestrial rock hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for the biomarkers of rock hosted life on Mars. Key finds are metabolic pathways for chemolithotrophic microorganisms evolved much earlier in Earth history...
Article
Full-text available
The toxicity of arsenic (As) towards life on Earth is apparent in the dense distribution of genes associated with As detoxification across the tree of life. The ability to defend against As is particularly vital for survival in As-rich shallow submarine hydrothermal ecosystems along the Hellenic Volcanic Arc (HVA), where life is exposed to hydrothe...
Article
The recognition of biosignatures on planetary bodies requires the analysis of the putative microfossil with a set of complementary analytical techniques. This includes localized elemental and isotopic analysis of both, the putative microfossil and its surrounding host matrix. If the analysis can be performed with spatial resolution at the micromete...
Article
Full-text available
Garnets from disparate geographical environments and origins such as oxidized soils and river sediments in Thailand host intricate systems of microsized tunnels that significantly decrease the quality and value of the garnets as gems. The origin of such tunneling has previously been attributed to abiotic processes. Here we present physical and chem...
Article
Full-text available
Recent studies reveal that organisms from all three domains of life—Archaea, Bacteria, and even Eukarya—can thrive under energy-poor, dark, and anoxic conditions at large depths in the fractured crystalline continental crust. There is a need for an increased understanding of the processes and lifeforms in this vast realm, for example, regarding the...
Article
Full-text available
An early Quaternary shallow submarine hydrothermal iron formation (IF) in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF). Field-wide stratigraphic and biogeochemical reconstructions show two temporal and spatially isolated iron deposits in the CVSB with...
Conference Paper
Full-text available
Pyrite from ancient hydrothermal ore deposits commonly shows coupled geochemical behaviour of Au and As, and spatial decoupling between Au-As rich areas and Cu contents [1,2,3]. Both speciation (solid solution Au 1+ vs. native Au 0 nanoinclusions) and concentration of Au are thought to be strongly dependent on the incorporation of As into the pyrit...
Article
Full-text available
An Early Quaternary shallow submarine hydrothermal iron formation (IF) in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF). Sedimentary, stratigraphic reconstruction, biogeochemical analysis and micro-nanoscale mineralogical characterization confirms the M...
Article
Full-text available
A major part of the biologic activity on Earth is hidden underneath our feet in an environment coined the deep biosphere which stretches several kilometers down into the bedrock. The knowledge about life in this vast energy-poor deep system is, however, extremely scarce, particularly for micro-eukaryotes such as fungi, as most studies have focused...
Article
Full-text available
The seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO2-rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for autotrophic carbon fixation used in the Calvin-Benson-B...