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Abstract: Metformin, a synthetic biguanide, is currently one of the most frequently recommended medications 
for type 2 diabetes treatment around the world. This review presents the latest discoveries in the pharmacokinetics 
of metformin, especially the role of transporters (e.g. Organic Cation Transporters OCTs, Multidrug and Toxin 
Extrusion transporters MATE) in oral absorption, distribution, elimination and biochemical effects of metformin 
in humans. We also review the associations between genetic variations of metformin transporters, their pharma-
cokinetics and drug efficacy or drug responses. 
In the second part of this paper, we highlight the current knowledge on novel metformin actions including favour-
able effects on lipid profile (e.g. decreasing plasma triglycerides (TG) and low density lipoprotein (LDL) choles-
terol levels) and the cardiovascular system (e.g. decline in systolic and diastolic blood pressure, and vasoprotec-
tive effects). Furthermore, we provide an up-to-date overview of multidirectional activities of metformin, includ-
ing the effects on coagulation and fibrinolysis, polycystic ovary syndrome, as well as the anti-ageing and anti-
inflammatory properties.  Over the past two decades, metformin’s antineoplastic properties have been drawing 
increasing attention of scientists; herein, we outline the state-of-the-art discoveries concerning metformin use in 
the field of oncology. Finally, we review the newly synthesized derivatives and pro-drugs of metformin and other 
biguanides. 
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INTRODUCTION 
 Metformin is a synthetic biguanide which was originally de-
scribed in 1922. However, it is related to guanidines found in the 
French lilac (Galega officinalis) that has already been used in the 
Middle ages to decrease blood sugar and relieve the symptoms of 
diabetes mellitus [1,2]. Metformin is currently one of the most rec-
ommended medications for diabetes treatment around the world. 
The drug was accepted for the therapy of hyperglycaemia succes-
sively in England in 1958, Canada in 1972, and the US in 1995 [3-
5]. It has been estimated that nowadays, approximately 120 million 
people use metformin worldwide [6,7]. The most common indica-
tion is the treatment of type 2 diabetes; however, it is also used for 
polycystic ovarian syndrome, metabolic syndrome, and diabetes 
prevention [8-10].  
 Metformin is slowly and incompletely absorbed from the intes-
tine, and therefore, the pharmacologically active doses are rela-
tively high (0.5-2.0 g per day). Unfortunately, treatment with high 
doses of metformin is associated with gastrointestinal adverse ef-
fects, such as nausea, vomiting, diarrhoea, abdominal pain and loss 
of appetite, which is frequently the reason for discontinuation of 
therapy. However, overall metformin is well tolerated and accepted 
as anti-diabetic agent, since the side effects occur most frequently 
during initiation of therapy and resolve spontaneously in most 
cases. Lactic acidosis is a rare (5 per 100000 population) but 
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serious (high mortality in the absence of prompt treatment) meta-
bolic complication related to metformin accumulation. Reported 
cases of lactic acidosis in patients taking metformin have occurred 
primarily in diabetic patients with significant renal failure [11]. 
 Metformin has several glucose lowering mechanisms, which 
will be summarized in this review. It mainly inhibits hepatic glu-
coneogenesis and increases glucose consumption in muscles.  It 
also increases insulin sensitivity and inhibits intestinal glucose ab-
sorption [3]. However, scientific society has also been stunned by 
the multidirectional activities of metformin, including lipid lower-
ing, anti-ageing and anti-inflammatory properties, which will be 
outlined in this review. Over the past two decades, metformin has 
been drawing increasing attention of scientists due to its antineo-
plastic properties in relation to several oncologic diseases; there-
fore, we also review the ground-breaking evidences concerning 
metformin use in the field of oncology. However, we would like to 
start from summarizing the latest discoveries in the pharmacokinet-
ics of metformin and finally provide a section of newly synthesized 
derivatives of metformin. 

ABSORPTION AND DISTRIBUTION OF METFORMIN 
 Metformin is slowly absorbed after oral administration, pre-
dominantly from the small intestine. The bioavailability shows 
some intra-subject, as well as inter-subject variability. Bioavailabil-
ity after oral administration has been estimated at approximately 
50-60% with a plasma half-life of 1.5-4  h [12]. Considering its 
chemical structure, metformin is a biguanide (1,1-dimethyl-
biguanide hydrochloride). Due to its very polar guanidine structure, 
metformin is a highly hydrophilic base that exists as cationic spe-
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cies at physiological pH, with a minimal passive diffusion through 
the cell membranes [2,13].  
 Metformin is not bound to plasma proteins [13,14]. Metformin 
diffuses into erythrocytes, most likely as a function of time. The 
volume of distribution (Vd) has been established to range from 63 
to 276 L after intravenous administration. The apparent volume of 
distribution after oral administration (Vd/F) of 2000 mg of met-
formin daily is approximately 600 L. Clinicians indicate that due to 
uncompleted absorption, the actual Vd (Cross out volume of distri-
bution) during multiple dosage is about 300 L. The high value of 
Vd means that metformin is able to be taken up by various tissues 
[13].  
 Numerous studies have confirmed that after a single oral dose, 
metformin concentrations in the kidneys, adrenal glands, pancreas 
and liver exceed the serum concentrations up to seven times. Lower 
concentrations of metformin are observed in the lungs and muscles 
[13,15]. 
 It is of great importance to mention that metformin passes 
through the placenta [16] and the concentrations in the foetus are 
only slightly lower than in the mother [13]. Another crucial fact is 
that the pharmacokinetics of metformin in pregnant women is al-
tered because of the higher glomerular filtration rate (GFR). This 
leads to lower plasma concentrations of metformin during preg-
nancy in comparison to non-pregnant women [13,17]. 
 It has been established in numerous studies that metformin is a 
substrate for several organic cation transporters (OCTs), which 
determines its oral absorption, distribution, elimination (hepatic 
uptake, renal excretion) and biochemical effects of metformin in 
man (Scheme 1)  [13]. Therefore, within this section, we will inves-
tigate the most important aspects of transporters’ role in metformin 
pharmacokinetics. Scientists have focused their efforts on the role 
of genetic factors in predicting response variations to metformin 
[18]. In addition to pharmacokinetic individual variability, the re-
sponse to metformin differs significantly, with approximately 30% 
of subjects receiving metformin classified as non-responders 
[19,20]. Numerous researches have been conducted in order to find 
out the associations between genetic variations of metformin trans-
porters, their pharmacokinetics and drug efficacy or drug responses 
[18]; therefore, we have presented here the major findings within 
this area. 
 As reported by Zhou et al., [21] one of the transporters respon-
sible for the uptake of metformin from the intestine appears to be 
plasma membrane monoamine transporter (PMAT) which is local-
ized on the luminal side of enterocytes [20]. Generally, OCT trans-
porters (three subtypes OCT1, OCT2, OCT3) play an important role 
in the tissue distribution of a wide variety of positively charged 

molecules, including drugs and endogenous substrates [22,23].  
Kimura et al. in in vitro study compared the specificity of OCT1 
and OCT2 for several guanidine compounds, including creatinine, 
guanidine, aminoguanidine, etc [22]. The results of the study 
showed that many guanidine compounds had relatively equal affin-
ity to OCT1 and OCT2. The researchers found that among the stud-
ied compounds, aminoguanidine had greater affinity for OCT2 than 
OCT1 which may lead to the conclusion that OCT2 can act as a 
transporter for aminoguanidine in renal proximal tubules [22].  
 Graham et al. reported that OCT 1 and OCT 3 are also present 
in low amounts in the gastrointestinal tract [13]. OCT3 transporters, 
localized in the brush border of enterocytes, may act as a carrier of 
metformin into enterocytes. The author speculates also that OCT1 
may take part in the transport of the drug into the interstitial fluid 
[13]. Based on the extensive review, Gong et al. stated that the role 
of OCT1 and OCT3 in the intestinal transport of metformin needs 
to be defined [18]. 
 It should be underlined here that genetic variants of OCT1 and 
OCT3 might contribute to a decrease in the ability to transport met-
formin into model cells [24]. For instance, Shu et al. [24] reported 
that among the subjects being heterozygotes with one of the several 
variant OCT1 transporters, the plasma concentrations of metformin 
were only slightly higher in comparison with the normal (wild-type) 
OCT1, whereas in those being homozygotes carrying poorly func-
tioning transporters, major changes such as  higher area under the 
plasma concentration-time curve (AUC), and higher maximal 
plasma concentration (Cmax) could be seen.  
 The hepatic uptake of metformin is mediated primarily by 
OCT1 and to a lesser extent by OCT3 [18]. These transporters are 
localized on the basolateral side of hepatocytes [13,18]. In 2007, 
Shu et al. [25] published a study in which they reported that in 
OCT1 deficient mice, the hepatic metformin concentration in the 
liver was significantly lower than that in control mice, and most 
importantly, the glucose-lowering activity of metformin disap-
peared completely [25]. In turn, Nies et al. [26] reported that the 
hepatic expression of OCT1 and OCT3 in Caucasians was signifi-
cantly affected by cholestasis and certain genetic variants. Due to 
the fact that OCT1 and OCT3 are involved in the hepatic uptake of 
metformin, these conditions may lead to the variability in drug re-
sponse [26]. 
 Recently, considerable variation in the hepatic expression of 
OCT1 has been reported, and some authors have highlight that it 
should be regarded as clinically important [13,26,27]. For instance, 
Sogame and colleagues [28] revealed that both metformin and 
phenformin are transported actively by OCT1, with the active 
transport components much greater than passive transport ones 

 

 

 

 

 

 

 

 

Scheme 1. Transporters involved in the absorption, distribution and urinary excretion of metformin. MATE - multidrug and toxin extrusion transporter; OCT - 
organic cation transporter; PMAT - plasma membrane monoamine transporter. 
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which suggests that functional changes in OCT1 might affect the 
transport of the drugs. This, in turn, may be the cause of lack of 
metformin’s activity in some subjects [28]. Gambineri et al. also 
confirmed that genetic variation in OCT1 may be associated with 
heterogeneity in the metabolic response to metformin in women 
with PCO [29]. 
 A study conducted by Christensen et al. [30] demonstrated a 
huge inter-individual variability in thorough steady-state metformin 
concentration in diabetic patients. The authors established a mean 
trough steady-state plasma concentration to be 576 ng/mL and a 
nearly 80-fold range from 54 to 4133 ng/mL which, in fact, corre-
sponds with inter-individual variability. The scientists concluded 
that the metformin pharmacokinetics is affected by the OCT1 activ-
ity, which in turn is associated with a reduction in the absolute de-
crease in Hb1Ac level [30]. 
 In the case of inter-subject differences in the expression of 
OCT3 protein, there are not available scientific evidences yet, how-
ever, differences in the expression of OCT3 have been detected 
[13,26]. It should be mentioned that the above discoveries have 
some limitations. For example, we cannot exclude the effect of 
other administered drugs on the variation in OCT1 and OCT3. It 
has also been established that the levels of OCT1 and OCT3 were 
lower in livers in patients with cholestasis [13]. These changes in 
variation in hepatic OCT1 and OCT3 transporters might be the 
reason for the differences in the clinical response to metformin.  
 Apart from hepatic location, both OCT1 and OCT3 are also 
expressed in skeletal muscles [31]. It has been reported that the 
expression of mRNA of OCT3 is higher than that of OCT1 [13,31]; 
however, the activity of  both of these transporters has not yet been 
evaluated. The clinical importance of OCT3 variants on the re-
sponse to metformin also has not yet been determined [13].  
 The high levels of OCT1 and OCT3 have been established in 
the adrenal gland which are consistent with the substantial levels of 
metformin at this site [13,32]. However, the correlations be-
tween the metformin’s mechanism of action and its distribu-
tion in the body need further examination [13].  

METABOLISM AND EXCRETION OF METFORMIN 
 Several papers have reported that metformin is not metabolized, 
and no metabolites or conjugates of metformin have been identi-
fied. The fact that metformin does not undergo liver metabolism 
clearly differentiates the pharmacokinetics of metformin from those 
of other biguanides [33]. Approximately 30-50% of an oral dose is 
excreted in the urine as the unchanged drug within 24  hours, and 
30% of the dose is eliminated unchanged with the faeces [2]. The 
elimination half-life (t0,5) of metformin during long-lasting treat-
ment in patients with physiological renal function is approximately 
five hours [13]. It has been calculated that the population mean 
renal clearance (CLR) of metformin is approximately 510 ± 130 
mL/min, and its apparent total clearance after oral administration 
(CL/F) 1140 ± 330 mL/min, in healthy subjects [13]. In patients 
with decreased renal function (lower creatinine clearance), the 
plasma and blood half-life of metformin is prolonged and the renal 
clearance is decreased together with the decrease in creatinine 
clearance [13]. According to the most recent FDA (Food and Drug 
Administration) recommendations, metformin administration in 
patients with chronic kidney disease should be based on estimated 
glomerular filtration rate (eGFR) rather than creatinine clearance. If 
the eGFR is below 30 mL/min per 1.73 m2, which is defined as 
advanced renal disease, the drug is contraindicated [33].  
 The process of metformin excretion is also based on its trans-
porter mechanism. As previously reported, the OCT2 transporter, 
localized in basolateral membrane in the renal tubules, is mainly 
engaged in the uptake of metformin from circulation into renal 
epithelial cells [18]. Approximately 90% of the variation in renal 
metformin clearance (CLR) has been attributed to genetic character-

istics [30]. According to Ogasawara et al. [34] the expression of 
OCT2 mRNA in the human kidney varies over 100-fold, which 
contributes to considerable inter-subject variation in the expression 
of OCT2 protein and, consequently, in metformin CLR [34]. In the 
case of OCT2 polymorphisms, while several papers have analysed 
the impact of the minor allele in rs316019 on renal metformin 
clearance, no firm conclusions can be drawn as some report in-
creased renal clearance [35], some decreased [36] and others no 
effect at all [37]. A retrospective data analysis by Yoon et al. [38] 
found that certain genetic polymorphisms of OCT2 (OCT2-808 
G>T) exert a significant effect on metformin pharmacokinetics, 
contributing to increase in the serum concentration of metformin, 
suggesting that in certain circumstances, e.g. in renal dysfunction 
when elimination of metformin is reduced, the dose of metformin 
should be titrated. However, the authors claim that this recommen-
dation needs more extensive research for confirmation [38]. 
 In a study of drug transporters under acidosis, Gaowa et al. [39] 
found the CLR of metformin and creatinine and expression of OCT2 
to remain unchanged under acidotic conditions. In addition, the 
amount of OCT1 protein was reduced, and that of MATE1 protein 
was increased in these conditions [39]. 
 Various transporters other than OCT2 can take part in the proc-
ess of metformin excretion. One such example is OCT1, which is 
expressed in the apical membranes (luminal side) in the proximal 
and distal tubules [37].  
 Excretion of metformin from the renal tubule cell to the urine is 
facilitated by MATE1 and MATE2-K (multidrug and toxin extru-
sion) [40,41], which are expressed in the apical membrane of the 
renal proximal tubule cells [18]. MATE1 was described for the first 
time in 2005 as an efflux transporter, and shortly after, other iso-
forms such as MATE2 and MATE2-K were discovered [42]. In the 
kidney and liver, MATEs work together with OCTs, and are re-
sponsible for modulating the elimination of organic cations [18,43]. 
In the case of SNP (single nucleotide polymorphism) marked 
rs2289669 in MATE1 and rs622342 in OCT1, the number of minor 
alleles was associated with an additive pharmacodynamics of met-
formin’s effect  [30]. The authors reported interaction between the 
two polymorphisms for homozygous rs622342 patients, who had 
more efficient glucose-lowering effects of metformin with increas-
ing numbers of rs2289669 [30,44]. Genetic variants of MATE1 or 
MATE2K have not yet been fully characterized, but are associated 
with differences in clinical responses to metformin [18]. However, 
Kusuhara et al. note that the administration of a pyrimethamine, a 
MATE inhibitor, contributed to a significant increase in metformin 
Cmax and AUC [45]. A study of the effects of novel promoter vari-
ants in MATE transporters in the pharmacokinetics and pharma-
codynamics of metformin by Stocker et al. found that MATE1, a 
reduced expression promoter variant, is associated with increased 
response to metformin in healthy subjects and diabetic patients who 
were homozygous for the OCT1 reference allele [20]. In the case of 
MATE2, the enhanced expression promoter variant, the researchers 
found a reduced response to metformin in healthy volunteers. In 
addition, CLR and secretory clearance of metformin was signifi-
cantly greater in subjects with the promoter variant of MATE2 who 
were also MATE1 reference [20]. The authors concluded that pro-
moter variants of both MATE 1 and 2 are important factors regard-
ing metformin disposition and response in healthy subjects and 
patients with type two diabetes [20]. Elsewhere, it was reported that 
MATE1 dysfunction contributes to a marked elevation in the met-
formin concentration in the liver and causes lactic acidosis. This 
finding implies that the homozygous MATE1 variant could be one 
of the risk factors for metformin-induced lactic acidosis [46]. 

DRUG-DRUG INTERACTIONS WITH METFORMIN 
 Recent studies have reported that drug-drug interactions 
through the inhibition of metformin transporters (OCTs and 
MATEs) are clinically relevant, and contribute to variability in the 
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drug response [18]. For instance, proton-pump inhibitors decrease 
metformin uptake in vitro by inhibiting OCT1, OCT2, and OCT3 
transporters [47]. Similarly, other oral anti-diabetic drugs, such as 
repaglinide and rosiglitazone, inhibit OCT1 transporter in in vitro 
models [48]. Another study notes that cimetidine, a substrate for 
cationic transporters, decreases the CLR of metformin, thus increas-
ing the systemic exposure to metformin, and that it also inhibits 
transporter OCT2 depending on the genetic variant of the trans-
porter [49]. Indeed, cimetidine decreases metformin’s CLR by about 
50% in patients with the reference OCT2. Among those with the 
heterozygous or homozygous variant, the CLR of metformin is even 
lower (20% of the standard value) [50]. In turn, results of Misaka’s 
research indicate that cimetidine and trimetoprim significantly re-
duce OCT1-, OCT2-, MATE1-, and MATE2-K-mediated met-
formin uptake [51]. A number of other studies have been conducted 
in order to identify any possible pharmacokinetic interactions be-
tween metformin and other anti-glycaemic drugs such as glyburide, 
vildagliptin, sitagliptin, and rosiglitazone. However, the effects of 
these drugs on metformin’s CL/F, and vice versa, have not been of 
clinical significance [13]. One of the most recent studies indicated 
clinical implications in the disposition, efficacy and toxicity of 
metformin while simultaneous use of tyrosine kinase inhibitor 
(imatinib, nilotinib) [52]. 
 Regarding MATE transporters and drug-drug interactions, 
changes in the renal excretion of substrate drugs such as metformin 
result in inadequate pharmacotherapy or occurrence of toxic effects 
[42]. It has been reported that interaction between metformin and 
cimetidine is also possible by means of MATE1 [53].  

EFFECTS OF METFORMIN ON GLYCAEMIA 
 Type 2 diabetes mellitus is a progressive metabolic disease 
which comprises three characteristic pathophysiologic abnormali-
ties: relative insulin deficiency, insulin resistance, and hepatic insu-
lin resistance (resulting in increased gluconeogenesis and impaired 
glycogen synthesis) [54]. Biochemical abnormalities of type 2 dia-
betes include hyperinsulinemia, high levels of serum triglycerides 
(TG), low levels of high-density lipoprotein cholesterol (HDL), 
increased levels of low-density lipoprotein cholesterol (LDL), in-
creased concentrations of plasminogen activator inhibitor-1 (PAI-1) 
and C-reactive protein (CRP) [12]. 
 Conventional therapeutic strategy usually begins with lifestyle 
interventions supported by the prescription of a single anti-diabetic 
drug. When insulin resistance progresses and the monotherapy op-
tion becomes insufficient to control the level of plasma glucose, 
patients are usually switched to a double-drug regimen. In the worst 
case scenario, further progression of insulin resistance and decline 
in endogenous insulin production require the administration of ex-
ogenous insulin [55]. Apart from insulin, several drug categories 
have been developed to treat type 2 diabetes mellitus. These include 
sulfonylureas, meglitinides, biguanides, inhibitors of α-glucosidase, 
thiazolidinediones, dipeptidyl peptidase 4 inhibitors (gliptins), glu-
cagon-like peptide-1 (GLP-1) analogues and amylin analogues [56]. 
 Most newly-diagnosed patients with type 2 diabetes are placed 
on metformin monotherapy which is then supplemented or often 
substituted by other oral anti-diabetic drugs [55,57,58]. The mito-
chondria are believed to be the primary molecular target of met-
formin [59]. The drug accumulates within the matrix of mitochon-
dria, where it inhibits complex I of the mitochondrial electron 
transport chain, resulting in a reduction in NADH oxidation and 
ultimately a reduction in the synthesis of ATP [2,59]. These 
changes result in activating the 5’-adenosine monophosphate 
(AMP) kinase (AMPK) by means of a liver kinase B1 (LKB1) de-
pendent mechanism [60]. As a result, metformin inhibits hepatic 
gluconeogenesis and increases glucose consumption in muscles 
[61]. It is noteworthy that Foretz et al. also note the presence of an 
LKB1- and AMPK- independent pathway for the inhibition of he-

patic gluconeogenesis [62]. The main mechanisms involved in the 
glucose-lowering effect of metformin are presented in Scheme 2. 
 AMPK activation has a number of other beneficial effects, 
mainly referring to the cardiovascular system, such as reduction of 
inflammatory cell adhesion to endothelium, decrease in lipid accu-
mulation and proliferation of inflammatory cells, stimulation of 
gene expression responsible for cellular antioxidant defence and 
stimulation of enzymes responsible for nitric oxide formation [63]. 
These will be discussed in more detail below.  
 Administration of metformin leads to amelioration of hyperin-
sulinemia due to increased insulin sensitivity [64], i.e. indirect in-
duction of insulin receptor expression, and a decrease in blood glu-
cose level by inhibition of gastrointestinal absorption of glucose 
[56,65]. Metformin improves insulin resistance in several mecha-
nisms such as increased insulin receptor tyrosine kinase activity, 
enhanced glycogen synthesis, and an increase in the recruitment 
and activity of GLUT4 glucose transporters [66].  
 Metformin also increases the level of plasma glucagon-like 
peptide 1 (GLP-1) and the gene expression of the incretin receptor 
via peroxisome proliferator activated receptor-α (PPAR-α) 
[3,67,68], and in adipose tissue, promotes the re-esterification of 
free fatty acids and inhibition of lipolysis, contributing to reduced 
lipotoxicity [66]. 
 A meta-analysis of 10 randomized placebo-controlled studies 
examining the efficacy of metformin in lowering blood sugar level 
by Johansen found metformin monotherapy contributed to a reduc-
tion of fasting blood glucose (FBG) concentrations by 2.0 mmol/L 
compared with placebo, and by 0.9 % compared with HbA1c (gly-
cated hemoglobin) values. No significant difference was found 
between metformin monotherapy and placebo with regard to their 
effect on body weight [69]. 
 Numerous studies have demonstrated the beneficial effects of 
metformin in combination with other anti-diabetic drugs [54], such 
as insulin [70], sulfonylureas [71,72], thiazolidinediones [73,74], 
meglitinides [75], and α-glucosidase inhibitors [76]. For instance, 
coupling metformin with sulfonylurea provides superior glycaemic 
control than sulfonylurea monotherapy [77]. Another study, con-
ducted among non-insulin-dependent obese diabetics, found that 
metformin not only improved glycaemic control, but was also ef-
fective in ameliorating many risk factors for coronary heart disease, 
resulting in a less atherogenetic blood profile [70]. 
 A review the effects of thiazolidinediones and metformin on 
metabolic control in patients with type 2 diabetes by Seufert et al. 
[78] found that long-term monotherapy with thiazolidinediones 
appeared to be more effective than metformin itself. Moreover, 
thiazolidinediones were found to be more effective in promoting an 
increase in whole body insulin sensitivity and contributed to a 
greater reduction in concentrations of both plasma triglycerides and 
free fatty acids. Metformin was also more effective in promoting 
weight loss [78]. These results were confirmed by Phielix et al. 
[79]. Seufert and Urquhart [80] simultaneously conducted two 
clinical studies in which they evaluated the effectiveness of piogli-
tazone as add-on medication to metformin or sulfonylurea for re-
ducing post-load serum glucose levels. They found that two-year 
treatment with pioglitazone as an add-on to either failing metformin 
or sulfonylurea therapy improved post-load glucose excursions 
without any effect on insulin secretion. On the other hand, glucose 
excursions were not improved by gliclazide or metformin add-on 
therapy, despite increases in post-load insulin levels [80].  
 Apart from its use in diabetes treatment, Slama notes that met-
formin might be effective in the prevention of diabetes: Therapy 
with metformin significantly reduced the incidence of diabetes in 
subjects with IGT (impaired glucose tolerance) and high-normal 
fasting plasma glucose [81]. Moreover, health economic analyses 
imply that metformin treatment is cost-effective in the US and 
Europe [81].  
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METFORMIN’S EFFECTS ON LIPIDS 
 Apart from its hypoglycemic effect, metformin has been shown 
to be beneficial in improving lipid metabolism [67]. Both animal 
[82,83] and clinical studies [84,85] demonstrated that metformin 
might improve prognosis of fatty liver disease by reversing hepatic 
steatosis, also in models of acute and chronic alcohol exposure [86]. 
Reduced hepatic lipid content after metformin treatment is associ-
ated with an increase in both fatty acid oxidation and inhibition of 
lipogenesis, probably mediated by AMPK activation [67,82,87] 
which leads to alterations in the hepatic lipid metabolism [88]. Met-
formin activates AMPK, which consecutively induces the phos-
phorylation and inactivation of acetyl-CoA carboxylase (ACC). 
ACC constitutes an important rate-controlling enzyme for the syn-
thesis of malonyl-CoA, which is a critical precursor for the biosyn-
thesis of fatty acids and a potent inhibitor of mitochondrial fatty 
acid oxidation [89]. It has been found that in human hepatoma 
HepG2 cells, metformin enhances ACC phosphorylation and, as a 
result, induces the reduction of triglycerides levels. Intracellular 
triacylglycerol and cholesterol levels were also decreased. This 
phenomenon can be supported by increased oxidation of fatty acid 
and its decreased synthesis [67,90].  
 Several studies have  demonstrated that AMPK suppresses ex-
pression of lipogenic genes such as fatty acid synthase, S14 and 
ACC by direct phosphorylation of transcription factors such as 
carbohydrate response element binding protein (ChREBP) and he-
patocyte nuclear factor 4 (HNF4) [67,91,92]. It has been shown that 
HNF4-α might play a role in the mechanism of action of metformin 
on hepatic apolipoprotein B (ApoB) secretion by regulating the 
genes that control ApoB expression. The second mechanism in-
volves the reduction of lysophosphatidylcholine (lysoPC) level in 
hepatocytes [93]. 
 According to Li et al., metformin takes part in the regulation of 
lipogenesis gene expression by down-regulating sterol regulatory 
element-binding protein-1c (SREBP-1c) gene expression, and in-
hibits the proteolytic processing of SREBP-1c and its transcrip-
tional activity [94].  
 Recently, it has been proposed that metformin affects the proc-
ess of the biosynthesis of monounsaturated fatty acids from satu-
rated fatty acids through AMPK-mediated thyroid hormone recep-

tor 4 (TR4) phosphorylation and control of stearoyl-CoA desaturase 
1 (SCD1) expression [67,95].  
 Another mechanism of metformin action is the promotion of 
carnitine palmitoyltransferase I (CPT-1) expression and reduction 
of fatty acid-binding protein 4 (FABP4) expression, involved in 
palmitic acid induced lipid accumulation in cells. Further molecular 
studies have shown that metformin decreases FABP4 expression by 
promoting Forkhead transcription factor (FOXO1) nuclear exclu-
sion and subsequently restricting its activity [96]. 
 A review of several clinical studies examining the effects of 
metformin on total cholesterol (TC), TG, LDL-cholesterol, and 
HDL-cholesterol levels suggests that metformin has a favourable 
impact on lipid profile, including decreasing plasma TG and LDL 
cholesterol levels [97]. Mourão-Júnior [98] conducted a cohort 
study on type 2 diabetic patients with metabolic syndrome treated 
with insulin and metformin to evaluate their impact on glycaemic 
control, blood pressure, and lipid profile. The body mass index 
(BMI), waist circumference, lipid profile, HbA1C level, fasting 
blood glucose level, daily dose of NPH insulin (Neutral Protamine 
Hagedorn), systolic and diastolic blood pressure were measured 
before the start of metformin therapy and six months later. Follow-
ing the addition of metformin, glycaemic control significantly im-
proved, while total cholesterol, BMI and waist circumference were 
significantly reduced. However, the authors did not notice any ef-
fects on HDL cholesterol or blood pressure [98]. The results of a 
meta-analysis including 41 randomized-controlled trials demon-
strated that metformin treatment contributes to decreased plasma 
total cholesterol and LDL-cholesterol. In contrast to these findings, 
however, it was found to have no effect on HDL-cholesterol or TG 
in patients with type 2 diabetes [97]. 
 On the other hand, there are also other studies which do not 
confirm these positive effects, therefore no consensus about its 
beneficial effects on these parameters can be reached. For instance, 
a study by Tessier at al. comparing gliclazide and metformin in 
patients with type 2 diabetes mellitus with regard to the efficacy 
and lipid peroxidation profile found both drugs increased serum 
vitamin E and decreased the level of lipid peroxidation markers in 
LDL-cholesterol and HDL-cholesterol. Despite this, neither drug 
was associated with any changes in the standard lipid profile  [99].  

 

 

 

 

 

 

 

 

 

 

 

Scheme 2. Anti-diabetic role of metformin. 
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 Other studies examine combination of anti-diabetic therapy. In 
one carried out in rats, rosiglitazone and metformin were found to 
exhibit a hypolipidaemic effect when administered alone or in com-
bination. In comparison, nateglinide, when used alone, contributed 
to a significant increase in cholesterol and total lipid levels. This 
unfavourable effect was hidden when nateglinide was administered 
together with metformin [97].  
 This review of the most recent literature suggests that met-
formin has a favourable effect on the lipid profile, including de-
creasing plasma TG and LDL-cholesterol levels. However, the 
findings regarding its impact on HDL-cholesterol remain unclear. 
Scheme 3 summarizes up the main mechanisms of metformin ac-
tion on lipid profile. 

METFORMIN’S ACTION ON THE CARDIOVASCULAR 
SYSTEM 
 The results of the UKPDS trial showed that metformin signifi-
cantly reduced diabetes-related death by 42%, and also all-cause 
mortality by 36% [72]. Similar results have been obtained in other 
clinical or epidemiological studies [100,101,102]. It has been pro-
posed that these results might be not only due to better glycaemic 
control but also because of weight loss induction. Metformin treat-
ment represents a relevant element of an integrated lifestyle modifi-
cation-pharmacotherapy to prevent both type 2 diabetes and cardio-
vascular disease [103]. Therefore, metformin is regarded as a valu-
able drug on account of its anti-diabetic properties and beneficial 
effects on mortality in this population [67,104].  
 Potentially beneficial effects of metformin, including a reduc-
tion in the risk of cardiovascular disease, have been demonstrated 
not only in subjects with type 2 diabetes, but also with insulin resis-
tance, obesity, polycystic ovary syndrome, or HIV with fat redistri-
bution [105]. 
 A study of non-obese, non-diabetic, hypertensive patients 
treated with metformin revealed a significant decline in systolic and 
diastolic blood pressure. The favourable changes remained stable 
for two months after discontinuation of metformin administration 
[106]. However, it has to be stressed that this study has three major 
limitations: comparison of the results to the initial point of the 

study, lack of control group and a small number of subjects. A re-
view of other clinical trials did not identify any clinically relevant 
antihypertensive effect of metformin in humans [107,108]. Any 
discrepancies in the effect of metformin on blood pressure observed 
between these studies might result from differences in the study 
design and small number of patients. It must be borne in mind that 
as these studies are uncontrolled, they cannot establish a clear cause 
and effect relationship between administration of metformin  and 
effects on blood pressure. Schafers (2003) concluded that met-
formin does not exert any clinically significant antihypertensive 
effect, and that the vasoprotective effects of metformin appear to be 
independent of changes in blood pressure [109]. 
 The mechanisms of metformin action on cardiovascular system 
is not fully understood, but it has been proved that the drug pro-
motes myocardial preconditioning, reduces cardiomyocyte apopto-
sis during ischemia, enhances the adaptation of cardiomyocytes 
metabolism during ischemia, and protects against the development 
of heart failure [67]. 
 Animal studies have demonstrated that metformin treatment 
improves cardiac function and reduces the infarct size after a myo-
cardial infarction [110]. Another study examined myocardial toler-
ance to ischemia in rats with neonatal streptozotocin type 2 diabetes 
mellitus after metformin treatment. The findings indicate no differ-
ence between controls and metformin-treated animals with regard 
to infarct size or postischemic recovery of left ventricular function. 
In additions, the infarct size in the type 2 diabetes mellitus animals 
was significantly lower than that in the controls, indicative of the 
metabolic preconditioning in type 2 diabetes mellitus, a protective 
mechanism reducing the risk of heart failure [111]. 
 A rat model study proved that metformin inhibits cardiac hyper-
trophy in a mechanism based on the reduction of angiotensin II-
induced protein synthesis and enhanced phosphorylation of AMPK 
and eNOS (nitric oxide synthase 3), leading to higher NO produc-
tion [112]. In addition, metformin contributes to beneficial altera-
tions in cardiac metabolism during myocardial ischemic condition. 
This mechanism is based on the modification of the cardiac 
lipid/glucose oxidation ratio [67,113]. Another cardio-protective 
property of metformin is the ability to reduce the production of pro-

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Effects of metformin on lipid profile. 
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apoptotic proteins, with a simultaneous increase in anti-apoptotic 
proteins and decrease in the percentage of apoptotic cardiomyo-
cytes [114]. Furthermore, Gundewar and associates published a 
study in which they proved  that metformin significantly improves 
left ventricular function and survival in a murine model of heart 
failure [115]. 
 The molecular mechanism behind the favourable effect of met-
formin on cardiomyocytes is mainly based on improved myocardial 
cell mitochondrial respiration and ATP synthesis, which depends on 
the activation of AMPK and its downstream mediators, eNOS and 
PGC-1α (peroxisome proliferator-activated receptor-gamma coacti-
vator 1 alpha)[116,117].  
 Recent studies have thrown new light on the metformin admini-
stration in patients with a history of heart failure. The results of 
several trials have exhibited that the use of metformin in monother-
apy or in combination with sulfonylurea reduces the mortality and 
the morbidity in diabetic patients with heart failure in comparison 
to sulfonylurea monotherapy [118,119]. Metformin also decreases 
the mortality in a group of patients with atherothrombosis [120].  
 Several animal studies suggest that metformin may lower the 
prevalence of plaque formation in atherosclerosis [121,122]. In 
most studies, the beneficial effect of metformin on arterial lesion 
formation was not related to the level of plasma lipids, suggesting 
that the drug has a vascular effect, mainly based on the prevention 
of endothelial lesions and damage [103]. The main mechanisms for 
the atheroprotective effect of metformin involve inhibition of leu-
kocyte-endothelial interaction, foam cell formation, smooth muscle 
cell proliferation and platelet aggregation [123]. Ghatak et al. inves-
tigated the effects of metformin on atherothrombotic risk factors in 
experimental hyperlipidemic rats [124]. They found that treatment 
with metformin at a dose of 400 mg/kg improved overall lipid pro-
file and provided a significant reduction in oxidative stress. Met-
formin reduced also endothelial cell damage in ferrous chloride-
induced thrombosis in carotid arteries [124].  
 Metformin was also found to prevent micro- and macro-
vascular complications of diabetes mellitus by improving vascular 
endothelial functions [125] in an AMPK-dependent manner. By 
activation of AMPK, metformin reduces hyperglycaemia-induced 
mitochondrial reactive oxygen species (ROS) production (induction 
of Mn-SOD) and promotion of mitochondrial biogenesis (activation 
of the PGC-1α pathway) in HUVEC cells [126]. Animal studies 
have also confirmed that metformin elicits a cardioprotective effect 
in both non-diabetic and diabetic hearts. The diabetic hearts treated 
with metformin showed more organized and elongated mitochon-
dria and demonstrated a significant increase in phosphorylated 
AMPK and in PGC-1α expression in comparison with diabetic non-
treated hearts [127]. 
 In 2006, a research has been published regarding endothelial 
vascular reactivity in first line relatives of type 2 diabetic patients 
with metabolic syndrome and normal glucose tolerance. Contrary to 
placebo group, which did not show any significant changes in endo-
thelium-dependent and independent vasodilators, patients treated 
with metformin presented an improvement in the level of endothe-
lium-dependent FBF (forearm blood flow) of up to 111%, while 
independent factors showed no considerable changes. No differ-
ences were reported in patients who were concurrently on anti-
hypertensive drugs [128]. A study by Machado et al. [108] whose 
objective was to evaluate the effects of metformin on vascular reac-
tivity, haemostatic factors and glucose and lipid profiles in patients 
with type 2 diabetes found that metformin application was associ-
ated with protection against macrovascular diabetes complications, 
increased systolic carotid artery diameter and total systolic blood 
flow. Such effects may have some yet undiscovered potential in the 
treatment of complications connected with cerebral blood flow, 
which are very likely in patients suffering from type 2 diabetes 
[108]. 

 Recently, metformin has been found to have effects on the 
soluble intercellular cell-adhesion molecules (ICAMs) and the 
soluble vascular cell-adhesion molecules (VCAMs) [129]. It has 
been found that by lowering the plasma level of ICAM-1 and 
VCAM-1 metformin might decrease cardiovascular events. Impor-
tantly, metformin decreases ICAM-1 and VCAM-1 independently 
of its anti-diabetic properties [130]. Apart from ICAM-1 and 
VCAM-1, metformin decreases also PAI-1 (plasminogen activa-
tor inhibitor-1), vascular endothelial growth factor (VEGF) levels, 
soluble E-selectin, and vWF (von Willebrand factor) [130].  
 On the basis of the presented data, we may conclude that met-
formin exerts a beneficial influence on the cardiovascular system 
through complex activities on endothelial functions, ROS produc-
tion and cardiomyocyte functionality. 

EFFECTS OF METFORMIN ON COAGULATION AND FI-
BRINOLYSIS 
 Hypercoagulability, a tendency toward thrombosis or abnormal 
blood clotting which predisposes the patient to developing athero-
sclerosis, has a great tendency to occur in diabetic patients. Im-
paired fibrinolysis is often reported to be the greatest contributor to 
cardiovascular complications in diabetes mellitus [131]. It leads to 
occlusion of blood vessels that often results in lethal consequences, 
if no immediate action is taken to clear or dilate it [131]. 
 Studies of elderly type 2 diabetes treated with metformin 
showed a reduction of platelet factor 4 and beta-thromboglobulin. 
As these proteins are proved to be markers of platelet activation, 
such an outcome strongly suggests that metformin has platelet-
stabilizing potential, as does the fact that metformin has an antioxi-
dant effect on platelets. However, another study did not show any 
clear effect of metformin on platelets. It is difficult to determine 
whether either metformin influences physiological activity of plate-
lets directly or its effect on biochemical path alteration is not so 
clear [132]. Colwell notes that metformin prevents platelet aggrega-
tion [133]. Another study conducted in patients with insulin-
dependent diabetes mellitus showed that metformin decreased 
maximum aggregation of platelets induced by adenosine diphos-
phate (ADP) in vitro. The authors concluded that this effect was not 
dependent on other metabolic factors such as blood glucose, choles-
terol, triglyceride and fibrinogen levels [134]. Nevertheless, Nagi 
and Yudkin demonstrated that metformin does not exert any influ-
ence on platelet function [135]. Also Pentikainen et al. in a study on 
24 nondiabetic patients with hyperlipidaemia demonstrated that 
metformin had no effect on platelet counts and platelet aggregation 
induced in vitro by ADP, adrenaline, or collagen [136]. 
 The Diabetes Prevention Program Research Group investigated 
that diabetic patients are generally characterized by increased level 
of fibrinogen in comparison with multi-ethnic populations. What is 
important to mention, in this study, fibrinogen did not correlate 
significantly with changes in glucose, HOMA-IR (insulin resistance 
index) or demographic variables. The overall level of fibrinogen 
reduction in patients who underwent metformin therapy was mod-
est, yet significant (0.3%), whereas changing to an intensive life-
style resulted in reductions of up to 2.0%. Increased level of fi-
brinogen has been proved in prospective studies to predispose the 
subject to the development of type 2 diabetes [137]. Other studies 
also have suggested either a small fall or no change in fibrinogen 
levels to be associated with metformin use [132]. 
 Gathak et al. [124] report that pre-treating rats with diverse 
doses of biguanide leads to prolongation of APTT (activated par-
tial thromboplastin time) while the greatest prolongation was 
observed with 300 mg/kg, and a dose-dependent reduction with 400 
mg/kg and 500 mg/kg respectively. The most effective dose for this 
parameter was assessed at 300 mg/kg. In comparison with rats 
without induced hyperlipidaemia, none of the groups were reported 
to present any significant difference in the fibrinogen level [124]. In 
another study metformin-fenofibrate combination treatment was 
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compared to fenofibrate monotherapy in the case of the global ef-
fect on haemostasis. The authors found that metformin tended to 
increase INR, prolong the partial thromboplastin time (PT) and 
reduce the level of von Willebrand factor  (vWF) and factor VII 
activity [138]. 
 Nevertheless, there are various alternative ways in which met-
formin affects clot structure, for example by reduction of cross-
linking mediated by FXIII which as a consequence, influences the 
process of fibrinolysis. Despite the predominant use of metformin 
in diabetic patients, the ability to penetrate clots has also been dem-
onstrated in non-diabetic obese patients who were subjected to met-
formin therapy [139,140]. Metformin reduces on the activity of 
FXIII and the levels of FXIII A and B subunits in plasma after 12 
weeks of treatment compared to placebo. In addition, the authors 
report that metformin altered fibrin structure/function by interfering 
with the processes involved in fibrin polymerization and lateral 
aggregation [140]. The effects on clot stabilization (fibrin crosslink-
ing) and activity of FXIII are explained by the effects of metformin 
on the formation of advanced glycation end products [141]. There is 
also one study indicating that metformin use is associated with a 
reduction in coagulation FVII activity levels [142].  
 Many studies have reported metformin to have fibrinolytic po-
tential which contributes to hindering coagulation processes. It is 
commonly known that imbalances in clot formation and lysis have 
a significant influence on developing cardiovascular diseases. Nu-
merous studies on this subject have shown that the main factor with 
positive impact on listed processes is the reduction in the concentra-
tion of PAI-1. Plasmin, the enzyme formed as a result of interaction 
of tissue plasminogen activator (tPA) and urokinase-type plasmino-
gen activator (uPA), has been shown to mediate degradation of 
fibrin clots. The action of these activators is determined by specific 
inhibitors (PAIs), of which PAI-1 is considered to have the most 
potent regulative effect on tPA and uPA in humans [143]. Increased 
PAI-1 level is one of the major risk factors of obesity and metabolic 
syndrome, as well as various diseases, especially atherosclerosis. 
Several studies in type 2 diabetic subjects have reported that the use 
of metformin is associated with an increase in fibrinolysis in both 
Caucasian [144,145] and Asian subjects [135,146]. Therefore, dia-
betic patients treated with metformin are less likely to develop these 
ailments. Maintaining metformin doses of around 2550 mg daily 
leads to a reduction of PAI-1 levels from a mean of 200.7 ng/mL at 
baseline to 173.7 ng/mL within 12 weeks [147].  
 Interesting fact is that PAI-1 level correlates with of plasma 
insulin level, which implies a relationship between PAI-1, insulin 
resistance and hyperinsulinemia. Metformin, which is used to de-
crease insulin level and diminish insulin resistance, additionally 
controls reduction of PAI-1 [148]. Further support for the effect of 
metformin on PAI-1 levels comes from a randomized, double blind 
trial in 27 patients with non-insulin dependent diabetes mellitus. 
Treatment with metformin contributed to a significant decrease in 
PAI-1 concentrations when compared with baseline values or pla-
cebo treatment [135].  
 The ability of metformin to reduce PAI-1 levels not only has 
practical implications regarding fibrin: lower PAI-1 levels were 
found to be present in alcohol-induced liver injury in a mouse 
model. Acute alcohol ingestion generates hepatic PAI-1 mRNA, 
peaking 2 and 12 hours after ethanol consumption. Interestingly, 
metformin had no effect on PAI-1 expression in alcohol-free mice 
[88]. The results of this study could potentially refer to humans 
with alcohol use disorders and therapy of complications caused by 
excessive expression of the gene encoding PAI-1, with use of 
biguanides. 
 In another study, Machado et al. evaluated the effects of met-
formin on haemostatic factors. They found that the improvements 
in fibrinolysis after metformin treatment was due to the increase in 
plasminogen levels. Interestingly, the authors indicated that met-

formin leads to an unexpected decrease in another marker of fibri-
nolysis — t-PA activity [108]. In contrast to these results, an in-
crease [132] or no effect [135,146] in t-PA activity was observed 
during metformin therapy. 
 To summarize, the results of several experimental and clinical 
studies highlight the multidirectional effect of metformin on hae-
mostasis, including platelet and plasma haemostasis with both co-
agulation and fibrinolysis system. 

METFORMIN’S EFFECTS ON POLYCYSTIC OVARY 
SYNDROME 
 Polycystic ovary syndrome (PCOS) is one of the most common 
endocrinological disorders, affecting up to 4-12% of women and 
has a highly unpleasant impact on female sexuality. It is usually 
manifested by hyperandrogenism, anovulation, and infertility, with 
incidents of irregular menstrual cycles, acne and hirsutism. One of 
the most common reported complaints of women with polycystic 
ovary syndrome is anovulatory infertility. Such women are also at 
high risk of developing cardiovascular diseases [149].  
 Metformin was introduced as a hypoglycaemic agent for me-
dicinal purposes in order to determine the extent to which hyperin-
sulinemia influences the pathogenesis of the PCOS. Initial results of 
the studies aroused a tremendous amount of interest as it seemed to 
be a breakthrough. However, subsequent randomized clinical trials 
and numerous meta-analyses have diminished earlier enthusiasm. 
Currently, it is obvious that more work is required to establish the 
role of metformin with particular regard to the mode of prevention 
and treatment of various gestational or long-term medical condi-
tions [150]. 
 There are certain effects that have been reported in relation to 
metformin in PCOS patients, for example restoring ovulation, 
weight loss, lowering levels of circulating androgen, diminishing 
the frequency of abortion and reducing the risk of developing gesta-
tional diabetes mellitus (GDM). Further studies have shown that the 
addition of mentioned biguanide to the regime of ovarian stimula-
tion in in vitro fertilization (IVF) enhances the outcome of preg-
nancy [150]. 
 Metformin, as the first drug which causes sensitization to insu-
lin (ISD), played a pioneering role in PCOS treatment to determine 
the mechanism of insulin resistance in the syndrome pathogenesis. 
Velazquez and colleagues reported a noteworthy progress in men-
strual regularity and decline in circulating androgen levels, as well 
as a notable loss of body weight which confounded their findings 
[151]. Lord and colleagues [152] concluded consequently that met-
formin was an effective drug to enhance ovulation in PCOS women 
and that it was reasonable to use it as a first-line therapy. Neverthe-
less, they strongly accentuated that it should be applied simultane-
ously with a change in lifestyle. They involved 7 studies engaging a 
total of 156 PCOS patients who underwent therapy with metformin, 
of whom 72 (46%) responded with ovulation; 154 either received 
placebo or no therapy, and of these, 37 (24%) demonstrated recur-
rence of ovulation [152]. Lord and associates [149] claim that met-
formin is sufficient for inducing ovulation in patients with PCOS. 
However, it has to be taken into account that meta-analysis is valid 
only if the same general population is represented in all the ana-
lysed studies [149]. Furthermore, studies carried out by Ghandi and 
colleagues [153] showed that metformin appears to have a consid-
erable influence on ovulation rates, which is 30%. Moreover, in 
comparison with the baseline, treatment with metformin appeared 
to show a significant reduction in body mass, waist circumference, 
serum luteinizing hormone (LH) and triglyceride level. Treatment 
with this biguanide also resulted in a reduction in total testosterone 
and cholesterol levels but the differences were negligible [153]. 
 Another aspect of polycystic ovary syndrome is that affected 
women have a tendency to show much higher risk of abortion com-
pared with healthy women. The risk has been assessed at 30-50% 
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[154]. However, the exact mechanism of this process is not yet 
clearly established and the extent to which insulin resistance may 
play a role still remains unclear. Velazquez and colleagues [148] 
report that by its significant impact on decreasing fasting insulin 
and reaction to glucose level in hyperinsulinemic PCOS patients, 
metformin diminishes the effects of hyperinsulinemia-driven hy-
perandrogenism and can reverse endocrinopathy to an extent by 
which women to return to regular menstrual cycles, reversal of 
infertility, and spontaneous pregnancy (Scheme 4) [148].  
 Metformin is considered to enhance perifollicular vasculariza-
tion and ovarian artery impedance, which hypothetically can poten-
tially return ovarian follicular development to physiological levels 
[150,155]. What is more, observational studies have implied that 
metformin therapy reduced the probability of miscarriage among 
women who suffer from polycystic ovary syndrome [156]. On the 
other hand, a meta-analysis by Palomba and colleagues' claimed 
that metformin had no advantageous influence on the miscarriage 
rate [157].  
 To summarize, metformin has certain effects on patients with 
PCOS, such as restoration of ovulation, weight loss, lowering levels 
of circulating androgen and diminishing the frequency of abortion, 
However, the other mechanisms of metformin action need further 
examination. 

ANTI-INFLAMMATORY PROPERTIES OF METFORMIN 
 Yuan et al. [158] also report that metformin in lipopolysaccha-
ride (LPS)-induced hepatic injury in D-galactosamine (D-Gal)-
sensitized mice significantly reduced TNF-α (tumour necrosis fac-
tor) level and markers of hepatic efficacy: alanine aminotransferase 
(ALT), aspartate aminotransferase (AST) serum levels [158]. 
These changes were accompanied by improved histological altera-
tions in liver sections, decreased myeloperoxidase (MPO) activity, 
reduced malondialdehyde (MDA) content in liver homogenates and 
increased survival rate of experimental animals. Metformin could 
also provide therapeutic benefits in endotoxin-induced hepatic in-
jury, suggesting its pharmacological potential in inflammation-base 
disorders [158]. Elsewhere, metformin was found to have an influ-
ence on dimethylarginine (ADMA) metabolism in inflammation 
caused by lipopolysaccharide (LPS)/D-galactosamine (D-GalN) 
treatment [159]. 

 Studies performed on human monocytes pre-stimulated with 
LPS and oxidized LDL showed that metformin addition resulted in 
reduced production of TNF and TF (tissue factor) [160]. Elsewhere, 
reduced production of inflammatory cytokines such as TNF-α, 
MCP-1 (monocyte chemoattractant protein-1), IL-1β (interleu-
kin-1 β), MIP-1α (Macrophage Inflammatory Proteins-1α), IL-
6, leptin, and IL-18 was observed in endotoxin-induced uveitis in 
rats after treatment with metformin [161]. Another laboratory study 
showed that macrophages stimulated with LPS and treated with 
metformin exhibited decreased production of TNF-α, IL-6, and 
IFN-γ (interferon-γ) in a dose-dependent manner [162]. Metformin 
was found to decrease IL-1β induced activation and nuclear translo-
cation of nuclear factor κB (NF-κB) in smooth muscle cells [125]. 
What is more, metformin decreases IL-1β induced activation of 
proinflammatory phosphokinases Akt (protein kinase B), p38 (mi-
togen-activated protein kinase) and Erk (extracellular-signal-
regulated kinases), however, it does not affect Class I Phosphoi-
nositide 3-kinases (P-I-3 kinase) activity [125].  
 It has been proved that metformin inhibits mammalian target of 
rapamycine (mTOR) signalling which leads to the inhibition of 
mitogen-induced proliferation of B and T cells and reduction of IL-
1 and TNF-α levels, therefore it has been implied that metformin 
might be used in rheumatoid arthritis treatment [163,164].  
 Metformin has also been shown to decrease the pro-inflam-
matory cytokine macrophage migration inhibitor factor (MIF) in the 
plasma and monocytes from obese patients when compared to un-
treated patients [165,166]. As reported by Shi et al., metformin 
decreases serum levels of CRP in patients with type 2 diabetes mel-
litus [167]. An in vivo study by Chakraborty et al. [168] in which 
different stress and inflammatory parameters were evaluated in 
diabetic patients found that ROS generation and advanced oxidation 
protein products were reduced by metformin treatment compared to 
placebo. The findings indicate that metformin administration also 
enhanced total thiol and nitric oxide level [168]. 
 There also have been studies indicating the anti-inflammatory 
properties of AMPK which [169] suggest that metformin may also 
play an important role in targeting the inflammation present in the 
microenvironment of cancer tissues. Xavier et al. suggest that inhi-
bition of angiogenesis by metformin might also contribute to the 
reduction of tumour growth [170]. 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4. The role of metformin in PCOS. 
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 Recent studies have also reported that AMPK might have an 
impact on pain in animal models of neuropathy and acute nocicep-
tion [171,172]. Russe et al. [173] investigated the impact of AMPK 
in inflammatory nociception and found that metformin activation of 
AMPK results in analgesic effects similar to those observed with 
ibuprofen. The authors conclude that the mechanisms of this activ-
ity are based on regulation of the AMPKα2 subunit of the kinase in 
sensory neurons and immune cells [173]. Anti-inflammatory prop-
erties of AMPK have also been demonstrated in a study which re-
vealed that AMPK activation is associated with decreasing IL-6 and 
IL-8 concentrations in adipose tissue of humans and in the skeletal 
muscles and muscle cells of rats [174]. 
 Bearing in mind the anti-inflammatory properties of metformin 
and its several possible mechanisms of action, we may anticipate 
greater scientific interest in this field and novel clinical indications 
for metformin use. 

METFORMIN AND AGEING 
 It is extremely important to emphasize that through induction of 
AMPK, metformin might present anti-ageing properties. It has been 
established that the AMPK signalling pathway is involved in the 
regulation of lifespan as its responsiveness deteriorates with ageing 
[3,175]. Apart from its effect on AMPK, metformin also exerts an 
influence on cellular metabolism and other age-related transcription 
factor pathways [3]. It also has been stated that the IGF-1 signalling 
pathway is involved in the mechanism of ageing. An animal study 
by Anisimov et al. found that the life-prolonging effects of calorie 
restriction may be due to falling IGF-1 levels [176]: metformin 
treatment slightly decreased food consumption, and slowed the rise 
in blood glucose and triglyceride levels. Most importantly, met-
formin prolonged the mean life span by 8% and the maximum life 
span by one month in comparison with the control mice group 
[176].  
 Scientific databases contain several articles on the role of met-
formin in the process of ageing. For instance, Na et al. [177] re-
vealed that metformin has the potential to inhibit age- and oxidative 
stress-induced centrosome amplification (a hallmark of cancer) in 
Drosophila intestinal stem cells. The researchers confirm that met-
formin exerts this effect through down-regulation of AKT/target of 
rapamycin (TOR) activity [177]. A study conducted on nematodes 
has shown that metformin lengthens life span, improves locomotion 
and delays the occurrence of lipofuscin pigment, which is an indica-
tor of cell ageing [175]. The next study performed on male rats with 
Huntington’s disease has proved the effect of metformin on life 
prolongation [178].  
 In a most recent randomized, single-blind, placebo-controlled 
trial, it has occurred that, compared with baseline, metformin sig-
nificantly improved metabolic parameters and insulin sensitivity, 
increased Sirtuin-1 (SIRT1) gene/protein expression, which is asso-
ciated with metabolism and longevity, elevated mTOR gene expres-
sion, and modified the plasma N-glycan profile. Also, metformin 
exerted favourable effects on these factors in comparison with pla-
cebo [179]. The results of this first study on the anti-ageing proper-
ties of metformin conducted in humans show that metformin modu-
lates effectors of pathways that regulate longevity in animal models 
[179].  
 Recent studies have examined the potential application of met-
formin for the treatment of Alzheimer's disease [180], amnestic 
mild cognitive impairment [181] and Parkinson's disease [182]. 
Considering the presented results, future interest in the use of met-
formin in the treatment of neurodegenerative diseases will undoubt-
edly grow. 

ANTI-CANCER PROPERTIES OF METFORMIN 
 A number of in vitro, animal and clinical studies have demon-
strated that metformin has an overall favourable effect on cancer; 

however, the precise molecular mechanism of this anti-cancer activ-
ity is still not fully understood.  
 As reported above the main mechanism of metformin action is 
LKB1-based AMPK activation [183]. LBK1 is a tumour suppressor 
which constitutes one of the most commonly mutated genes in lung 
and pancreatic cancers and melanomas [184,185]. It has been stated 
that the absence or decreased expression of LKB1 in human breast 
carcinomas corresponds to higher mortality and poor prognosis 
[186]. In addition, metformin through AMPK activation leads to the 
inhibition of lipogenesis in malignant lesions [187,188], which as a 
consequence, might result in inhibition of the activity and expres-
sion of certain oncoproteins [189,190].  
 Another mechanism of metformin action is inhibition of the 
mammalian target of rapamycin (mTOR) through decreasing the 
levels of IGF-1 or inhibiting AKT by the AMPK-independent 
pathway [191,192]. Furthermore, by activation of the LKB1-
mediated AMPK pathway metformin has been shown to inhibit 
mTOR and protein synthesis [193]. It is important to stress the im-
portance of the mTOR signalling pathway, as it is a crucial factor in 
the regulation of cellular energy homeostasis [194,195], cell growth 
and tumorigenesis [196,197]. It has been reported that activation of 
mTOR correlates with cancer progression, adverse prognosis and 
resistance to chemotherapy [196,197].  
 Apart from the listed mechanisms, metformin’s anti-cancer 
effect may result from the fact that it decreases the production of 
ROS independently of AMPK activation [198]. Metformin is also 
regarded as an ‘antimetabolite drug’ since several studies have re-
ported that the drug alters folate metabolism in several types of 
cancer cell lines. Clinical studies confirm this fact, as an increased 
homocysteine and decreased folate and B12 vitamin levels have 
been reported in patients with type 2 diabetes mellitus treated with 
metformin [199,200]. In addition, it is important to point out that 
metformin’s anti-cancer properties are also associated with its abil-
ity to reduce risk factors such as obesity, hyperinsulinemia and 
insulin resistance [7,201,202].  
 Another mechanism by which metformin exerts anti-cancer 
effects, independent of AMPK, is by decreasing the expression of 
the oncoprotein HER2 in human breast cancer cells via the direct 
inhibition of p70S6K1 activity [203]. Ben Sahra et al. showed also 
that metformin exerts a anti-neoplastic effect through the induction 
of cell-cycle arrest via decreasing cyclin D1 protein expression 
[204] and increasing REDD1 expression in a p53-dependent man-
ner [67,205]. Metformin has also been shown to promote the death 
of cancer cells by promoting apoptotic pathways via caspase-
dependent and caspase-independent mechanisms [206,207]. An-
other study reported that metformin enhances apoptosis of prostate 
cancer cells in a p53-dependent manner in the presence of 2-
deoxyglucose [208]. It has also been stated that metformin de-
creases the production of tumour necrosis factor alpha (TNFα) in 
human monocytes, probably in AMPK-independent manner. As 
TNFα is involved in maintaining the process of chronic inflamma-
tion which sustains the basis of cancer progression, metformin may 
thus contribute to prevention of tumour development. Scheme 5 
presents selected mechanisms behind the anti-cancer action of met-
formin [160]. 
 A number of in vitro and preclinical studies have demonstrated 
that metformin has beneficial effects on various cancer cell lines 
[56]. For example, metformin may improve the efficacy of various 
chemotherapeutics and aids in overcoming chemotherapy resistance 
[74,78]. The results of several studies have revealed that metformin 
enhances the sensitivity of endometrial cancer cells to cisplatin and 
paclitaxel [209,210], increases the antiproliferative effects of cis-
platin [211] and overcomes the resistance of trastuzumab in animal 
model of breast cancer [212]. A series of scientific works also out-
lines anti-proliferative properties of metformin. Indeed, metformin 



Is Metformin A Perfect Drug? Current Pharmaceutical Design, 2017, Vol. 23, No. 00    11 

has been shown to inhibit the proliferation of human lung cancer 
[213], ovarian [214] and hepatocellular carcinoma cell lines [215]. 
 A number of studies have evaluated the effects of metformin on 
gastrointestinal cancer [216-218]. In 2011 Zhang et al. presented 
the results of a meta-analysis on the relationship between met-
formin treatment in patients with type 2 diabetes and colorectal 
cancer [219]. Metformin treatment was associated with a signifi-
cantly lower risk of colorectal neoplasm among diabetic patients 
[219]. Similarly, a 2011 retrospective cohort study including 
800,000 patients from the Taiwanese National Health Insurance by 
Lee at al. [217] found interaction between metformin treatment and 
overall beneficial effects such as decline in incidence of total can-
cer, colorectal cancer, liver cancer and pancreatic cancer [217]. In 
contrast, a study of Bodmer [220] found that treatment with met-
formin was not associated with a decreased risk of developing colo-
rectal cancer among diabetic patients [220]. The results of a recent 
meta-analysis of currently-available observational studies suggest 
that metformin administration appears to be associated with a re-
duced risk of pancreatic cancer in patients with type 2 diabetes 
mellitus [221]. However, it has been suggested that the results of a 
meta-analysis should be interpreted with caution mainly due to the 
fact that most of the studies were observational retrospective studies 
using historical medical or insurance data [56]. Similar findings 
concerning the effectiveness of metformin on gynaecologic cancers, 
including ovarian, breast and endometrial cancers are presented in 
Table 1. 
 Despite being a well-tested anti-diabetic medication, metformin 
certainly has much more to offer, especially in the field of oncol-
ogy. A number of clinical studies have indicated its promising anti-
cancer properties; however, further studies are needed to fully es-
tablish the advantages of metformin in this regard. 

PROMISING POTENTIAL OF METFORMIN PRO-
DRUGS/DERIVATIVES 
 As noted above, huge inter- and intra-individual differences 
exist in the pharmacokinetics and clinical response to metformin, 

and the absorption of the drug from gastrointestinal tract is slow 
and variable. Therefore, there is a need to develop novel approaches 
in order to improve the bioavailability of metformin. Various for-
mulation strategies, for example extended-release formulations, has 
been proposed for this end [230].  
 To illustrate this, Corti et al. prepared complexes between met-
formin hydrochloride and triacetyl-β-cyclodextrin and evaluated 
their suitability for the development of a sustained-release dosage 
form of metformin [231]. The authors found that the actual effec-
tiveness of applied cyclodextrin as a carrier for obtaining a slow-
dissolving form of metformin depends on the preparation technique 
of these complexes. While only one minute was needed to dissolve 
100% of the pure drug, three, seven, 40, 120 and 420 minutes were 
needed for physically mixed, sealed-heated, kneaded, co-ground 
and spray-dried products, respectively [231].  
 Huttunen and Rautio team [230] propose the use of pro-drugs as 
a way of improving the oral absorption of metformin. A pro-drug is 
a pharmacologically-inactive derivative of drug which is converted 
into an active compound under biological conditions. Generally, 
pro-drugs are applied in order to improve the unfavourable phys-
icochemical, pharmaceutical or biopharmaceutical properties of a 
parent drug [230]. 
 The scientists synthesized several novel bio-reversible sulfenyl 
guanidine (N-S) pro-drugs (Table 2, I-II) of metformin with im-
proved oral absorption were produced [230], and which were stable 
in aqueous buffer solutions (> 80 h) at pH 4.0 and 7.4. In vitro bio-
conversion studies of pro-drugs showed that pro-drug II released 
metformin molecule extremely quickly with half-lives ranging from 
four seconds to 40 minutes, whereas the prodrug I released hardly 
any metformin for 24 hours. In vivo studies of pro-drugs I and II 
found that both pro-drugs were easily transformed into the active 
drug after intravenous administration. This enhanced oral absorp-
tion promoted the bioavailability of metformin from 43% to 65% in 
rats [230]. Pharmacokinetic studies revealed that pro-drug I showed 
a sustained-release profile and longer plasma half-life for met-
formin after oral administration [232]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5. Schematic diagram of selected proposed mechanisms of anti-cancer action of metformin. 
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 Huttunen et al. presented a synthesis of other (III-VI, Table 2) 
consecutive metformin pro-drugs [233] which were characterized 
by increased lipophilicity. In vitro studies across a Caco-2 cell 
monolayer indicated that the novel pro-drugs expressed good per-
meability properties, with the octylthio (V) pro-drug being the most 
efficient [233]. The results of preliminary in vivo studies of pro-
drug V were encouraging, because this pro-drug was found to be 
absorbed mainly intact after oral administration [233].  
 Huttunen’s team synthesized a series of sulphonamide pro-
drugs (VII-IX, Table 2) [234]. Subsequently, they evaluated the 
bioconversion of these prodrugs by glutathione-S-transferase (GST) 
in in vitro models [234]. The results of the study revealed that pro-
drug IX was bio-activated by GST and released metformin in a 
quantitative manner, whereas the two others were enzymatically 
stable, which suggests that pro-drug IX has the potential to increase 
the oral absorption of metformin [234]. 
 Metformin has also been used as a substrate for further synthe-
sis of novel derivatives with promising properties. For instance, 
Koh et al. [235] synthesized a novel metformin derivative (X) 
(HL010183) and a series of metformin salts which exerted more 
potent inhibitory effects on the proliferation and invasiveness of 
Hs578T breast carcinoma cells than metformin: XI-metformin 
gamma-aminobutyric acid (GABA) salt, XII-metformin pregabalin 
salt and XIII-metformin gabapentin salt (Table 2) [235]. 

CONCLUSION 
 Metformin is an effective oral anti-diabetic drug with an estab-
lished role in the treatment of type 2 diabetes. Recent studies have 

confirmed that metformin has a key role in several glucose-
lowering mechanisms, including inhibiting hepatic gluconeogenesis 
and intestinal glucose absorption, increasing insulin sensitivity, and 
modulating of incretin axis (increase in glucagon-like peptide 1). 
 Despite possessing several advantageous pharmacological 
properties, the administration of metformin is associated with sev-
eral problems including slow and incomplete absorption due to its 
physicochemical and pharmacokinetic properties, as well as its 
intra-subject and inter-subject variability in response to the drug. It 
has been established that metformin is a substrate for OCTs and 
MATE transporters, which determines its oral absorption, distribu-
tion, hepatic uptake, elimination (renal excretion) and biochemical 
effects in humans [13]. It has been found that promoter variants of 
both types of transporters might affect the pharmacokinetics and 
pharmacodynamics of metformin. However, it is necessary to be 
aware that until recently, its pharmacokinetic properties and the 
involvement of transporters were poorly understood.  
 Apart from anti-diabetic properties, there is also growing body 
of evidence indicating that metformin exerts a favourable effect on 
body weight, lipids, and cardiovascular risk associated with type 2 
diabetes. Recent publications indicate that the potential spectrum of 
metformin beneficial effects has expanded to the treatment of poly-
cystic ovarian syndrome, diabetic nephropathy and metabolic syn-
drome. Some scientists also highlight the anti-inflammatory and 
anti-ageing properties of metformin.  
 Currently available evidence suggests that metformin may play 
an important role not only in the treatment of certain types of can-

Table 1. Selected clinical studies evaluating the effects of metformin on gynaecologic cancers. 

Cancer	   Study 
type/design	  

Total partici-
pants	  

Measured outcome	   Results/conclusions/Remarks	   Refs.	  

Breast	   Retrospective 
cohort study	  

68,019	   Risk of breast cancer in post-
menopausal diabetic women	  

Lower breast cancer incidence among patients 
using metformin, slightly higher risk in women 

receiving other diabetic medications in comparison 
with non-diabetic women	  

[220]	  

Breast	   Prospective 
study	  

39	   Effects of metformin on Ki67 
scores in tumour tissue	  

Metformin significantly decreased the mean per-
centage of cells staining for nuclear antigen Ki67 

compared with controls	  

[221]	  

Breast	   Meta-analysis 	   418,54	   Risk of breast cancer with met-
formin treatment in postmeno-

pausal diabetic women	  

Protective role of metformin on the incidence of 
breast cancer comparing to non-users 	  

[222]	  

Breast	   Retrospective 
study	  

1,983	   Breast cancer-specific mortality 
of metformin users vs. nonusers 

in patients with human epidermal 
growth factor receptor positive 

breast cancer	  

Metformin usage in diabetic patients was associated 
with decreased breast cancer-specific mortality	  

[223]	  

Endometrial	   Cohort study	   1,241	   Prevention of endometrial cancer	   No association between metformin use and risk of 
endometrial cancer was found	  

[224]	  

Endometrial	   Cohort study	   1,495	   Survival among patients with 
endometrial cancer	  

Non-metformin users had 1.8 times worse recur-
rence-free survival and 2.3 times worse overall 

survival after adjusting for age, stage, histology and 
treatment	  

[225]	  

Ovary	   Case control 
study	  

10,781	   Prevention of ovary cancer	   Long-term use of metformin decreased ovarian 
cancer risk	  

[226]	  

Ovary	   Case control 
study	  

215	   Survival of patients with ovary 
cancer	  

Metformin use was associated with improved over-
all survival.	  

[227]	  

 



Is Metformin A Perfect Drug? Current Pharmaceutical Design, 2017, Vol. 23, No. 00    13 

cers but also in cancer prevention. However, further well designed, 
placebo controlled and randomised clinical studies for the evalua-
tion of the effect of metformin on cancer tissue are needed to con-
firm its anti-neoplastic properties. 
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