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Linköping University
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Abstract—Virtual Private LAN Service (VPLS) is a VPN tech-
nology that connects remote client sites with provider networks
in a transparent manner. Session key-based HIPLS (S-HIPLS) is
a VPLS architecture based on the Host Identity Protocol (HIP)
that provides a secure VPLS architecture using a Key Distri-
bution Center (KDC) to implement security mechanisms such
as authentication, encryption etc. It exhibits limited scalability
though. Using multiple distributed KDCs would offer numerous
advantages including reduced workload per KDC, distributed
key storage, and improved scalability, while simultaneously
eliminating the single point of failure of S-HIPLS. It would
also come with the need for optimally placing KDCs in the
provider network. In this work, we formulate the KDC placement
(KDCP) problem for a secure VPLS network as an Integer Linear
Programming (ILP) problem. The latter is NP-hard, thereby
suggesting a high computational cost for obtaining exact solutions
especially for large deployments. Therefore, we motivate the use
of a primal-dual algorithm to efficiently produce near-optimal
solutions. Extensive evaluations on large-scale network topologies,
such as the random Internet graph, demonstrate our method’s
time-efficiency as well as its improved scalability and usefulness
compared to both HIPLS and S-HIPLS.

Index Terms—VPLS, VPN, HIP, Security, Industrial Internet

I. INTRODUCTION

The industrial world has taken notice of the widespread
deployment of the Industrial Internet of Things (IIoT). Cyber-
physical systems (CPS) can be used in smart industries to im-
prove the monitoring and control abilities of physical systems
using modern information communication technologies (ICT)
(e.g., manufacturing equipment and assembly lines) [1]–[3].
The backbone of industrial systems is comprised of a large
number of low-cost sensors as well as smart devices.

By 2030, the IIoT may be valued at 7.1 trillion dollars
in the United States and over 1.2 trillion dollars in Europe.
Poorly secured design in IIoT environments paves the way for
malware to launch destructive cyber-attacks, such as the Mirai
attack in 2016, in which hundreds of thousands of connected
devices were infected. Moreover, Consumer IoT isn’t the only
target of threats. In reality, industrial environments have been
targeted in the past, with catastrophic results (e.g., Industroyer
and Stuxnet). As a result, it is clear that IIoT would never be
able to reach its full potential without security [4]–[6].

The evolution of communication networks has paved the
path towards advanced networking concepts. Among these
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technologies, the virtual or virtual private network (VPN)
concept is considered one such early advancements in com-
munication technologies. The origins of VPNs can be traced
back to 1996, when Microsoft employees deployed a point-to-
point tunneling protocol over their intranet. Since then, VPNs
have become popular and widely used in many use cases,
such as allowing remote workers to access internal networks,
connecting remote branches with head offices, and logically
partitioning internal networks. In general, VPNs offer benefits
such as bypassing restrictions enforced by Internet Service
Providers (ISPs) and governments, eliminating geographic
restrictions, protecting users and user traffic from snooping
type attacks, protecting anonymity by hiding the user’s actual
location, and encrypting all user traffic [7].

Among the various VPN solution, VPLS (Virtual Private
LAN Service) is one of the widely used types of VPN. VPLS
is a Layer 2 provider-provisioned VPN, and it can provide
Ethernet multi-point to multi-point connectivity over an IP or
Multiprotocol Label Switching (MPLS) network. Therefore,
VPLS allows the Local Area Networks (LAN) to extend across
multiple customer sites and appear as a single Ethernet LAN
network [8]. Since VPLS shares a single broadcast domain,
it offers several benefits, such as low communication latency,
low implementation and maintenance cost, the ability to handle
legacy protocols in addition to IP, and the ability to build
secure and homogeneous networks rapidly. The popularity
of VPLS is further supported by the fact that technology
giants such as Cisco, Juniper, Samsung, Nokia, and Vodafone
are working and conducting training on VPLS and related
technologies [9]–[11]. It is estimated that the global market
share of VPLS will reach $2,420 million by 2025, growing at
a Compound Annual Growth Rate (CAGR) of 19.5% between
2020 and 2025 [12].

In addition, VPLS has gained immense popularity as a
viable VPN solution for securely and transparently intercon-
necting multiple client LANs in industrial environments and
novel CPSs on the Industrial Internet. VPLS is an especially
ideal solution for interconnecting SCADA (Supervisory Con-
trol and Data Acquisition) industrial control system devices,
which sometimes do not support higher layer protocols such
as IP. VPLS’s salient features such as protocol independence,
multi-point to multi-point mesh connectivity, robust security,
low operational cost are essential to supporting future CPS
applications.
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Moreover, the popularity of CPSs brings requirements such
as high security, enhanced scalability, and optimal utilization
of network resources. Specifically, the increasing number of
connected devices and the introduction of new CPS applica-
tion services will demand improved security. VPLS solutions
should accommodate secure connectivity for this expected
traffic growth, which is imminent for future CPSs.

Several secure VPLS solutions have been proposed to im-
prove the security and scalability of existing VPLS networks.
The first secure VPLS architecture was proposed as Host
Identity protocol enabled VPLS, or HIP-based virtual private
LAN service (HIPLS) [13]. HIPLS-based VPLS networks are
used in many industrial plants, including Boeing’s 777 airplane
assembly plant [14]. In addition, major SCADA network
appliance manufacturing companies are working on HIPLS-
based appliances, such as Tempered in USA [15].

Several research works have been proposed to improve the
features of HIPLS such as efficient key management [16],
[17], scalability [16]–[19] and tunnel establishment procedure
[20], [21]. In [16], [17], the authors propose a Session key-
based HIPLS (S-HIPLS) architecture which has been used as
the basis for other improved HIPLS versions, i.e. [18]–[21].
In S-HIPLS, the authors propose two session keys called the
Content Encryption Key (CEK) and the Key Encryption Key
(KEK) to improve the efficiency of key management and to
improve scalability. These session keys are distributed by a
Key Distribution Center (KDC), the placement of which is
critical to archive optimal performance in S-HIPLS. However,
the authors fail to propose a cost-effective strategy for KDC
placement for S-HIPLS in their proposal.

The distributed placement of the KDC in a secure VPLS
network is analogous to the placement of the controller in
Software Defined Networks (SDNs) [22], which has been
widely investigated. The authors of [23] developed a dis-
tributed control platform for large-scale networks and con-
cluded that this paradigm brings an abstraction for network-
wide management. The authors of [24] originally identified the
controller placement problem, with a goal of reducing overall
network latency.

Recent advances in the controller placement problem (CPP)
motivated the authors in [25] to write a survey paper on the
CPP approaches in SDN. They reviewed the current state
of the controller placement problem from an optimization
perspective and concluded that the location of controllers
has a direct impact on network performance. The authors of
[26] argued that the CPP and its challenges have not been
thoroughly examined. Thus, in SDN use cases, they provide
a thorough overview of numerous algorithmic challenges in
controller placement problems.

Network configurations in which the data must transit
via the hypervisor to reach the corresponding controller are
presented in [27]. As a result, the latency of networking
devices is determined by the locations of both hypervisors and
controllers. The authors used a solver to obtain the optimal
solution of the proposed formulation. However, obtaining the
optimal solution in a large-scale scenario may require exten-

sive computational power, and solving the problem optimally
may require the solver to run for hours or days.

A. Contributions

To the best of our knowledge, this is the first study on the
optimal placement of KDCs in secure VPLS networks. Since
the majority of secure VPLS networks that employ public-key
mechanisms use KDC nodes as entities for exchanging the
necessary security keys, as well as for serving other security-
related features, this work can be regarded as an original model
for designing minimal cost VPLS networks from a provider
network perspective. The main contributions of this paper are:
• We first motivate the study of the KDC placement

(KDCP) problem in a secure VPLS network by demon-
strating how network operating expenses behave in large-
scale network deployments. We formulate the KDCP
problem by considering the KDCs’ activation costs and
the cost of providing secure communications for each
VPN, which accounts for exchanging the necessary se-
curity keys between KDCs and PEs.

• We formulate the KDCP problem as an integer linear
program (ILP) problem and use an exhaustive search
to determine the optimal placement of KDCs inside the
provider network. The exact solution of the latter is used
as a benchmark for the performance of our proposed
algorithm.

• We develop a primal-dual approximation algorithm that
offers a polynomial-time algorithmic solution to the
KDCP problem since the ILP problem is an NP-hard
optimization problem i.e., unless P=NP, a very diffi-
cult problem to efficiently solve for large-scale network
topologies. Besides being fast in practice, the proposed
solution offers a guaranteed approximation factor to the
KDCP.

• We extensively evaluate the performance of our ap-
proximation algorithm using several large-scale network
topologies, e.g., the Random Internet graph, Erdős–Rényi
graph, etc. Our results validate that our algorithm con-
siderably outperforms exact solutions in terms of time-
efficiency. Fast solutions to the KDCP problem offer
network providers the ability to recalculate the KDC
placement on-the-fly in case of addition/deletion of PE
routers .

• Finally, we demonstrate that our proposed architecture
scales better than S-HIPLS and HIPLS with regard to
keys storage at KDCs in real-world scenarios.

B. Article Organization

The rest of the paper is organized as follows. Section
II considers the VPLS, S-HIPLS, and components of the
VPLS networks. An overview of the problem in the S-HIPLS
network, as well as a real-world scenario, are given in Section
III. The mathematical problem formulation and the proposed
algorithm are considered in Section IV. Section V contains the
simulation result and discussion. Finally, Section VI concludes
the paper.
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II. BACKGROUND

This section provides background information about VPLS
and S-HIPLS.

A. Virtual Private LAN Service (VPLS)

VPLS is a Layer 2 provider-provisioned VPN type that
can provide multi-point to multi-point connectivity between
remote customer sites over a provider network.

Fig. 1. The VPLS Architecture

A typical VPLS network contains several key components,
as depicted in Fig. 1, such as

• Customer Network: This is the user of the VPLS
network. It consists of several sites that are geographically
distributed and fully controlled by the user.

• Provider Network: This is the core/underlay network of
the VPLS, which facilitates VPN tunnels or Pseudowires
(PWs). Provider networks generally operate as Layer 3
networks using common network protocols such as MPLS
or IP. E.g., Internet, Telecommunication Network, Wi-Fi
Network.

• Customer Edge Equipment (CE): CEs are the interme-
diate devices that interconnect the customer and provider
networks. CEs typically belong to the customer and reside
on the customer’s premises. A CE can be connected to a
single or multiple Provider Edge Equipment (PE).

• Provider Edge Equipment (PE): PEs are the gateways
for customer network traffic, and they reside at the
edge of the provider network. PEs also hold complete
knowledge about the VPLS network. Pseudowires (PWs)
are built between PEs and these PEs owned by the service
provider.

• VPN Tunnels/PWs: A VPN tunnel/PWs is an encrypted
or encapsulated link between two PEs. VPLS generally
utilizes protocols such as MPLS and IPsec for encapsu-
lation/encryption.

• Provider Router (P Router): This is a transit router
belonging to the provider network. A P router is typically
connected to one or more PE Routers. It is not aware of
the VPLS and is mainly responsible for traffic routing
within the provider network.

B. Session key based HIPLS (S-HIPLS)

Early VPLS architecture does not support security. HIPLS
is the first secure VPLS architecture, and it has introduced a
logical security plane for management of the security services
related to VPLS. However, the scalability of the HIPLS
security plane is limited due to the complexity of key storage.
In HIPLS, every PE has to store O(m) keys, where m is the
number of PEs in the VPLS network. To overcome this issue,
Session-key-based HIPLS (S-HIPLS) was introduced [17]. S-
HIPLS overcomes the scalability issue of HIPLS by proposing
a novel session key-based security mechanism instead of per-
tunnel key management procedure of HIPLS. In S-HIPLS,
the number of keys stored on PEs is reduced from O(m) to
O(v+ 1), where v is the number of VPN types and m is the
number of PEs in the VPLS network. Thus, the number of keys
stored on each PE is independent of the number of PEs in S-
HIPLS based VPLS networks. In addition, S-HIPLS proposes
an efficient broadcast mechanism to increase the forwarding
plane scalability of HIPLS networks.

Two types of session keys are used in S-HIPLS:
• Content encryption key (CEK): This is a unique sym-

metric key for each VPN that is used to encrypt and
decrypt all user traffic in a single VPN network.

• Key Encryption Key (KEK): This is a unique symmetric
key for each PE that is used to encrypt and decrypt the
corresponding CEKs.

S-HIPLS proposes the use of a Key Distribution Center
(KDC) to manage the key distribution process. Each PE shares
a unique KEK with a KDC, and each KDC periodically
distributes the CEK to PEs encrypted with unique KEKs.
In addition, the KDC is responsible for PE subscription, PE
life-cycle management, and PE authentication. For large-scale
networks, S-HIPLS should utilize a distributed KDC structure
to obtain a balanced workload, reduce the complexity of key
distribution, and avoid single failure points.

III. OVERVIEW

A. KDC placement in Secure VPLS

The KDC and each PE share a unique symmetric key, which
is utilized as the KEK for that PE. The CEK distribution is
under the control of the KDC. It sends the CEK to PEs on a
regular basis. The KEK of each PE is used to encrypt these
CEKs. As a result, an eavesdropper will be unable to retrieve
the CEK. To refresh the CEK/KEK, each PE and KDC run HIP
BEX instances on a constant schedule (i.e., every 10 seconds)
[28]. The HIP architecture implements this operation, which is
known as rekeying. Thus, to protect the VPLS communication
session, each KDC produces fresh CEKs. Even if an intruder
manages to capture a CEK, it will be invalid after the rekeying
timeout.

Secure VPLS is normally used in large-scale networks
(e.g., ISP and WAN networks, Long Term Evolution (LTE)
backhauls, etc.). Thus, the VPLS provider networks’ perfor-
mance has a direct impact on the customer’s active VPN
communications. Furthermore, some emerging industry 4.0
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Fig. 2. Example of cost-effective KDC placement in VPLS: The left figure depicts placing the KDCs on the PEs with the highest connectivity degrees, which
is not optimal in terms of cost. The right figure illustrates the optimal placing of KDCs with minimal cost. Path to KDC is also shown for each PE.

network use cases may be extremely reliant on the provider
network’s latency.

A single KDC will obviously not be able to meet the
demands of supporting the security requirements of each PE
in a large network with hundreds or thousands of PEs. As
discussed in [17], a distributed KDC design has numerous
advantages, including reduced workload, dispersed key storage
complexity, and no single point of failure. However, in a
distributed KDC design in a secure VPLS network, placement
of the KDCs in the underlying network can drastically affect
network performance. As a result, optimal KDC placement can
considerably reduce the measurement overhead in the control
plane.

We present an example in Fig. 2 to illustrate the KDC place-
ment problem in a secure VPLS network. Fig. 2 represents a
simple network topology with six PEs along with the routing
path and the link cost. As VPLS networks are commonly
used in WAN networks, the link cost can be defined as the
price of using the links for each PE. Other metrics such as
link delay also could be considered as link cost. Each PE
serves VPN communication for many customers. The number
of customers is marked in the figure. The complexity of the
rekeying mechanism is highly dependent on the number of
VPNs supported by each PE.

Let’s start with the assumption that the best location
to place two KDCs in this network is on nodes with
high degrees of connectivity (i.e., PE2 and PE3). We
link each PE to its directly connected KDC since each
PE has to connect to a KDC to ensure network security
features. The total network cost can be calculated as
the sum of all communication costs between KDCs and
PEs plus the cost of placing KDCs in specific locations
on the provider network. The network administrator can
manually modify this cost. Furthermore, in a secure VPLS
network, communication costs are directly related to the
number supported VPNs by PE. Hence, it can be stated
that Communication Cost = Number of VPNs ×
Cost of connecting PE to associated KDC.

Assuming that installing a KDC on each location in this

example costs 50, the total network cost of this deployment
is (32×2+8×3+0+0+3×10+27×8)+(50+50) = 434.
This assignment scenario is depicted in KDC placement 1
in Fig. 2. The connection of PEs with KDCs is depicted
using dashed lines. Although the logic behind this assignment
appears to be reasonable, its network cost is higher than the
optimal assignment, which has a cost of 386 and is shown in
KDC placement 2 in the figure.

For the sake of demonstration, we began with a very
low number of PEs and supported VPNs. In a real-world
scenario, however, a network topology may include hundreds
or thousands of PEs, each serving the needs of hundreds of
customers. Distributed KDC placement is essential in networks
with massive amounts of nodes. By proposing an algorithm
to place KDCs optimally, the aim for a given secure VPLS
network is to minimize the total provider network cost. This
algorithm should achieve three key objectives:
• Optimal network cost: the solution generated by the

algorithm should impose a minimum network cost that
is adaptable to a wide range of network topologies. It
also needs to report the guarantee of optimality.

• Fast execution: due to some critical use cases of VPLS,
the algorithm should be executed in a way that does not
impose any additional delay on the network.

• Abstraction: The algorithm should be transparent to
upper-layer applications. Also, the execution of the al-
gorithm should not require any changes to customers’
networks or VPLS configurations.

B. Other Applications

Applications of our formulation, which we discuss shortly,
are not restricted to the primary area discussed in this paper.
It can be applied to various domains as the service placement
problem (SPP). For the sake of brevity, we will outline some
of them as follows:
• Software-defined networking (SDN): Due to limited com-

putational power and the geographical dispersion of the
switches, a single controller cannot handle thousands of
flows in real-world SDN implementations. The placement
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of controllers influences the network’s performance and
its ability to react to network events [29]. By changing the
KDC to SDN controller, PEs to SDN-enabled switches,
and the number of VPNs to the number of flows, Fig. 2
can represent the controller placement problem in SDN.

• Wireless Sensor Networks (WSN): Data acquisition and
transmission are the primary roles of resource-constrained
nodes in a WSN. In addition, the location of the base
stations (BS) and the association of sensors to base sta-
tions significantly impact the network’s lifespan. Sending
data to a base station far from the source sensor increases
latency, energy consumption, and packet loss rate [30]. To
maximize the network lifetime and reduce the cost of base
station deployment, the base station placement problem
can be represented in Fig. 2 by substituting KDCs for
base stations, PEs for sensors, the weight of the links for
the distance between nodes, and the number of VPNs for
the amount of data to send and receive between a sensor
and its base station.

• Content Delivery Network (CDN): Replica server place-
ment is a key design problem for content delivery net-
works (CDNs), in which large distributed infrastructures
of replica servers are deployed in predetermined loca-
tions. It seeks to minimize deployment costs and assure
end-user QoS satisfaction [31] (e.g., content delivered to
end-users with reduced latency). In Fig. 2, let a replica
server replace the KDC. Moreover, end users need to
connect to a replica server (instead of PE connecting
to a KDC). By setting the deployment cost of replica
servers on each location and removing the number of
VPN parameters, solutions to the KDC problem can be
used in replica server replacement in CDN.

IV. THE KDCP PROBLEM

In this section, we formulate the KDC placement problem
as a linear integer programming one. First, we consider an
algorithm for determining the optimal placement using an
exhaustive search for all possible combinations of KDCs inside
the provider network. Secondly, we present an approximation
algorithm to efficiently acquire a near-optimal solution due to
the high computation cost of finding the exact solution for
networks with high numbers of PEs.

A. Problem Formulation

The provider network is modeled as an undirected graph
G = (V,E), where V = {PE1,PE2, ...,PEm} is the set of PEs
in the network, and the set of links connecting the PEs is
denoted by E. V also denotes the candidate locations for
placing a KDC. Let xi j denote a binary variable indicating
whether the j-th PE is connected to the i-th KDC for i= 1, ...,n
and j = 1,2, ...,m. Additionally, yi = 1 denotes that KDC i is
open for serving requests. The cost of serving PE j by KDCi is
denoted by di j and wi denotes the opening cost of KDCi. The

Table I
SUMMARY OF NOTATIONS

Notation Description
G = (V,E) undirected graph where V is the set of PEs and E is

the set of links
V candidate locations of placement of KDCs
n number of KDCs in a network
m number of PEs in a network
v number of VPNs in a network
xi j variable indicating whether the j-th PE is connected to

the i-th KDC
yi variable indicating KDC i is open
di j cost of serving PE j by KDCi
wi opening cost of KDCi
u j dual variable associated with constraint (2b)
vi j dual variable associated with constraint (2c)
(u∗,v∗) maximal dual solution
N( j) set of neighbors of PE j
j ∈ ad j(i) PE j is directly connected to KDCi
icl KDC center of a cluster
dV PLS VPLS network diameter

problem of KDC Placement in a Provider network (KDCP)
can be formulated as follows:

(P) minimize
n

∑
i=1

m

∑
j=1

di jxi j +
n

∑
i=1

wiyi (1a)

subject to
n

∑
i=1

xi j ≥ 1, j = 1, . . . ,m (1b)

xi j ≤ yi, j = 1, . . . ,m and i = 1, . . . ,n
(1c)

xi j ∈ {0,1}, j = 1, . . . ,m and i = 1, . . . ,n
(1d)

yi ∈ {0,1}, i = 1, . . . ,n (1e)

The term ∑
n
i=1 ∑

m
j=1 di jxi j in the objective function calculates

the communication cost between PE j and KDCi, and is called
service cost; the second term i.e., ∑

n
i=1 wiyi, captures the cost

of activating specific KDCs from V , and evaluates the KDC
activation cost. Constraint (1b) states that each PE is assigned
to at least one KDC. The restriction of PEs assignments to
only active KDCs is represented by constraint (1c). Finally,
constraint (1d) and (1e) define the domain of the binary
decision variables. The notations used in KDCP are listed in
Table I.

B. Algorithms for solving KDCP

Optimal Solution: Problem formulation of (P) is a variation
of the Facility Location Problem (FLP), which has been shown
to be NP-hard [32]. The process of proving the NP-hardness
of the problem is constructed by reduction from the set cover
problem. First, we acquire an exact solution for KDCP using
Gurobi solver. The KDCP’s optimal solution can be found
by searching exhaustively for all feasible KDCs placement
combinations. Gurobi [33] uses exact algorithms to solve the
KDCP. Exact algorithms are guaranteed to discover the best
solution but may need practically prohibitive amounts of time
to provide an optimal solution.
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Although KDCP is very simple in formulation, it is a very
difficult problem to efficiently solve (unless P = NP) since
it is an NP-hard optimization problem. Therefore, its exact
solution is prohibitively time-consuming [34]. Consequently,
we present a primal-dual approximation schema [35], since
it yields algorithms with good running times in practice, as
opposed to methods based on branch-and-bound that are, in
general, more computationally expensive and more complex
to implement. Our intention is to develop a polynomial-time
solution to the KDCP with a guaranteed approximation factor.
To do so, we substitute a simpler optimization problem with
an optimal value at least as small as (P) for a hard problem
formulated as KDCP. The Linear Programming relaxation (LP-
relaxation) of KDCP is:

(PLP) minimize
n

∑
i=1

m

∑
j=1

di jxi j +
n

∑
i=1

wiyi (2a)

subject to
n

∑
i=1

xi j ≥ 1, j = 1, . . . ,m (2b)

xi j ≤ yi, j = 1, . . . ,m and i = 1, . . . ,n
(2c)

xi j ≥ 0, j = 1, . . . ,m and i = 1, . . . ,n
(2d)

yi ≥ 0, i = 1, . . . ,n (2e)

We should note that as PLP is relaxation of KDCP problem,
then PLP ≤ P.

C. Approximation Algorithm for KDCP Problem

We previously defined an integer formulation for the KDCP
problem, and devised the linear programming relaxation.
The dual program of (PLP) associates two sets of decision
variables with these two constraints, i.e., dual variables u j and
vi j are associated with constraints (2b) and (2c), respectively
and is given by:

(D) maximize
m

∑
j=1

u j (3a)

subject to u j− vi j ≤ di j, j = 1, . . . ,m and i = 1, . . . ,n
(3b)

m

∑
j=1

vi j ≤ wi, i = 1, . . . ,n (3c)

u j ≥ 0, j = 1, . . . ,m (3d)
vi j ≥ 0, j = 1, . . . ,m and i = 1, . . . ,n

(3e)

Let’s consider the dual program. By setting all KDC activation
costs to zero, we obtain a trivial lower bound for the KDCP.
If we set wi = 0 for each KDC i, then the solution is to
activate all KDCs and allocate each PE to the closeset KDC.
Also, by setting u j = mini(di j), the lower bound is ∑

m
j=1 u j.

Setting all wi = 0 obtains a trivial lower bound. However, since
placing each KDC on a network will incur extra cost for the

network provider, we need to account for nonzero wi costs
into consideration as well.

Let’s assume that the activation cost of each KDC (i.e., wi)
is divided into vi j shares and distributed to the PEs such that
∑

m
j=1 vi j = wi. Hence, vi j can be seen as the price that each PE

needs to pay to use a secure VPLS network—activating a KDC
on the provider network incurs costs for service providers.
Each node using the secure network requires to pay for the
secure transmission of the data.

The j-th PE is only required to pay this charge if it
makes use of the KDC i. Moreover, each PE j is willing
to pay the lower price for its connection cost to the KDC
and a share of the KDC activation cost across all KDCs i.e.,
u j = mini(di j + vi j). A PE in the provider network may need
to traverse multiple links with different delay parameters to
connect to an associated KDC. Moreover, since di j encom-
passes the cost of transmission CEKs of a PE on the path
connecting the PE to its associated KDC, each PE seeks to
minimize the latency of exchanging the (CEK/KEK) keys and
to pay its share of building a secure network. Likewise, ∑

m
j=1 u j

yields a lower bound for the problem. Furthermore, by setting
(u j − vi j ≤ di j) and max(∑m

j=1 u j), we obtain the maximum
value of the lower bound. We should elaborate that the dual
constraint u j−vi j ≤ di j considers the variable xi j in the primal,
while the dual constraint ∑

m
j=1 vi j ≤ wi corresponds to the yi.

Definition 1 We define (u∗,v∗) as the maximal dual solution
when no u∗j can be raised by a positive value so as to construct
a set of v∗i j that leads to a dual feasible solution.

Definition 2 Given (u∗,v∗), we denote the set of neighbors
of PE j by N( j) in which, if N( j) includes KDC i, i.e., KDC
i neighbors PE j, then u∗j ≥ di j.

Algorithm 1 is proposed to solve the KDCP problem using
the primal-dual method. The primal and dual program will not
be exactly solved by Algorithm 1. Instead, we begin with zero
solutions of dual program and increase them until we obtain
a feasible primal solution. More specifically, by increasing
the dual variable u j (see (3a)), we seek to obtain as large
a dual solution as possible. We uniformly increase all u j,
which we seek to maximize, in each time step of running the
algorithm until they become blocked (blocked variables are
those variables in the dual that we can not increase anymore).
The notion of blocked variables paves the way for generating
the maximal dual solution.

Definition 3 We denote that KDC i is blocked if ∑
k
j=1 vi j =wi.

Definition 4 We denote that PE j is blocked if PE j is a
neighbor of a blocked KDC i. By Definition 2, PE j is blocked
if u j ≥ di j for some blocked KDC i.

Furthermore, if we witness u j = di j for some KDC i,
then we start increasing vi j in parallel to u j. By considering
constraint (3b) of the dual program, we can keep raising u j.
As a result, u j will keep rising, and vi j will increase with it as
well, unless some blocking condition of ∑

m
j=1 vi j = wi (see 3c)

6



Fig. 3. Initialization and two iterations of Algorithm 1

stops it. Moreover, at this point, vi j is blocked, which results
in the blocking of u j (see constraint (3b)). Lines 1-8 execute
the first part of the algorithm after which we cannot anymore
raise u j. However, we can now derive a set of vi j that leads
to a dual feasible solution.

Algorithm 1: Primal-Dual Algorithm for KDCP

1 u← 0, v← 0, T ← 0 ;
2 while (All u j is not in block state) do in parallel
3 if (u j ̸= blocked) and (vi j ̸= blocked) then
4 Increase u j by each time step T ;
5 Increase vi j such that u j ≥ di j for some u j;
6 T = T + 1
7 end
8 end
/* End of Part 1 - Start of Part 2 */
/* KDCs are neither open nor closed.

PEs are still not assigned */
9 S = set of blocked KDCs part 1;

10 while (unassigned PEs ̸= 0) do
11 icl = choose the first blocked KDC from set S;
12 icl .open();
13 C = set of blocked KDCs within distance 2 of icl

in the graph of the algorithm;
14 icl .close(C);
15 icl .assign(any unassigned PE within distance 3 of

the icl in the graph of the algorithm);
16 S = S−{icl ∪KDC ∈C};
17 end

Lemma 1 The execution of the first part of Algorithm 1 yields
the dual solution (u∗,v∗) which associates every PE to some
KDC set M = {i ∈ KDC : wi = ∑

m
j=1 v∗i j}.

Proof. We need to investigate the properties of the maximal
dual solution in this proof. As discussed earlier, each PE j
is willing to construct u∗j = mini(v∗i j + di j) in the maximal
solution. Moreover, we have claimed that there exists some
KDC in set M if the solution is maximal. By Definition 2,
the designated KDC i will have u∗j ≥ di j. Let’s consider the
case that u∗j < mini(v∗i j + di j). In this case, as we would be
able to increase u∗j , we did not obtain the maximal solution.

Moreover, if u∗j = mini(v∗i j +di j), and no KDC i exists in set
M, then we are be able to increase u∗j and v∗i j, as ∑

m
k=1 v∗ik <wi,

and therefore we did not obtain the maximal solution. ■
In order to obtain the primal solution, we execute the part

2 of the primal-dual algorithm. For the sake of demonstration,
we employ a graph of Algorithm 1 execution connecting KDCs
and PEs. Fig. 3 depicts the graph in which the circles represent
PEs, while triangles denote KDCs. We need to note that in this
graph, there exists an edge between two vertices like PE j and
KDC i if u j ≥ di j (See Definition 2). Before the execution
of part 2, all PEs are unassigned, i.e., PEs have yet to be
connected to one or more KDCs, and in the blocked state.

In the first iteration of the second part of the algorithm,
the first KDC that has been blocked in part 1 is opened. For
instance, the KDC depicted in red in Fig. 3 (1st iteration) is
the one that is opened first. Then, the algorithm shuts down
all KDCs within distance 2 of the first opened KDC (line 14
in Algorithm 1). These closed KDCs are marked with grey in
the figure (1st Iteration). The next step in Iteration 1 concerns
the assignment of PEs to the recently opened KDC. All PEs
that are adjacent to the opened KDC will be connected to it.
Moreover, PEs that are within distance 3 of the opened KDC
also connect to it (Line 15 in Algorithm 1).

The second blocked KDC is selected from the list of
remaining blocked KDCs in the next iteration. There exist
three blocked KDCs, as shown in the blue in the figure (1st
Iteration), that require a decision to be opened or closed
following the completion of Iteration one.

Let’s assume that in Iteration 2, the KDC with a small star
marker in the figure is chosen to be opened. Furthermore, the
algorithm shuts down all KDCs within distance 2 of the newly
opened KDC, likewise Iteration 1. The two KDCs above the
newly opened one will be closed. Hence, the closed KDCs are
illustrated in grey in the 2nd Iteration in the figure. Now, for
the assignment phase (line 15), the same procedure of iteration
1 is executed until all PEs are assigned to KDCs. Finally, since
no unassigned PEs or blocked KDC exist, the algorithm will
finish executing.

Theorem 2 Algorithm 1 is a 3-approximation algorithm for
the KDCP problem.

Proof. The analysis to prove the theorem concerns the cost
of solution provided by our primal-dual algorithm for KDCP.
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In Algorithm 1, the opened KDC icl , and its associated PEs
can form a cluster (lines 11 to 15 in Algorithm 1). Moreover,
the graph representing the execution of the algorithm can be
partitioned into multiple clusters cl. The cost of solution can
be written as cost = ∑cl(∑ j∈cl dicl j +wicl ). The cost is the sum
of two terms; the total cost of opening KDC icl for each cluster,
as well as the total cost of exchanging security keys between
PE j and the KDC icl for each PE j in that cluster. Considering
the fact that KDCs are blocked, the cost of activating KDC icl
is derived as wicl = ∑ j∈ad j(icl)

vicl j, in which PE j ∈ ad j(icl)
means that PE j is adjacent to KDC icl (the PE j is directly
connected to KDC icl in the graph for Algorithm 1). Moreover,
we can take the ∑ j∈cl dicl j and divide the sum into two parts.
One concerns all the PEs that are adjacent to KDC icl , while
the other part includes all the PEs that are not adjacent to
KDC icl or PE j ̸∈ ad j(icl). We prove the below lemma for
PEs that are adjacent to icl .

Lemma 3 The cost of solution for adjacent PEs to KDC icl
is ∑ j∈ad j(icl)

u j

Proof. If there exists an edge between PE j and KDC i in
the graph of Algorithm 1, then we have u j = vi j +di j, Thus,
we can write (substituting the value for wicl ):

∑
j∈ad j(icl)

dicl j +wicl = ∑
j∈ad j(icl)

vicl j +dicl j =

∑
j∈ad j(icl)

u j ■
(4)

Now, the only remaining part of the analysis concerns the PEs
that are indirectly connected to KDC icl (i.e., not adjacent to
KDC icl or PEs that are located in distance 3 of icl). The
lemma below considers these PEs.

Lemma 4 The cost of solution for indirectly connected PEs
to KDC icl is dicl j ≤ 3u j for PE j ̸∈ ad j(icl).

Fig. 4. Indirectly connected PE

Proof. Let’s consider the indirectly connected PEs by il-
lustrative example. As can be seen in Fig. 4, PE j is at
distance 3 from KDC icl (PE j connects to KDC icl indirectly).
Based on our observation regarding the existence of an edge
in the graph of Algorithm 1, we have u j ≥ dq j, ur ≥ dqr, and
ur ≥ diclr. Moreover, we have dicl j ≤ dq j + dqr + diclr. Since
we witnessed that KDC icl was blocked prior to KDC q, and

uniform increasing of the dual variable was considered, we
have ur ≤ u j. Hence, we can obtain that dicl j ≤ 3u j. ■

By combining Lemmas 3 and 4, the total cost of solution
provided by Algorithm 1 is cost(solution) ≤ ∑cl ∑ j∈cl 3u j ≤
3∑ j u j ≤ 3OPT , where OPT denotes the value of the optimal
solution to the instance of the KDCP. ■

V. EVALUATION AND DISCUSSION

A. Evaluation Setup

To evaluate the proposed algorithm’s performance, we used
the Gurobi optimization solver via a Python script to assess
the running time and efficiency of our algorithm, as well
as to compare the objective value of the KDCP problem.
Experiments were performed using a PC running Windows 10
on a 4-core 2.60 GHz Intel Core i7-6700 HQ CPU, equipped
with 8GB of RAM. Moreover, throughout the evaluation,
we use the words approximation and Primal-Dual algorithm
interchangeably to refer to the proposed Algorithm 1.

We created different types of provider network topologies
for performance evaluation purposes. The following network
topologies were used:
• Random Internet Graph: since a VPLS is mainly used in

large-scale networks and there exists a demand to employ
VPLS between different Autonomous Systems (AS), it
is highly relevant for our evaluation to use the graph
representing Internet communications. The Python script
generator for Random Internet Graph yields an undirected
graph that resembles the Internet AS network, employing
Elmokashfi’s approach as in [36].

• Erdős–Rényi model: The Python script generator for this
model outputs a random graph in which the degree
of every given vertex has a binomial distribution. This
random graph of the Erdős–Rényi model is commonly
used for evaluating a random network [37].

• Random Graph: network topologies using random graph
models exhibit features of a complete graph, such as high
interconnectivity among network nodes, while randomly
some edges are removed such that the graph is still
connected.

The choice of the above network topologies for the perfor-
mance evaluation of the proposed algorithm is necessitated by
the fact that the majority of secure VPLS deployments suffer as
they scale up to large-scale networks with a massive number of
nodes (such as the ones we are assessing) thereby making the
assignment of multiple KDCs to PEs an intractable problem
to solve exactly (as we argue in the previous sections). Conse-
quently, the use of mostly huge networks in our assessments
is well justified.

In practice, each PE will be called to serve a random number
of customer VPNs. Thus, in our assessments, we randomly
assign a number of VPNs to each PE. Moreover, in session-
key-based VPLS networks, packets containing security keys
need to be transferred between each KDC and PE to maintain
the security schema. The number of VPNs acquired by each
PE will be multiplied by the number of required packets in

8



Table II
EXECUTION TIME FOR LARGE-SCALE NETWORKS

Topology Number of PEs (Nodes) Execution Time

Random Internet Graph
(AS networks)

1000 Approx: 0.11 s
Exact: 95.98 s

1500 Approx: 0.27 s
Exact: 114.45 s

2000 Approx: 0.55 s
Exact: 144.45 s

Random Graph
500 Approx: 0.12 s

Exact: 39.47 s

800 Approx: 0.19 s
Exact: 182.65 s

1000 Approx: 0.29 s
Exact: 558.47 s

Fig. 5. Total cost for Random Internet Graphs

the secure architecture. This cost will then be incurred on the
shortest path between the designated PE and associated KDC.
Thus, the cost produced in the previous stage will be multiplied
by the weight of the shortest path between KDC and PE. The
final value will be denoted as di j.

The cost of placing each KDC in the network graph can
be set by network administrators. If n denotes the number
of KDCs, the upper bound on the total synchronization cost
between KDCs (e.g., each KDC sends a sync message to other
KDCs) can be calculated as (n−1)×n×dV PLS, where dV PLS
denotes the network diameter. The cost is then divided across
n KDCs, with each KDC receiving a ((n−1)×dV PLS) opening
cost.

B. Results and Performance

Table II reports the execution time of the exact algorithm
(using the Gurobi solver) versus our primal-dual approxima-
tion algorithm for two different topologies i.e., the Random
Internet Graph and the Random Graph. To determine the
optimal placement of KDCs, Gurobi explores the best solution
using the Branch-and-Bound technique. However, due to its
high computational cost, this method does not scale well with
the number of PEs.

The computation time for optimally placing the KDCs in
a large-scale network (i.e., a network with a high number

Fig. 6. Execution Time for Erdős–Rényi graph

of PEs) appears to be critical. Furthermore, each addition
and/or deletion of PEs necessitates recomputing the optimal
location for KDCs, possibly contributing to network delays.
The execution of KDC placement algorithms is directly related
to this delay. In Table II, we start with 1000 PEs in the network
for the Random Internet Graph topology. When the network
scales up in size, our approximation algorithm proves to be
more considerably faster in providing solutions.

We observe that when the number of PEs is increased, the
rate of growth in execution time for our algorithm is signif-
icantly slower compared to the exact solution. For example,
increasing the number of PEs in an AS network from 1000
to 2000 incurs 0.44 seconds more to yield a solution from
our approximation algorithms compared to 48.47 seconds for
the exact solution. Since the proposed primal-dual algorithm
does not need to solve the dual program directly, the primal-
dual method seems more applicable than e.g., LP-rounding or
Branch-and-Bound (BB), in which the number of nodes in the
BB Trees will expand as the number of PEs grows for the
exact solution.

As mentioned in Theorem 2, one important concern when
designing the approximation algorithm is the guarantee of the
produced solutions. It seems that knowing the cost of each
solution (i.e., the placement of KDCs in a provider network)
is critical for provider networks, since lower network costs
result in lower operational costs. Fig. 5 compares the objective

9



Fig. 7. Exact solution for the Random Internet Graph with 70 PEs

values for the KDCP problem, i.e., the total cost, in both exact
and approximation solutions for different network sizes.

For this configuration, a random number of VPNs between
1 and 1000 was chosen for each PE, as well as a random
activation cost. Fig. 5 depicts the objective value for both
the exact and approximation algorithms. For all networks,
the approximation algorithm yielded a higher objective value.
However, the ratio of approximation objective value to exact
value (i.e., the value of Objective Value (Approximation)

Objective Value(Exact) )
demonstrates the constant-factor approximation proved in The-
orem 2. With [50, 75, 100, 125, 150, 175] PEs, ratio is [1.61,
1.96, 2.52, 2.22, 2.48, 1.55].

In the next experiment, the Erdős–Rényi model is used
as the network graph. Fig. 6 depicts the execution time in
seconds versus the number of PEs. When the primal-dual
algorithm is employed for a network with 100 to 200 PEs,
the blue and the red curves illustrate the execution time of
the approximation and the exact algorithm, respectively. The
execution time generally increases with the number of PEs and
ranges around 0.01 seconds for the primal-dual approximation.
Conversely, it greatly increases with the number of PEs for the
exact solution. When the number of PEs increases from 100 to
200, the exact algorithm begins with a modest rise in execution
time. However, for a large number of PEs in the network, the
slope of execution time growth becomes considerable. This
experiment suggests that, even though the exact algorithm
produces the optimal KDC placement, it is not applicable for
large-scale network deployments. Fig. 7 shows an example
output for an exact algorithm running on the Random Internet
Graph.

Fig. 7(a) illustrates the Random Internet Graph, which has
70 PE routers (depicted as the vertex nodes in the figure)
connected by edge links. A random number of VPNs from
client sites must be supported by each PE. The number of
VPNs assigned to each PE was chosen at random from a
range of 1 to 300 VPNs. The Dijkstra algorithm was used

Fig. 8. Ratio of random cost

to calculate the shortest distance between two graph nodes.
The network administrator randomly determined the weight

of each link in this graph. According to the exact solution
of KDCP, shown in Fig.7(b), five KDCs will be opened
in positions 7,9,12,13, and 14. Each KDC, along with its
corresponding PEs (clients), has been assigned a particular
color to demonstrate the assignment of each PE to its corre-
sponding KDC (i.e., 7:green, 9: red, 12:light blue, 13:yellow,
and 14:grey).

In the next experiment, we randomly place KDCs in the
Random Internet Graph with 250,300,400, and 500 PEs to
demonstrate that the exact and the approximate solution offer
a better cost than randomly placing KDCs. We also compute
the cost of the solution generated by random placement, which
we denote as random cost. We divide the random cost by the
costs of the solutions by exact algorithm and approximation
algorithm, respectively. In Fig. 8, the blue circles indicate
the ratio of dividing the random cost by the cost of the
approximate solution, while the red circles depict the random
to exact cost ratio. For all PE numbers, the ratio of random to
exact cost is greater than the ratio of random to approximate

10



cost, since the exact solution is optimal and, hence, lower
than the approximate solution in general. Furthermore, for all
PE numbers, the ratio of random to approximate cost (blue
circles) is greater than 1, suggesting that algorithm 1 gives a
better solution than random KDC placement.

To create an efficient VPLS network, several VPLS archi-
tectures have been considered in literature. HIPLS is one of
the most popular VPLS schemes for providing a secure VPLS
architecture. It is also the first VPLS design to present a
public key authentication structure as well as a data traffic
encryption mechanism. A representative indicator of the scal-
ability of each protocol is the key storage requirement at each
component of the VPLS. Herein, we compare the key storage
requirements of our proposed method, in which multiple KDCs
are deployed to secure the network, with S-HIPLS and HIPLS.

Fig. 9 represents the key stores in the KDC versus the
number of PEs in the network. HIPLS employs an authen-
tication server (AS), and our architecture contains a KDC that
distributes keys (CEK and KEK) to PEs. We set the number of
VPNs to v= 5, and the number of PEs increases from 1 to 100.
We observe that a similar linear increment of the number of
keys can be seen in both HIPLS and S-HIPLS architectures,
in which S-HIPLS requires a higher number of keys for its
operation.

The main reason is that the complexity of key storage at
AS/KDC of HIPLS proved to be O(m), where m is the number
of PEs. On the other hand, the complexity of S-HIPLS is
O(m+ v), where v is the number of VPNs [17]. Moreover,
our proposed method employs the multiple KDC in the VPLS
network. Thus, each KDC will be responsible for a portion
of all PEs, and the complexity of our proposed architecture
is O(m+v

n ), where n is the number of KDCs calculated in
Algorithm 1. Thus, the proposed architecture reduces the key
complexity at the KDC level and is more efficient than S-
HIPLS and HIPLS.

Fig. 9. Number of required keys versus number of PEs for the operation of
a KDC/AS network with 5 VPNs

Fig. 10 illustrates how the key stores scale with the number
of VPNs at AS/KDC while serving 100 PEs in the network.
For our architecture, Fig. 10 shows a linear increase in

Fig. 10. Number of required keys versus number of VPNs for the operation
of a KDC/AS network with 100 PEs

the number of keys stored at the KDC, but for the HIPLS
architecture, it remains constant. As a result, the number of
HIPLS keys at the AS is unaffected by the number of VPNs
in the provider network. Our proposed architecture shows less
key storage compared to S-HIPLS. Comparison between our
proposed architecture and HIPLS reflects that the difference
in key storage complexity is proportional to the number of
VPNs in the network, and the difference is less significant as
long as the number of VPNs is restricted. To conclude, since
in real-world scenarios m >> v i.e., the number of PEs far
outweigh the number of VPNs, our method seems to offer
better scalability compared to both HIPLS and S-HIPLS for
the majority of real-world deployments.

VI. CONCLUSION

We proposed a distributed session-key HIPLS architecture
by finding the optimal and near-optimal placement of multiple
KDCs in a provider network. We optimized for the cost of
activating KDCs in the provider network and the cost of
providing secure communication for each VPN as a result of
transferring keys between PEs and KDCs.

The high computational cost of obtaining optimal solutions
renders exact solutions impractical for large-scale network
deployments, even when using sophisticated optimization soft-
ware such as Gurobi. Therefore, we propose the use of
a constant-factor approximation algorithm to effectively get
near-optimal solutions, which additionally inherits from S-
HIPLS: mutual authentication, PE authorization, data and
control frame encryption, privacy protection, secure control
protocol, and resistance to various attacks.

Our evaluation results indicate that the approximation ap-
proach may be used for large networks with a variety of
real-world topologies. Furthermore, our proposal to apply
near-optimal placement of distributed KDCs in the provider
network requires storing fewer keys compared to both HIPLS
and S-HIPLS. Consequently, our approach offers more security
features than other secure VPLS architectures with the benefit
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of improved scalability and, hence, usefulness in real-world
scenarios.

A future direction of this work will investigate the effect of
including additional constraints in the problem formulation.
For instance, a restriction on the capacity for each KDC could
be added so that each KDC would be able to meet the demands
of a limited number of PEs.
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