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The future of mobile and internet technologies are manifesting advancements beyond the existing scope of science. The concepts of
automated driving, augmented-reality, and machine-type-communication are quite sophisticated; and requires an elevation of the
current mobile infrastructure for launching. The 5G mobile technology serves as the solution; though lacks a proximate networking
infrastructure to satisfy the service guarantees. Multi-Access Edge Computing envisage such an edge computing platform. In this
survey, we are revealing security vulnerabilities of key 5G based use cases deployed in the MEC context. Probable security flows of
each case are specified, while countermeasures are proposed for mitigating them.
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1 INTRODUCTION

Moore’s Law suggests the processor speed is exponentially incrementing over time [13, 88]. Hence, the number of
Internet of Things (IoT) devices employed at industries serving Big Data applications are thriving with the possibility
of proliferated processing capability in miniaturized devices. Moreover, improved smart device usage literacy of
general public in modern era are enabling the social internet platforms to launch cumbersome bandwidth consuming
applications for elevating their subscriptions with immersive Quality of Service (QoS). It is estimated that the number
of mobile terminals are reaching 2.8 billion by 2019 and monthly mobile data traffic is reaching beyond 49 exabytes by
2021 according to Cisco [117]. Thus, deployments of billions of smart devices demand access capacity and bandwidth
requirement from the access interfaces of mobile base stations.

The fifth-generation (5G) mobile technology is the seminal advancement explored by the Mobile Network Operators
(MNOs) to reach beyond the constrictions of the prevailing network architecture. To achieve the novel requirements
of enhanced performance, portability, interoperability, elasticity, reliability, spectral and energy efficiency; a network
softwarization approach should be followed by the evolving mobile networks [64]. Virtualization, service migration,
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orchestration, and service automation (as in service function chaining [50]) are the main phases of paving the path
towards 5G and beyond 5G mobile paradigms[25]. As the core and backhaul portions of the emerging mobile networks
are softwarized; techniques of ultra-dense networks, massive Multiple-Input-Multiple-Output (MIMO), and high-
frequency communication are prominent methods for improving the wireless access network [117]. Due to these
technological improvements, 5G guarantees a 1000 times enhancement of the capacity than its predecessor.

Even with the softwarized 5G core network, facilitating the diverse requirements demanded by the IoT based devices
is still a predicament due to the drawbacks of existing service provisioning infrastructure[26]. Conventional cloud
computing architecture fails to provision emerging myriads of services [81]. The geographically distant placement of
data centres and limited access capacity contrives unintended delays and jitters that compromise the entire service
infrastructure. Moreover, cloud servers are incapable of servicing billions of IoT devices ubiquitously. These limitations
in cloud computing paradigm enforce vulnerabilities that can be exploitable by adversaries [130]. Moreover, privacy is
a major concern with the outsourcing based cloud computing service models [43]. Most cloud service providers are
violating the locational and data privacy of their consumers.

In order to overcome these constrictions in storage and processing service models, Edge Computing (EC) as a
paradigm was introduced in 1990s with Content Delivery Networks (CDN) that decentralized the data centre functions
[140]. Main objective of EC was to extend the functions offered from cloud computing to the edge of the mobile network
[104]. With in-proximity dispensing of cloud functions at the edge, drawbacks of the cloud paradigm could be mitigated.
In fact, this architectural paradigm shift is the raison d’etre for 5G and beyond 5G based concepts to achieve the
guaranteed performance metrics. There are various flavours of edge concepts introduced for expanding this notion.
Multi-Access Edge Computing (MEC), Fog computing, Mobile Cloud Computing (MCC), Cloudlets, and Transparent
Computing (TC) are such directives followed by research communities [104, 117]. Out of these concepts however, MEC
and fog computing are leading to be adopted pragmatically and in terms of standardization. In this survey, we are
investigating the MEC paradigm as its standardization is much more convincing than the other concepts.

1.1 Related Surveys

There are several research studies that focus on MEC, 5G, and various approaches related to the deployment of these
aspects, including security. Ren et al. in [117] explores the orchestration mechanisms within end-edge-cloud context for
fog, MEC, TC, and cloudlets. Different edge flavours are contrasted with an evaluation criteria; that sets the criterion
indices based on heterogeneity support, QoS requirements, elastic scalability, mobility, and interoperability. Moreover,
computational offloading, caching, security, privacy, and future research directions are discussed further. In [115],
a comprehensive survey is conducted on service migration scenarios for edge computing paradigms. The diversity
among the existing migration schemes are highlighted while architectures, platforms, and implementations related to
migration are presented further. Moreover, future research directions are presented considering the gaps identified in the
literature. Li et al. in [78] reviews the edge oriented computing systems focusing on their architectural features, resource
management approaches, and design objectives. Though, the investigation is more concentrated on fog computing
than other EC paradigms. The adaptation of Distributed Ledger Technologies (DLTs) on IoT based applications have
been studied in [157]. IoT use cases of smart home, smart transport, supply chain, smart healthcare, and smart energy
are described in the applicable DLT platform context. Offloading is a vital consideration for EC scenarios. Thus, a
survey is conducted on offloading algorithms in [139] for edge and cloud deployments. The surveys in [39] and [142]
discuss Network Function Virtualization (NFV), Software Defined Networks (SDN), Service Function Chaining (SFC),
and Network Slicing (NS) as MEC enablers; where focus on security is not comprehensive.
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Ferrer et al. in [38] presents a concise comparison between MCC, Mobile Ad hoc Computing, and EC to emphasize
the novel aspects of decentralized cloud approaches. Reliable resource provisioning problem with edge-cloud computing
environments is addressed in [29]. More emphasis is drawn to the machine learning as a solution for workload
characterization, workload prediction, component placement, system consolidation, and application elasticity aspects
of prevailing resource provisioning approaches. Knowledge on IoT based communication protocols such as Message
Queuing Telemetry Transport (MQTT), Advanced Message Queuing Protocol (AMQP), Extensible Messaging and
Presence Protocol (XMPP), Data Distribution Service (DDS), Hypertext Transfer Protocol (HTTP), and Constrained
Application Protocol (CoAP) are imperative for realizing the formation of 5G based use cases. A comprehensive survey
is conducted in [27] on such IoT protocols emphasizing their characteristics, and performance issues in the context of
fog and cloud computing integration.

Khan et al. in [64] addresses security and privacy advancements of 5G in the viewpoint of novel technologies of
SDN, NFV, NS, and MEC. This survey has investigated the Physical Layer Security (PLS), security monitoring and
management, privacy, and security standardization aspects of 5G to a comprehensive extent. Though, 5G based use
cases are not considered in their scope. Ranaweera et al. in [110, 111] present a comprehensive inductive research
on MEC security and privacy aspects, considering real-world MEC deployment scenarios accustoming to the ETSI
standardization. Despite their holistic nature, their work does not focus on the 5G use cases that this article is introducing.
The use cases of industrial automation, Intelligent Transport Systems (ITSs), Virtual Reality (VR), smart girds, e-health,
and education are considered in [100] on the latency requirement perspective. Though this survey states the latency
requirements of each use case, their security issues and prospects on edge computing has not been addressed.

1.2 Scope and Contribution

In this survey, we are exploring the security vulnerabilities of 5G use cases deployed in accordance to MEC based
scenarios. The use cases of critical infrastructure based services, enhanced Mobile Broadband (eMBB), massive Machine
Type Communication (mMTC), Autonomous driving/ Vehicle-to-Vehicle (V2V) connections, Augmented Reality (AR)/
Virtual Reality (VR)/ Mixed Reality (MR), and Unmanned Aerial Vehicles (UAVs) are investigated for security vulnerabil-
ities. Further, prevailing security solutions are mapped as solutions and countermeasures for each use case. This is the
main contribution of this research as current literature lacks the discussion of security in 5G enabled edge computing
based deployments. Understanding the progress of state-of-the-art industrial and academic projects in 5G and MEC are
vital to realize the adaptation of the scoped use cases. Thus, this paper presents a holistic overview of leading projects.

1.3 Paper Organization

The rest of the paper is organized into 5 sections. Section 2 presents the background on 5G, MEC, and role of MEC
in 5G. Core contribution of this research is contained in Section 3, where use cases are investigated for their security
issues and usable solutions. Section 4 summarizes the details on current research groups and institutions proceeding in
MEC and 5G focused security developments. Insights gained from this survey are discussed in Section 5, while probable
novel applications and challenges for wide adoption of 5G are presented briefly. Finally, Section 6 concludes the paper.

2 BACKGROUND

Despite that 5G and MEC can be operable independently, the integration of them would enable applications and use
cases with requirements of Ultra-Reliable Low Latency Communication (URLLC) capabilities in addition to improved
security and privacy aspects [39]. Thus, assimilation of 5G and MEC standardization is imperative to realize the context
of this paper. The following section describes the key information on 5G, MEC, and the role of MEC in 5G.
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2.1 5G

The data rates of 1 ∼ 10 Gbps, 1 ms round trip latency, enhanced capacity for plethora of connecting devices through
high bandwidth channels, perceived availability of 99.999%, 100% ubiquitous connectivity, improving battery life through
90% energy reduction are major requirements for 5G in the performance perspective [2]. The softwarization of the 5G
core enables the segmentation of functions to a layered architecture with its featured flexibility. The Fifth Generation
Infrastructure Public Private Partnership (5G-PPP) project proposes the five layers of infrastructure, network/ control,
orchestration, business, and services for forming the 5G functional architecture [42]. The orchestration layer however,
is a dispersed function among other layers while services layer can be represented as an extension of the business
layer [64]. The infrastructure layer represents the RAN connectivity portion of the mobile network. The Radio Access
Technologies (RATs) employed in the 5G infrastructure layer are supporting Non-Orthogonal Multiple Access (NOMA),
massive Multiple-Input-Multiple-Output (MIMO), Coordinated Multi-Point (CoMP) transmission, and millimeter Wave
(mmWave) technologies [14, 33]. Control layer inhibits the network management function while network and business
services are assigned to the business layer.

Security measures targeted for ensuring confidentiality, integrity, availability, accountability, authentication and
authorization aspects were implemented with predecessor mobile networks ranging from 2G to Long Term Evolution
(LTE). Though, Information Assurance (IA) policies has become most profound for 5G and beyond networks with
the requisite to assure the content in processing, usage, and transmission in the cyber space [121]. Encryption is
the key security mechanism to ensure security in mobile networks. Encryption schemes of A3, A5/2, A5/3, A8,
Kasumi, SNOW-3G, and Evolved Packet System (EPS) Encryption Algorithm (EEA) along with EPS Integrity Algorithm
(EIA) were such methods employed for confidentiality and integrity protection [64, 81]. Moreover, TS 23.122 and
TS 33.210 specifications are defining the Access Stratum (AS) and Non-Access Stratum (NAS) security functions of
the 3rd Generation Partnership Project (3GPP) based mobile deployments [73]. AS and NAS are functional layers of
the Universal Mobile Telecommunications System (UMTS) and LTE protocol stack. Though, novel mobile network
deployments require the allowance to be dynamically customized in accordance to the specifications of impending use
cases and applications [3]. Thus, architectural amendments in 5G do not permit the utilization of security measures
employed for pre-5G networks [61]. In addition, flash crowd network traffic demand, radio interface security, user plane
integrity, roaming, Denial of Service (DoS) or saturation attacks, and signalling storms are identified as novel challenges
for 5G mobile networks [4]. The heterogeneous nature of 5G enabled devices empowered with IoT technologies are
envisaging massive scalability with cross-platform issues. Introducing novel services and applications are imminent to
attract enormous amount of subscribers; hence contriving a flash crowd demand (unintended surge in subscribers)
situation in the mobile network. Such situations are exploitable by capable adversaries to overload both application and
radio interfaces that mimic a DoS effect[83]. Further, DoS or Distributed DoS (DDoS) attacks pose a service interruption
risk for latency sensitive 5G applications via impeding the service with continuous malicious accessing attempts.
Similar effect is expected from signalling storms, by generating massive amount of signalling traffic in the control
plane; access granted by the intruder from a signalling attack perpetrated at the 5G interfaces. As 5G core network
components such as User Plane Function (UPF) are deployed in line with the edge/ user level, such signalling storms
could sabotage the entire mobile domain [66]. The heightened mobility with 5G devices incur roaming, handover, and
migration situations more frequent. Thus, timing based interposing attacks are imminent on such control channels,
channel assignments, and migration sessions [134]. In addition, malicious User Equipment (UE) and fake BSs launching
masquerading attempts resulting in wormhole, or sinkhole effects are imminent in the user plane [11, 62, 111]. Thus,
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integrity and authenticity of the user plane is paramount for 5G. Solutions such as Host Identity Protocol (HIP) schemes,
mandating global visibility for security policies, Cloud RAN (C-RAN) and EC, isolation of Virtual Network Functions
(VNFs) are adaptable for meeting the security requirements [3, 82, 135]. More details on 5G security can be assimilated
from [12, 30, 37, 40, 51, 81, 144].

2.2 Multi-access Edge Computing (MEC)

In contrast to other edge computing paradigms, MEC edge infrastructure is proposed to be deployed at the Radio
Network Controller (RNC), or the Base Station (BS), or gNodeB (gNB) in 5G terms [104]. Thus, its reliance on MNOs
service quality is higher than the other paradigms. The ETSI defined MEC architecture is formed with two levels that
are deployed along with the BS and the mobile core network entities referred as the edge/ host level and the system
level respectively [35]. These two levels are segmenting the functions of service registration and service provisioning
for improved access and security. Isolating the orchestration function of the entire system from the edge infrastructure,
mitigates the possibilities of holistic system compromise through intrusions. Moreover, an edge infrastructure operating
unburdened by the service registration processes would serve with improved mobility, scalability, availability, and
context awareness [119]. In addition, an edge infrastructure capable of operating standalone or with cloud connectivity,
envisages a very low latency and jitter for enhanced service access [152]. These features of MEC enable the compatibility
and adaptability for IoT based services facilitated with the edge domain [118]. However, these novel structures and
virtualization technologies employed for deploying a dynamic service environment are creating unprecedented issues
in security and privacy context.

MEHMEHMEH

User Application Life-
Cyle Management

Proxy

Operations
Support
System

Customer Facing
Service Portal

Mobile Edge
Orchestrator

Mobile Edge Platform
Manager

Virtualization
Infrastructure

Manager

Mobile
Edge Host

Mobile Edge
Platform

ME
App

Virtualization
Infrastructure

MEC
Edge /
Host
Level

MEC
System
Level

ME
App

ME
App

Internet

User
Equipment

Fig. 1. MEC Operation and Structure

The MEC operational structure depicted in Fig. 1 represents the various entities defined by the ETSI for accomplishing
classified tasks at the edge and the core [110]. The functions approving, rejecting, and managing service requests
are handled by the entities of User Application Life-Cycle Management Proxy (UALCMP), Customer Facing Service
Portal (CFSP), and Operations Support System (OSS) at the core. Mobile Edge Orchestrator (MEO) is orchestrating the
entire MEC system under its domain. The edge system is governed by Mobile Edge Platform Manager (MEPM) while
Virtualization Infrastructure Manager (VIM) is acting as the hypervisor for the edge environment. Mobile Edge Hosts
(MEHs) are virtual entities that are configured for the subscriber service requirements; which perpetrates the actual
storage and processing operations in the MEC system. Service instances instigated by the User Equipment Applications

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Pasika, Anca, and Madhusanka

(UE Apps) are interacting with its counterpart at a particular MEH called Mobile Edge Application (ME App). Mobile
Edge Platform (MEP) is managing the resources and networking within a MEH.

MEC is built on top of the driving technologies SDN, NFV, Information Centric Networking (ICN), NS, and IoT
[84, 104]. Thus, implementing security for heterogeneous services overlaid on top of the diverse driving technologies
of the MEC is an intricate task. Moreover, extended access capacity at the edge with wireless channels and mobile
offloading/ delegation schemes are elevating the probable penetrative and vulnerable vectors in the edge network that
would be subjected for exploitation by the adversaries [52]. Thus, revealing vulnerabilities and threats in 5G based
MEC deployments should be handled case-by-case for each probable use case of 5G.

2.3 Role of MEC in 5G

Critical
Infrastructure

eMBB/ Video Streaming and Analytics

M2M/ mMTC

Autonomous
Driving / V2V/

ITS

AR/ VR/ MR

UAV/ Drones

5G Core
Network

UHD
Transmission
Multimedia
Streaming/
Demand

Management
Streaming

Traffic
Management

Edge offloaded
Analytics

Sensory/ Actuator
Big Data Analytics

Heterogenous
Access Technology:

inter-operability/
compatibility

 Edge Intelligence:
autonomous

operation
High Scalability

MEC Edge Infrastructure

IIoT

Ultra-low Latency
Autonomous
Navigation

Energy efficient
offloading

Vertical Maneuvering
Decentralized

Controlling
Secure

Communication

Ultra-reliable
Communication
Decentralized

Consumer Model
Flexible

Economic Model
Secure Financial

Platform
Decentralized
Control Matrix
Impenetrable

Control System

Ultra-low Latency
Autonomous Navigation

Advanced Sensor
Fusion

Enhanced Accuracy
Rapid Processing

URLLC
eMBB

UHD Streaming
AR Intensive Offloading

Cross-platform Compatibility
3D featured data Storing/

Processing/ Transmission at the
Edge

Fig. 2. MEC enabled 5G based use cases

MEC plays a key role in realizing the envisaged use cases of 5G. Six use cases, as depicted in Fig. 2, are elaborated in
section 3 for stating the investigated security vulnerabilities in MEC enabled scenarios. As these use cases are offered
as services to the 5G consumers, service quality in terms of QoS and Quality of Experience (QoE) are key factors for
service continuity that eventually decides the pricing /charge of the particular service [22]. Thus, 5G core network
deployment itself cannot ensure the required service quality from these impending applications due to limitations
of access network. As discussed above, MEC and other edge computing paradigms facilitate the infrastructure for
Manuscript submitted to ACM
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enhancing the access interfaces to cater ultra-low latency, real-time ubiquity, security, and privacy aspects of the mobile
network[83]. Though, managing the diverse services that demand various requirements (i.e. low latency is critical for
UAV and V2V applications while reliability, QoS, and QoE are required for eMBB and AR use cases) is a challenge for
MNOs. Network Slicing is a concept identified for achieving this purpose maintaining the QoS and QoE levels specified
by each service [151]. MEC supports the multi-domain globally dispersed services through sliced network deployments
for heterogeneous applications and services [58]. ETSI defined MEC edge platform allows dynamic launching of service
instances configurable for required specifications. Thus, network slice instances can be launched as ME Apps at MEC
host level to enable multi-slice deployments.

3 SECURITY OF MEC USE CASES

In this section, use cases and applications of MEC are considered. For different MEC applications, security vulnerabilities
are investigated while possible countermeasures are presented from the existing literature.

3.1 Critical Infrastructure

Fig. 3. Critical Infrastructure Connectivity to MEC Platform

Critical Infrastructure based services such as energy, water and sewage, offshore oil drilling rigs, financial, and
emergency applications have expanded their scope through digitizing their controlling systemswith IoT technology. Even
industrial sectors are revolutionizing their deployments with novel technologies to copewith the rapid development[133].
Though global expansion of these services to dispersed global clusters constricts the usability of a centralized data
centre for storage and processing. Thus, integrating MEC platforms for critical infrastructure services are probable and
would improve the interfacing of the general public towards the services as critical customer status updating of billing,
consumer usage, and service interruption notifications.
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The energy sector holds the profound significance out of infrastructure services as it energizes all the other sectors and
envisages a sophisticated deployment options with the evolution of smart grid technology. The integration of IoT based
technologies enables the formation of Advanced Metering Infrastructure (AMI) / smart metering / net metering that
overlay a monitoring framework for the smart energy solution [62]. In addition, the incorporation of renewable energy
sources demands a decentralized deployment of power coordinating entities (smart grids) that enforce bi-directional
energy flow through the transmission grids [8]. Thus, employing an effective power utilization scheme is an intrinsic
requirement and achievable through system status analytics on consumer consumption, consistency of the generation,
grid utilization and performance of the operating devices. The consumers are granted the opportunity to utilize their
household utility spending by monitoring the IoT interfacing tools which facilitate the visualization of any incoherent
consumption patterns. The coordinated group of European Committee for Standardization - European Committee for
Electrotechnical Standardization - European Telecommunications Standards Institute (CEN-CENELEC-ETSI) proposed
a Smart Grid Architectural Model (SGAM) for realizing smart energy use cases [76]. Proposed architecture formulates
three dimensions that concatenate five functional interoperability layers with energy sector domains and zones which
accounts for power system management. Thus, the amalgamation of IoT technologies with electro technical devices is
reinforced from this proposal for achieving the ultimate integration of IoT and energy solutions. Moreover, decentralized
nature of smart grids in the energy network and the requirement for minimizing the latency for critical parameter
transmission demands the deployment of MEC. Subscribing MEC services for SCADA based smart grids enable the
connectivity among them across the network for establishing a monitoring and awareness channel to maintain a
balanced energy flow [1]. This approach is capable of alleviating the cost to improve the grid utilization. The consumer
interfacing and remote activation/ deactivation of household electrical apparatus is probable from MEC based ME Apps
that interconnect the smart grids to the Smart Energy Meters (SEMs).

In an era of urbanization, water and sewage treatment is a paramount necessity for achieving sustainable development
facilitated through improved urban sanitation and quality of human life [147]. MEC plays a key role in optimizing
the existing water governance techniques that are attributing complexities due to diversified cost structures formed
by origin of water sources and environmental externalities [91]. One of the most obvious use case for MEC is the
deployment of smart metering infrastructure embedded with Smart Water Meters (SWMs) resembling the AMI setup as
indicated in Fig. 3. MEC edge servers or MEHs are responsible for facilitating a low latency communication platform
between consumer end, water treatment plant and the central monitoring station. Moreover, sensory inclusions in an
automated treatment plant act as a MTC application that is capable of calibrating the control mechanisms to achieve
utilized water governance. However, current water treatment plants employ SCADA systems for controlling the fluid
flow through processes such as debris removal, filtration, recarbination, flocculation, coagulation and chlorination.
Enhanced MTC (eMTC) solutions to establishing communication channels are guaranteed through LTE PHY layer for
SCADA deployments such as in Remote Terminal Units (RTUs) that operate at different controlling structures [24].

Petroleum extraction is a vital industry that caters the fossil fuels which generate combustible energy for energizing
vehicular engines and electricity generating plants throughout the globe. The continuous extraction has led to the
scarcity of natural resources that forced the petroleum industry to shift the drilling process to the offshore reservoirs
where the aquatic resources are still intact [59]. Thus, offshore plants are intrinsic requisites for petroleum industry
despite the precarious conditions granted to the employees. Automation is an approach to be considered for entrusting
the safety of employees at offshore plants. Magnitude of the power dissipation at the heavy machinery demands
the employment of SCADA systems for controlling them. Deploying MEC for expanding the scope and alleviating
the latency for oil drilling services improves the probability of launching eMTC based operating infrastructure at
Manuscript submitted to ACM
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offshore plants. This enables the remote automated operation of drilling devices which are linked through satellite
communication for mitigating human casualties probable at a plant malfunctioning.

Any service infrastructure that utilizes a communication network at its formation is prone to significant security
threats. In 2015, the National Cyber-security and Communication Integration Centre – Industrial Control Systems
Cyber Emergency Response Team (NCCIC/ICS-CERT) witnessed that the attacks on critical infrastructure have steadily
increased over the years [70]. Thus, investigating threats applicable for these application scenarios are critical. Fig. 3
depicts the various critical infrastructure based services and their connections to the MEC serviceable platform.

3.1.1 Security Vulnerabilities. If we remain with the assumption of internal connectivity of these critical infrastructure
facilities are secured by design, their bi directional connectivity with the BS could be the only vector to be considered for
penetration by malicious adversaries. The threats to such connectivity would resemble any intrusion based, intervention,
DoS or Distributed DoS (DDoS) attacks; which are capable of ceasing ME Apps launched in the edge from accessing the
relevant infrastructure services. Due to the higher scale of the applications, the MEC edge level entities should have to
subscribe more than one MEH and the geo-distributed nature would link more than one MEC edge levels or system
levels for a particular critical infrastructure based service. This fact improves the possibility of prone to be attacked or
infected by a malicious agent through the MEC server side.

The dispersed deployment of SEMs across households in an AMI based smart grid installation encourages the adver-
saries to launch interposing attacks such as eavesdropping, modifying and interrupting in the wireless communication
channels additionally to the physical damages effectuated in close proximity [94]. Moreover, Sleep Deprivation Torture
(SDT) and Battery Exhaustion Attacks (BEA) are probable in smart grid environments [44]. Similar affect is imposed on
SWM installations in a smart water governance scenario. However, the nature of attacks is dependent on the deployment
scenario of the critical infrastructure application.

As the core functions of the discussed critical infrastructure based applications are facilitated through the SCADA
systems, the internal security vulnerabilities are common for all cases. The isolated and disconnected nature of SCADA
based systems advocated resilience against cyber-attacks in the past [18]. However, threats and vulnerabilities were
detected with SCADA systems as in the case of the popular worm STUXNET that raised the probability of critical
infrastructure services being vulnerable [93]. Moreover, penetration on the sewage system in Maroochi (Australia),
BlackEnergy Trojan which targeted a Ukrainian power grid, HAVEX malware and command injection attack on
water treatment plant in Kemuri are exemplifying the compromised SCADA systems [72, 128]. The communication
of the SCADA installations is attained by Modbus, DNP3 and Profibus protocols [128]. Cyber-attacks probable on
Programmable Logic Controllers (PLCs) are categorized into Reconnaissance, command injection, response injection
and DoS attacks [72]. In that scenario, MEC system would be infiltrated from the critical infrastructure direction. As an
example, the distributed nature of smart grids would allow an infiltrated smart grid to unbalance the energy load by
feeding misleading information to the edge entities that could lead to catastrophic circumstances.

The connectivity of the critical infrastructure nodes with the BS in the proximity should be secured with extensive
cryptographic means due to their criticality and inherent resources. The priority for communication protocol would be
the secureness in spite of latency and bandwidth usage. Though the security measures to be adopted internally are
different from one application to another.

3.1.2 Existing Solutions. Yang et al. in [147] proposed a model for a smart sewage plant operating on intelligent and
picturesque SCADA system where sensory devices are employed for conveying monitoring statistics to the intelligent
control systems. A high speed and reliable networking platform is formulated to maintain the connectivity between the
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SCADA based control system and the sensing devices. Features such as Real time regulation for optimizing, intelligent
decision making, efficient security analysis, self-healing/ correction, superior effluent quality, humanized and visualized
inter-operable platform are the intended objectives of the proposed model.SWMs are used to measure the consumer
water consumption while updating the central monitoring stations as illustrated in Fig. 3. As malware are definite
threats to SCADA systems, the approach instated by Shirazi et al. in [128] for detecting anomalies in SCADA systems
employing machine learning techniques is a prominent solution. The K-Means and Naive Bayes are configured in their
supervised mode while Principle Component Analysis using Singular Value Decomposition (PCA-SVD) and Gaussian
Mixture Model (GMM) techniques are configured to their unsupervised mode. The precision values of the machine
learning techniques are evaluated against naive and complex response injections, malicious state/ parameter and
function command injections, DoS, and reconnaissance anomalies methods in a gas pipeline simulation model[103, 131].
In addition, as Virtual Network Functions (VNFs) are imminent to be deployed in edge infrastructure in line with
SCADA systems, cryptographic means to support VNF isolation and shielding for security critical function over less
critical functions are important in the context of MEC [11].

Hussain et al. in [59] introduced an edge computing based resource allocation model to utilize the existing cloud
data centre based latency prone systems which communicated through satellites. Task scheduling policies such as
First Come First Server (FCFS) and Shortest Job First (SJF) are considered for remote operations controlled at the edge
level through a VM based coordinator to minimize the reliance on onshore distant resources. Proposed heuristics are
analysed for various workload conditions.

Leligou et al. in [75] proposed a framework that comprised the four layers: energy layer, telecommunication layer,
VNF layer and the application layer. The framework is employing MEC as an expanded Multi Radio Access Technology
(RAT) xMEC deployment for enabling offloading where blockchain based VNF Descriptors (VNFD) are acting as
process tags to achieve traceability in the energy layer. However, the deployment scenario for xMEC offloading is not
convincingly explicated to validate the applicability of the framework for smart grids.

Saez et al. in [122] propose a framework called System-level Manufacturing and Automation Research Test-bed
(SMART) that is controlled through PLC over an IP network engaging the OPC UA protocol in diagnosing and detecting
anomalies in the data extracted from the data sourcing devices: CNCs, RFID sensors, cameras, and conveyors. According
to the data processing framework; data transforming, analyzing, storing and image processing tasks are conducted at
the edge servers for enhancing the efficiency of the smart system. Thus, probable integrating scenarios with different
PLC based technologies validate the deployment as a critical infrastructure solution.

Experimental setup was orchestrated by Oyekanlu et al. in [97] for determining channel capacity in an edge computing
scenario to evaluate the performance of various IoT devices. The channel capacities in terms of SNR for edge computing
use cases: smar grids ( for periodic, non-periodic, and synchronized phasor management units) and IIoT are formulated
assuming wired transmission channels. The results of this conduct are influential for manufacturers in spite of lesser
number of loads been considered.

The blockchain model proposed by Gai et al. in [44] were focusing on energy security in smart grid environments.
The intended objective of the system is to detect improper energy usage patterns to prevent probable energy related
attacks such as SDT and BEA. Blockchain technique is applied to form a network resembling a Smart Grid Network
(SGN) that is capable of achieving optimal resource management.
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Fig. 4. AR and Video Streaming Applications with MEC

3.2 Enhanced mobile broadband channels/ Video Streaming and Analytics/ big events

Video stream analysis based applications such as vehicular license plate recognition, face recognition and domestic
surveillance which require high computational complexity for their algorithms to be reliant on UHD transmissions
[88][1]. Mobile gaming applications based on VR and AR integration are probable deployments for high level video
streaming UHD channels that endanger the bandwidth provisioned for priority services. Cisco predicts that the share
of mobile video streaming would be increased rapidly while the bandwidth saving approaches to Over the Top (OTT)
streaming channels are identified as intrinsic preliminaries to form multimedia channels [87]. The crowd sourcing
based media are uploaded into the servers through multimedia channels precipitately as in; 72 hours of video content
uploaded to YouTube, 2.4 million pieces uploaded to Facebook, 347,000 and 216,000 images uploaded into WhatsApp
and Instagram in a minute [16]. Moreover, consumer bandwidth has extended from single view to multi-view, 2D to 3D,
and single source stream representation to adaptive multi-bit-rate multi-resolution representation. Thus, necessity to
implement measures for utilizing the bandwidth from OTT streaming services is a manifesting predicament. There
are two scenarios where the video streaming applications are deployed. Peer-to-peer (P2P) streaming traffic routed
from an eNodeB serviced by a MEC edge level platform is conveyed to a UE directly that would save the backbone
capacity and traffic of the network operator. In case of big event streaming, the streams are digested at a MEC host
service subscribed by a local video production studio that would convey the streams to the UEs. This approach however,
could be subjected to amendments by the video editors. Fig. 4 is representing various AR and video streaming based
services that are capable of deploying under a MEC service infrastructure.

3.2.1 Security Vulnerabilities. A confiscated video stream is probable for embezzlement by the attackers for distilling
counterfeited credentials that would violate the integrity of the content [70]. A news feed manipulations result in
misleading circumstances for the viewers and would be critical depending on the entropy of the information. As most
video streaming traffic are generated from crowd-sourcing applications, an infected UE poses the threat of multi-casting
malicious content acting as an egress point through the video streaming channels. The majority of the social media and
crowd-sourcing accounts are not equipped with strong password based credentials. Thus, phishing type attacks are
capable of commandeering such accounts that violate integrity. Video streaming channels however, is encoded with
an acceptable level of encryption. It makes the interposing attacks less probable. As streaming content are stored and
processed in MEHs, malicious agents could be conveyed via UEs engaged in various applications mentioned above.
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This type of attack results in compromising the edge infrastructure. Moreover, an infected ME App that processes the
streaming content is capable of convincing the MEP and VIM to allocate unnecessary resources to exhaust the system.

3.2.2 Existing Solutions. Makinen in [87] proposed a business model for video streaming in events handling incorpo-
rating MEC service platforms. The business model is analysed in terms of service, technology, organization, and finance
designs for P2P and big event streaming scenarios. Bilal et al. in [16] presented solutions for interactive multi-view
streaming and gaming communities incorporating edge computing deployments. Interactive multi-view/ free-view
video, video stream transcoding, and cloud gaming scenarios are considered for identifying edge technologies that
involve techniques such as Muti-view Video Coding (MVC), Interactive Multi-view Video Streaming (IMVS), Content
Delivery Networks (CDNs), and Adaptive Bitrate Streaming (ABR). Ren et al. in [116] investigated the latency minimiza-
tion problem in a multi-user time-division multiple access Mobile Edge Computing Offloading (MECO) system. Three
computation models: local compression, edge cloud compression, and partial compression offloading are formulated for
optimizing video compression mechanisms analogous to video streaming deployments.

3.3 Machine to Machine (M2M) and massive Machine Type Communication (mMTC) links in IoT

ICD
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Vital Sign Extractors
Step Counter

Hospital

Wireless Body Area
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Regional Weather
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Automated Weather 
Station (AWS)

Temperature
Wind Speed/ Direction
Humidity
Rainfall
Atmospheric Pressure
Radiation

Central 
Industrial
Monitoring 
Station

Factory Control Station

D2D D2D

Automated Process Line
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Motor Controllers
Processors
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Thermal
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Fig. 5. MTC integration with MEC

Applications such as e-healthwearables, IoT devices and entire range ofmachine controlled automated communication
deployments are considered under this application [62]. The perception level of the majority of IoT applications is
composed of sensory devices and actuators which rely on M2M communication for data transferring and conveying of
control signals. The devices engaged in M2M communication are called Machine Type Communication Devices (MTCDs)
by 3GPP. The access network facilitated for most MTCDs is non-cellular technologies which are Ultra Wideband (UWB),
WLAN, ZigBee, Bluetooth, Low Power Wide Area (LPWA), Long Range (LoRa), Narrowband IoT (NB-IoT) or Wireless
Body Area Networks (WBANs) in case of e-health applications [21],[138],[79]. The realization of IoT based services
covers the extent of communication types which are ranging from Human-to-Human (H2H), Human-to- Machine (H2M)
or vice versa and Machine-to-Machine (M2M) [21]. Though a typical MTC architecture instigates two communication
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scenarios: between MTCDs and MTC servers or inter-MTCD D2D type [28]. Healthcare applications such as health-
assisting humanoid robots, remote surgeries and remote patient monitoring are plausible with MEC MTC deployments
which uses WBANs for monitoring e-health statistics [104]. The types of MTCDs employed in WBANs are Implantable
Cardiac Defibrillators (ICD), pacemakers, neuro-stimulators, gluco-meters, oximeters and vital sign monitors [138].
These heterogeneous bio-sensors, which are attached to different parts of the human body are communicating to the BS
through a Machine Type Communication Gateways (MTCGs) using non-cellular network technologies. Fig. 5 illustrates
various applications plausible for integrating into a MEC system.

3.3.1 Security Vulnerabilities. MTCDs inherit three main vulnerabilities. They are: communication media (such as
wireless radio which would be subjected to eavesdropping), resource scarcity regarding power and processing. Nano-
networks are limiting the usage of powerful security schemes such as X.805 and translation sequences for security
protocols between wired and wireless communication networks to preserve power consumption [21],[138]. Attacks
such as DoS, jamming and data tampering targeted at nano-nodes in a WBAN are plausible. An exploited WBAN
or a MTCG would penetrate the BS and misinform ME Apps operated under the e-health applications in MEHs by
risking the health of patients. Moreover, DoS or jamming attacks targeting a WBAN would cause service disruption
of the corresponding ME Apps. Moreover, industry based MTCDs are prioritizing the longer operating time over the
throughput [79]. Thus, the scarcity of computational resources in MTCDs is preventing the employment of strong
security mechanisms. All these facts and diversity of communication protocols employed by MTCDs are improving the
probability to penetrate the MEC system by malicious content.

3.3.2 Existing Solutions. The SMART framework proposed in [122] facilitates data extraction, transformation and load
process for a plant floor data sourcing strategy. This deployment is capable of launching OPC-UA and MTConnect
MTC protocols for extracting data from devices such as CNC, RFID, robots, sensors, gantry, conveyor, camera, Variable
Frequency Drives (VFDs), and energy meters. Integration of edge computing utilize the storage, communication, control,
configuration, measurement, and management processes while data analysis based on geometry, event, and signals are
orchestrated for data reduction.

Li et al. in [79] proposed a novel framework that integrates M2M communication with MEC in a virtualized cellular
network for offloading MTCD computational tasks towards the edge to utilize the energy consumption. Connectivity
among the four layers: physical resource layer, NFV layer, virtual network layer, controller layer, and the application
layer are established from the conjunction of Wireless Network Virtualization (WNV) and SDN technologies. The
random access process is formulated employing Partially Observable Markov Decision Process (POMDP) to optimize
the cost in terms of energy consumption and computation execution time. Moreover, a new technology called embedded
Subscriber Identity Module (eSIM) is integrated into the MTCDs that offers the switching ability among virtual networks
considering their distinct features and QoS requirements. Zhang et al. in [154] proposed a statistical delay bounded
QoS provisioning scheme for two types of mobile data offloading scenarios : WiFi offloading and D2D offloading. This
offloading scheme intends to be deployed on edge computing mobile wireless networks. The D2D offloading scenario is
applicable to MTC deployments that require off-site processing environment due to resource scarcity in MTCDs. Th
effective capacity and the optimal probability of using D2D offloading scenario is modeled mathematically to forecast a
QoS guarantee for D2D based edge deployments.

Dong et al. in [28] propose an ICN approach to support anycast services in the core network through the MTC
engagement at the mobile edge network located at the eNodeBs. Network softwarization is established from slicing of
different service layers managed from an orchestration entity and a slice controller. A cropland monitoring use case is
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considered for formulating the solution where a protocol is proposed to indicate the intended message flows among
the entities eNodeB, SGW, PGW, MTC server, and MTCDs. The results suggest that the bandwidth saving is higher
at lower anycast update intervals times. Braeken et al. in [19] proposes an Edge Supportive Secure MAR (ESSMAR)
architecture to assist doctors with additional information via MAR means to conclude the diagnosis. It is obvious that
medical/healthcare information is extremely private, and should be protected against external parties. Thus, ESSMAR is
included of a registration/ authentication key management scheme that was validated against MitM and replay attacks
through AVISPA verification tool. The security analysis conducted among the mobile devices, edge server, cloud server,
and underlying networks has given valid insights in formalizing the ESSMAR protocols.

3.4 Autonomous driving channels / connected vehicles and Vehicle to Vehicle (V2V) Connectivity

Fig. 6. ITS integration with MEC

The V2E adaptation is an initiative taken for Intelligent Transportation Systems (ITS) [102]. Vehicular Networks
(VNs) that form the ITS deployments have its distinct place in 5G context [136]. Employing MEC system or any
other edge paradigm for launching V2E applications is a certain fact due to its requirement of ultra-low latency and
reliability [104]. The 3GPP defined connected vehicles technology is focused on enhancing safety, reducing traffic
congestions, sensing vehicle behavior and servicing other vehicular value added services by offloading computational
and geo-distributed services to roadside BSs or Infrastructure to enable autonomous driving with data connectivity
that attribute the alleviated latency [88]. Though, with envisaged drastic development, transportation industries are
becoming conspicuous cyber-targets for adversaries due to their rapidly evolving mobility structure as concluded by
the report from IBM X-Force and Transport Systems Catapult [45]. The smart sensors deployed in vehicles enable the
Advanced Driver Assistant Systems (ADAS), which is introduced as the preliminary stage of self-driving applications
[145]. The embedded features that attribute to 100 million lines of program code and processing ability of 25 GB data
per hour improves the feasibility for deployment [74]. Vehicle automation approaches are entirely reliant on sensors.
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As sensors being electronic devices prone to be penetrated by adversaries, any successful malicious penetration could
result in vehicle collisions, traffic congestions or damages to properties or human lives.

The connectivity between the vehicles is different from the connectivity from a vehicle to the BS. The protocols
and the communication technology employed for this connectivity depends highly on the manufacturer. Though, in
the United States the standard for V2V connectivity is Dedicated Short Range Communication (DSRC) technology
which would transmit location, direction and speed of the vehicle to the nearby vehicle [137]. The intention of this
V2V deployment is to provide early warnings to imminent accidents detected through a smart system embedded in the
vehicles. Fig. 6 depicts the wide range of aspects in ITS deployments integrated with a MEC system. Further, possible
attack vectors are indicated in an illustrative context.

3.4.1 Security Vulnerabilities. vehicular entities are prone to attacks which could be launched in the proximity of the
targeted device as physical damage, hardware Trojans and side channel attacks. These attacks could grant access to the
communication devices of the smart vehicles which are in direct connection to the Engine Control Unit (ECU) of the
vehicle. The infiltration of the ECU could lead to circumvention of the safety critical systems in the vehicle [102]. Thus,
influencing the ECU with false statistics in case of an autonomous or semi-autonomous driving could endanger the
vehicle and the passengers travelling in it. Moreover, false information could be conveyed by an infected system to a
ME App operated under a MEH for causing vehicular accidents with malfunctioning automotive processes.

The threats plausible for vehicles are mainly targeted at the different systems in a vehicular entity; such as GPS
(spoofing and jamming), in-vehicle devices (malware, head unit attack), acoustic sensor (fake noises or interference),
radar (jamming, repeater, chaff and smart materials), LIDAR (jamming and smart materials), Odometric sensor (magnetic
or thermal), and electronic devices (EMP) [102]. Attacks such as dictionary, rainbow table and brute-force attacks to
extract the passwords or keys, DoS or DDoS attacks for service disruption, protocol based attacks targeting Controller
Area Network (CAN) or FlexRay and Rouge updates where the adversary targets the ECU firmware are plausible attacks
on software perspective [99]. Out of those, attacks focused on in-vehicle, GPS and electronic devices are significant
for MEC based connected vehicle deployments. Apart from service disruption of self-driving applications, latency
precipitated from these interposing or jamming attacks would still be crucial for connected vehicle applications.

"Uconnect" is a remote monitoring and controlling in-vehicle connectivity tool that maintains a link with the internet
from ECU for facilitating drivers the off-the-vehicle access. The same link with the internet is prone to exploitation for
compromising vehicular controlling (brakes, steering, and lighting) and peripheral ECU / Bluetooth based infotainment
systems that improve the plausibility of impregnating user mobile devices [45]. The traditional measures for protecting
the vehicular systems are inviable due to the evolving softwarize infrastructure of the connected vehicle concept.

The mobility of the connected vehicles would be a major concern as their speeds and direction are changing rapidly
with their movement. This mobility aspect of V2E applications are prone to threats of frequency hijacking of roamed
channel, masquerading during handshake, and VM migration attacks presented in [69]. The causes of this threats could
result in traffic congestions, accidents, property damages, or human casualties with the latency caused by mobility.

An infiltrated vehicular communication device is capable of injecting false information with the intention of causing
accidents. A threat originated at a vehicular sub system for propagating a malicious agent to the MEC system is
facilitated by the intrinsic circuitry of novel V2E deployments. As these embedded circuits are enriched with resources,
connectivity and coverage for infiltration could be achieved. But the threat origination could incur at a vehicle which is
not connected to the BS directly. The wireless links established between the vehicles in close proximity are vulnerable
to jamming or interference attacks which disrupt the V2V communication links entirely. However, the possibility of
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a V2V link being subjected for intervention based attacks such as MitM and relay would be less probable due to the
speeds where the vehicles are travelling.

3.4.2 Existing Solutions. To counter the security threats on ITS deployments, security procedures and algorithms have
been defined in the IEEE Wireless Access for Vehicular Environments (WAVE) standard which are followed in US and
Europe under ETSI [60]. This standard proposes an ECC based schema for certification and encryption where the
wireless technology IEEE 802.11p is used for secure communication. An adversary is capable of exploiting even the
smallest sensors inbuilt in a vehicle such as ultrasonic sensors which are used to detect the short range distances for
assisting parking. Xu et al. suggested two defense strategies for vehicular sensory systems. They are; single-sensor based
Physical Shift Authentication (PSA) scheme that verifies signals on the physical level and Multiple Sensor Consistency
Check (MSCC) that employs multiple sensors to verify signals on the system level to overcome the probable attacks on
ultrasonic sensors such as random spoofing, adaptive spoofing and jamming attacks [145].

As an initiative to achieve the efficiency guaranteed by Vehicular Delay Tolerant Networks (VDTNs), Kumar et al. in
[67] proposed a system architecture which integrates the smart grid environments with MEC based hosting platform
for various applications commandeered by mobile devices that are operating within the vicinity of Plug-in Hybrid
Electric Vehicles (PHEVs). The architecture consists of four layers where the edge data centers responsible for data
storage, file services and CA servers for legitimizing secure entities are included in the third layer. Smart charging
functionality is modeled for PHEVs using the Bayesian cooperative coalition game approach in which the throughput
increased by 10-15 % while 20% and 10% decrements are obtained for response time and incurred delay respectively.

Grewe et al. in [47] discussed MEC as a solution to alleviating the cost and latency associated with the resource
heavy algorithms executed at the cloud in Electronic Horizon (EH) ADAS systems. The strategy involves offloading the
EH instances to the Base Transceiver Station (BTS) or the Road-Side Unit (RSU). This enables mobility independent
data retrieval and virtualized services with Information Centric Networking (ICN) integration. Security and privacy
challenges in relation to the ICN integration are identified in the paper.

Cao et al. in [20] introduced a MEC based supporting architecture for Electrical Vehicle (EV) charging that employs
RSUs as edge elements to orchestrate the operations: disseminating Charging Station (CS) availability to EVs, information
mining and aggregation for EV charging reservations. A protocol for signaling is designed between the entities CS,
Global Controller (GC) located in the cloud and RSU, EV operating in the edge network. A process flow for charging
was introduced in use of 4 algorithms and a scenario was simulated considering an area of 4500 × 3400𝑚2 in Helsinki.

Aissioui et al. in [6] conceptualized the Follow Me edge-Cloud (FMeC) directive amalgamating the MEC and Follow
Me Cloud (FMC) concepts that sustain the requirements of 5G automotive systems. The envisioned FMeC architecture
enrolls PMIPv6 domains that serve edge cloud services and links to the vehicular entities from eNodeBs covering the
domain area. Performance was evaluated from a simulation to model mobile network environment, vehicle traffic
environment, and network communication model that employed the tools MONeT++, INET, SimuLTE, and Veins.

3.5 Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality (MR)

Out of encompassed 5G service categories: enhanced Mobile Boradband (eMBB), massive Machine-Type Communication
(mMTC), and Ultra-Reliable and Low-Latency Communication (URLLC); mobile VR, MR and AR are use cases of eMBB
and URLLC which guarantees the ultra-reliability for the considered applications [32, 132]. As a 5G use case AR, VR,
and MR are facilitating the services of providing immersive and interactive experience for: 5G hotspots, in-vehicle
infotainment systems, and gaming for educating / instructing [89]. The VR refers to a 100% simulated visualization
while AR and MR are differing by the extent of virtualization overlaid with digitization on visual perception [32]. A
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typical VR Head Mounted Display (HMD) occludes the users’ field of view and positions the virtualized elements
through eye and head movement tracking. In the current market, VR services are delegated to the low cost mobile
devices such as Samsung Gear VR and Google Cardboard while Oculus Rift, HTC Vive or PlayStation VR are high
quality streaming products with latency sensitivity. The Motion-to-Photone (MTP) latency exceeding 15 - 20 ms for
image rendering causes motion sickness for users through conflicted signals precipitated on Vestibulo-Occular Reflex.

Latency < 10 ms, bandwidth > 1 Gbps and cell capacity > 500 connections are the requirements for ensuring the AR
services with performance factors of screen response ≈ 2 ms, sensory extractions ≈ 1 ms, refresh rate at 120 fps ≈ 8 ms,
and network RTT processing ≈ 2 ms for AR to be deployed as a 5G use case [89]. Basic function of an AR mechanism
is to combine digital data generated through computed processing to the physical reality that intensifies the human
experience. AR applications have adopted mobile technologies such as Layar, Junaio, Google goggles and Wikitude
to enable its integration towards MEC [1]. Error diagnosing in industries and fixing, remote live supporting by the
Original Equipment Manufacturer (OEM), Human-Machine-Interface (HMI) functionality for machine operation and
virtual training for operators are few plausible use cases of AR and VR applications in the industries [70]. Typical AR
process requires five critical components operate: video source (mobile camera), tracker (position tracker of the user),
mapper (modeling of the environment), object recognizer (known object identifier) and a renderer (processing of the
frames) where the components other than the locally deployable video source and the renderer could be hosted in the
MEC server for computer intensive offloading [88].

An AR deployment on MEC test-bed has shown the latency and energy consumption reduction by 88% and 93%
respectively through computational offloading [85]. This result is increasing the plausibility of integrating AR applica-
tions with MEC. Moreover, web-based AR (web AR) is an approach that overcomes the cross-platform and extensive
provisioning limitations that are inherent with device-based and app-based AR applications. MEC is a patent deployment
option for web AR that is envisioning to achieve 1 ms latency with 5G integration [105].

3.5.1 Security Vulnerabilities. The main threats plausible in AR applications are accessing and unauthorized manipula-
tion of the video streams; where the attacker could easily distill the sensitive data of the users while manipulations of
the video streams could lead to critical failures in machinery in industrial applications [70][88]. Thus, an exploited
streaming channel between the MEC servers and the AR applications could confiscate the content in MEC hosts, which
would infect the streaming traffic conveyed to other AR users in the proximity operated under the ME application. An
infected ME App would manipulate the MEP and MEPM of the MEC servers to allocate more inessential resources for
the particular application resulting service interruption of the MEC Hosts. Conversely, the privacy of both physical
and virtual worlds of AR and VR users is a great concern [71]. Other than the private information such as credit card
details, banking and personal passwords, virtual information composing the behavioral patterns (pulse and eye tracking
enabling sensitive inferences [71]) would be a critical security concern. The interposing of any high bandwidth channel
is conceivable for attacks such as MitM, impersonation, malicious node inspection, relay attacks and any attack plausible
for intervening communication channels.

3.5.2 Existing Solutions. Langfinger et al. in [70] proposed a secure architecture for industrial AR applications to be
compatible with Industry 4.0 standardization. In the deployment, an industrial automation device (as a Programmable
Logic Controller (PLC)) is securely connected to a mobile device which would convey the camera frames into the edge
server through the AR pipeline. After pose estimation, 3D registration, and rendering processes, AR output is visualized
at the mobile device transferred in the same secure channel. Measures such as prohibition of parallel connections that
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links the UE and the edge, one directional information flow as in data diodes, using Transport Layer Security (TLS)
protocol, and dynamic assignment of permissions for UE are proposed to enhance the security in this solution.

Qiao et al. proposed a framework in [105] for integrating web AR with MEC. The framework is formed from
terminal, edge cloud, and remote cloud levels. The terminal level is pursuing the service scheduling and processing tasks
while image capturing, image matching and 3D rendering are performed under processing operation. The edge level
orchestrates the AR object deployment, destruction and support functions while the remote cloud level is provisioning
generalized services in terms of resource management. A performance evaluation conducted employing Samsung Note
4, Wi-Fi and Alibaba cloud for launching the MEC framework revealed the effectiveness of edge computing compared
with cloud computing.

The computational intensive and delay sensitive features of AR deployments prompt the issue of battery life time on
AR devices. In order to address this predicament, Al-Shuwaili et al. in [7] formulated a model for offloading AR tasks
to a cloudlet operating in the edge to alleviate the computational and communication overhead thereby utilizing the
energy consumption. Successive Convex Approximation (SCA) scheme is adapted to allocate the resources in the AR
process in an energy efficient manner.

Elbamby et al. in [32] investigated a use case for multiplayer immersive and interactive VR gaming scenario for
assessing the URLLC performance that employs edge computing and mmWave Access Points (mmAPs). In the gaming
environment, the location and orientation of VR Players (VRPs) are are tracked and mapped into the virtual space
using the mmWave head-mounted displays (mmHMDs). MEC network is formed to perform the offloaded real-time
computing tasks that are conveyed through the mmAPs.

Eventhough the MEC paradigm improves the network responsiveness of the VR applications through alleviated
latency, saving the communication bandwidth is vital for the network to avoid congestions. Conversely, leveraging
computation and caching resources in mobile VR devices are an approach of sustaining the transmission efficiency.
Thus, Yang et al. in [148] proposed a communication constrained MEC framework that utilizes the consumption of
resources in the mobile VR devices through the exploitation of caching mechanisms in the edge servers. Lyapunov
theory was used to produce the offloading decision optimization algorithm which acts as an optimal task scheduling
policy, while the task requests are modeled as a Bernoulli process among other mathematical scenarios considered.

3.6 Unmanned Aerial Vehicles (UAVs)

UAVs play an increasingly important role in various scenarios such as photography, disaster response, inspection,
monitoring, precision agriculture, military, communication relaying, traffic control, and disaster relief services [88][52].
Tasks such as disaster relief efforts, detection of damaged reactors in the Fukushima nuclear power plant, real time
sensing of radiation levels, and status assessment of the neutralizing program was orchestrated by UAVs during
the Japans’ East great earthquake [92]. Federal Aviation Administration (FAA) is predicting the amount of UAVs
to be sold annually to 4.3 million by 2020 as an indication on the extent of applicability for UAVs [41]. UAV based
communication deployments attribute: the Line-of-Sight (LoS) transmission attained by hovering to targeted locations,
dynamic deployment ability that features robustness to climatic effects and nullified costs for site installation in case of
an acting BS, and UAV-based swarm networks that facilitate ubiquitous connectivity to ground users with high flexibility
and various provisioning options [77]. UAV operations are categorized as Low Altitude Platforms (LAPs) and High
Altitude Platforms (HAPs) that are distinguished on altitude, computation, coverage, power, capacity and endurance
capabilities. Moreover, Size, Weight and Power (SWAP) of UAVs are constraints for attaining desired performance
metrics. The priority of the UAV is to conserve its battery life for flying while offloading the computational or storage
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content to the MEC servers for processing [104]. Thus, employing strong cryptographic primitives or prolonged security
protocols would be infeasible. The controlling link to UAVs could be maintained from a ground station or by a remote
station controlled through a MEC system. Fig. 7 illustrates various UAV enabled applications in addition to embedded
components of a UAV plausible for exploitation and attack vectors.

3.6.1 Security Vulnerabilities. In this application, the usage of cryptographic primitives would be limited due to the
requirement of preserving power (e.g. drones). Concisely, threats plausible for UAVs are categorized under Electronic /
Electromagnetic, Cyber and Physical (ECP) spaces [41]. Most common type of attack plausible for drones or UAVs is the
GPS spoofing attack, in which fake GPS locations are sent to the UAV for misleading or crashing the object. Approaches
to bypass the cryptographic measures with electromagnetic, optical, or acoustic emanations called compromising
emanations are mentioned in [41]. Apart from that attacks such as malware, key-loggers, blinding the sight of the
remote pilot with laser, identity spoofing, cross-layer, multi-protocol and various DoS or DDoS attacks focused on
exhausting the battery of the UAV is plausible [52, 108]. In the two methods where UAV maintains direct connectivity
with the BS for controlling or computational offloading, the connectivity could be subjected to interposing attacks
plausible on the air interface [110]. The threats towards the MEC system from UAV based attacks can exist with the
computational offloading method where a malicious agent could be propagated to the MEH for manipulating ME Apps.
Any successful attack could result in UAV crashing that cause damages to property or human lives.

3.6.2 Existing Solutions. Fouda et al. conducted a comprehensive assessment for plausible attacks on UAV Systems
(UAS) focusing on Software Defined Radio (SDR) based UAS architectures [41]. Hooper et al. in [56] proposed a multi-
layer security framework that integrates the Open System Interconnection (OSI) model layers with the Linux operating
system kernel to secure the Parrot Bebop type UAVs from the exploits buffer overflow, DoS and Address Resolution
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Fig. 7. Applications and Security of MEC based UAV
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Protocol (ARP) cache poison attacks. Penetration tests have been undergone in addition to introducing a watchdog
timer to utilize the CPU operations to the navigational processes and anti-spoofing mechanisms to the UAV access
point.

Motlagh et al. in [92] proposed a crowd surveillance method adopting UAVs and face recognition techniques for
detecting crimes, vandalism, and terrorist acts. In this case, MEC servers are deployed alongside a BS for offloading the
surveillance processing tasks to utilize the battery life of UAVs. In the experimental setup, a hexa-copter used as the
UAV is embedded with a camera, LTE modem, computing and sensory inclusions for flight controlling. The access to
the MEC server is facilitated from a LTE eNodeB while the face recognition process is operated at the ground control
station. Local Binary Pattern Histogram (LBPH) algorithm is employed for face detection while the results demonstrated
a significant reduction in energy consumption and processing time.

Garg et al. in [45] proposed a load balancing system for vehicular edge processes where UAVs are used as intermediary
hubs for transmitting information for processing and surveillance activities. The system includes the entities: vehicular
entity, UAV, dispatcher, edge devices, cryptographic entity, and the aggregator. The main steps of the model are
authentication, balance load distribution, data processing, encryption, decryption, aggregation of data, and decision
delivery to the vehicle through the UAV. A triple-Bloom-filter is used to launch a fast service processing platform
between the vehicles and UAVs for distinguishing traffic, alleviating E2E delay, and enhancing authentication mechanism.
The experiments conducted in a vulnerable environment with 100 possible attack vectors concluded the improved
factors: computation time complexity, time complexity, delay, and precision.

Inspired by the Wireless Power Transmission (WPT) technologies and their usability on MEC use cases, Zhou et al. in
[155] introduced a novel UAV-enabled wireless powered MEC system for prolonging the operational time of the energy
limited mobile devices. UAVs are transmitting wireless energy to UEs that are located in the coverage area, where
the UEs are granted the ability to leverage the harvested energy to perform computations or offloading tasks. A 3D
Euclidean coordinate system and Time Division Multiple Access (TDMA) protocol is adopted for formulating the model.
Moreover, energy minimization, computation offloading, CPU frequency optimization, and trajectory optimization are
studied employing Sequential Convex Approximation (SCA) technique and Karush-Kuhn-Tucker (KKT) conditions. The
simulated results suggest a decremented total energy consumption of UAVs in the proposed scheme compared with
two other schemes. The minimization however, is not significant. Security challenges for MEC based 5G use cases are
specified in TABLE 1. Further, security countermeasures / best practices adoptable for MEC use cases are tabulated in
TABLE 2.

4 MEC AND 5G RELATED PROJECTS

The MEC initiative is evolving around Europe as most of the companies which collaborate to standardize the concept
are European institutions including the ETSI. Thus, it is conspicuous that most of the MEC based projects are formed
around Europe. The European 5G Infrastructure Public Private Partnership (5G PPP) with the initiative of Horizon 2020
grants have funded a multitude of research groups in excelling their products and innovative insights on 5G related
directives [104]. MEC is an underlying concept of most of such projects to achieve the guaranteed features. Therefore,
in this section, MEC related projects and details of the research groups are addressed.

4.1 MEC AI (Jan 2018 - Dec 2019)

MEC AI [96] is a directive pursued under the Edge Computing Enhanced by Artificial Intelligence (EDGE AI) project
conducted by University of Oulu, Finaland. The project is funded by the Technology Industries of Finland Centennial
Foundation, Jane and Aatos Erkko Foundation, and ’Future Makers’ award. As a pioneer in cutting edge research on 5G
Manuscript submitted to ACM
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Table 1. Summary of Security Challenges for MEC Integrated 5G Enabled Use Cases

Security Challenge Description C
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DoS/ DDoS and Jam-
ming Threats

Maliciously intended service requests targeting 5G (radio
interfaces) and MEC (UALCMP and CFSP) are created in
numbers and lead to service delays and disruption.

H M H M M H

Flaws in PLC/ SCADA/
CPS

Design flaws in these hardware entities are exposing the
industrial automation systems.

H L H M L L

Phishing/ Masquerad-
ing/ Imposter Threats
and Integrity Violations

Inability to verify/ validate the UEs, access points, and 5G/
MEC interfaces are allowing the adversaries to impersonate
and extract information with gained access.

M M H H M H

Energy & Resource De-
pletion Threats

Attackers are targeting the exhaustion of processing, stor-
ing, and memory resources, while ultimate objective is to
deplete the standalone energy of IoT devices.

L M H H M H

Scalability Myriads of IoT devices are demanding rapid access to MEC
services; cumbersome crypto primitives are unusable.

M M H L M M

Compatibility/ Inter-
operability

Technological diversification inherent with 5G and IoT is
restricting integration of standardized security measures.

L H H M M M

Low Risk Medium Risk High Risk

directive, researches in University of Oulu are focused on realizing the potential of employing edge computing as a
means for processing data extracted from sensory and network devices to be utilized for applications such as hospitals,
industry and vehicle steering. Prime objectives of this initiative are low latency and security. MEC based AI methods
are developed to achieve those objectives in collaboration with the Finnish industries as Nokia. Especially, security
aspects of MEC and AI integration is considered as a prime focus.

4.2 ANASTACIA [Advanced Networked Agents for Security and Trust Assessment in CPS / IoT
Architectures] (Jan 2017 - December 2019)

ANASTACIA [15] is a EU H2020 funded project which integrates MEC and IoT for CPS based deployments to guarantee
holistic trust and security by-design solutions. This is one of the highly functioning H2020 projects that investigate
security from NFV and SDN applicability perspective. ANASTACIA achieved the goals of adaptation of security and
privacy practices evident from the results of the projects that yield the technological integration of Low-Resource IoT,
VNF image integrity, MEC resource geo-partitioning, NFV security best practices, anomaly based IDS, secure NFVI,
network softwarization, 5G NB-IoT, Security-as-a-Service and many other novel concepts.
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Table 2. Summary of Security Countermeasures/ Best Practices for MEC Use Cases / Applications

Ref.
No.

Proposed Security Countermeasures / Best Practices C
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[128] Machine learning based anomaly detection technique for SCADA systems ✓ ✓

[75] Utilizing blockchain based VNF descriptors for energy level tracking in RAT
xMEC offloading deployment

✓ ✓

[122] SMART framework for detecting anomalies in PLC based extracted data ✓ ✓

[44] Blockchain model for SGNs to counter SDT and BEA, energy related attacks ✓ ✓ ✓

[67] Legitimization of PHEV entities from CA servers in the proposed architecture
for MEC based smart grid vehicular charging process

✓ ✓

[47] Security and privacy considerations in the ICN integrated MEC based offloading
scenario for EH ADAS systems

✓ ✓

[70] Secure architecture for industrial AR applications that form a secure pipeline
between UE and the edge servers

✓ ✓ ✓

[56] Multi-layer security framework for Parrot Bebop UAVs integrating OSI model ✓

[45] Cryptographic means used in authentication mechanism considered for UAV
based load balancing for edge processes

✓ ✓

[109] Security as a Service (SECaaS) approaches for the edge ✓ ✓ ✓ ✓ ✓ ✓

4.3 SESAME [Small cEllS coordinAtion for Multi-tenancy and Edge services] (July 2015 - January 2020)

SESAME [49] is a EU H2020 project that targets the innovation of network intelligence, applications in the edge and
NFV elements established through the extension of small cell concept for realizing highly dense 5G scenarios. MEC
concept is studied for proposing the Cloud Enabled Small Cell (CESC) concept that forms a multi-operator configurable
small cell to integrate virtualized execution platforms. SESAME targets to develop the orchestration strategy, NFV
management, consumer virtualization management interfacing, self-x feature and radio access management techniques
demonstrated through a prototype implementation.

4.4 SUPERFLUIDITY [A Super-Fluid, Cloud-Native, Converged Edge System] (July 2015 - March 2018)

SUPERFLUIDITY [123] project is intending to achieve super fluidity in the network by extending services to the
core, aggregation, and edge partitions as in the case of zero viscosity fluids. This project is funded by the EU H2020
initiative. SUPERFLUIDITY answers the shortcoming of current networks such as impeding provisioning times, wasteful
over-provisioning in variable demand, ineffective hardware, and ineffective heterogeneity support for multi-vendor
components. The project developers are aiming to furnish the location, time, scale, and hardware independence
benefits to the 5G networks guaranteeing telecom operators the capability to blend IT infrastructure effectively.
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Developing a security framework to control the access of network processing functions is one of the project objectives
of SUPERFLUIDITY. Recent directives of the project have shifted towards SDN and NFV technologies.

4.5 5G EVE [5G European Validation platform for Extensive trials] (July 2018 - July 2021)

5G EVE [36] intend to implement and test, an advanced 5G infrastructure formed by interconnecting existing European
sites at Greece, Spain, France, and Italy. It is one of the three projects funded by the 5G PPP in 2018. The conceptual goal
of this project is to develop a 5G end-to-end facility in Europe to validate the network Key Performance Indicators (KPIs)
of the 5G prototype scenarios through experimentation. The targeted experimental subjects include advanced spectrum
management, MEC, core/backhaul services, heterogeneous accessing methods, and site internetworking via multi-slice
orchestration. The telecommunication operators OTE, Telefonica, Orange, and TIM are facilitating the sites at European
vicinities that focus on diverse use cases as smart mobility, Industry 4.0, smart energy, smart environment, Immersive
media and entertainment. Services such as URLLC, eMBB, and mMTC are dominating the deployment options.

4.6 6G FLAGSHIP (June 2018 - May 2026)

Being a project initiated by University of Oulu, Finland [95]; envisions the wireless connectivity for 2030 with data-
driven and near-instant features. MEC and use cases specified in this paper are considered directives of 6g-Flagship in
addition to Machine Learning (ML) and Artificial Intelligence (AI) approaches to automate the functions optimally. The
goals of this project reach from finalizing the 5G adoption, to the development of the 6G enabling technologies with
speeding up the digitization process. The domains of wireless connectivity, devices/circuits technology, distributed
computing, and services/ applications on 6G are covered in this project. A 5G test network is already deployed in the
project and deployed for developing easy to use tools for future advancements.

TABLE 3 represents the summary of MEC based projects been discussed and their targeted aspects in terms of
security, privacy, trust, mobility, and interoperability.

Table 3. Summary of 5G and MEC Projects and Research Groups

Project Main Research Focus Security Privacy Trust Mobility Interoperability
MEC AI [96] Ensuring low latency and security in 5G net-

works via MEC and AI integration
✓ ✓ ✓

ANASTACIA
[15]

Investigating and demonstrating a holistic trust
and security by design solution for CPSs with
integrated MEC and IoT concepts that employ
NFV/SDN based networking infrastructure

✓ ✓ ✓ ✓

SESAME
[49]

Extending the small cell concept to achieve
CESC, with the integration of MEC and NFV
technologies to realize 5G dense scenarios

✓ ✓

SUPERFLUID
[123]

Proposes a converged cloud based 5G concept
that enable mobile edge use cases by extending
the service functionality to the holistic network

✓ ✓ ✓

5G EVE [36] Implementing and testing an advanced 5G in-
frastructure extended to European sites for vali-
dating 5G services including MEC

✓ ✓

6G FLAG-
SHIP [95]

Developing the fundamental technologies for
emerging 6G with an emphasis on wireless con-
nectivity and intelligent distributed computing

✓ ✓ ✓ ✓
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5 DISCUSSION AND FUTUREWORK

This section comprises a concise explication of assimilated insights from the survey in terms of security and privacy
of MEC systems. Presented insights are aligned with the future directives proposed from emerging researches for
recognizing potential of the MEC deployments. Moreover, potential applications and probable technological solutions
to be integrated with MEC to enhance the security are summarized.

5.1 MEC Applications

5.1.1 Critical Infrastructure.

Lessons Learned: It is evident that MEC capabilities forecast the potential to realize the smart city concept. Enabling
the versatility of infrastructure based servicing is the key to achieving that goal. Though assuring security for diverse
infrastructure based services is an arduous task due to their heterogeneous system architectures. Offloading storage
and processing functions to the MEC edge network however, guarantees that these variant technologies are operating
in a complied digitized environment in the data processing phases. SCADA and PLC based operators are common in
these deployments. Threats originating internally in such environments are capable of exploiting the edge system once
instilled through the communication channels. Eventhough mechanisms have been studied to detect malicious entities
in SCADA based systems, the security of offloading channels are not addressed significantly.

Future Directions: In terms of smart grid security, various approaches such as key distribution based on Needham-
Schroeder authentication protocol, ECC, PKI, Trusted Anchor (TA), Lightweight Directory Access Protocol (LDAP) as
a third party, hybrid Diffie-Hellman, AES, RSA, Tsai-Lo identity based encryption scheme and ECC based ElGamal
schemes are proposed for securing the connectivity extending from the SEM to the smart grid [90, 94, 126]. Blockchain
is an approach to be considered in the future to ensure the privacy of subscriber consumption statistics traversing in
SGNs. Similar approaches are plausible for developing security solutions to terminal entities in other infrastructure
services. Moreover, securing the offloading channels of the edge system is a critical directive for mitigating threats
originated internally. In addition, outsourcing security to a trusted MEC based service as in Security as a Service (SECaaS)
approaches are gaining popularity due to its optimum resource utilization in the context of critical infrastructure [109].

5.1.2 eMBB Channels/ Video Analytics/ Big Events.

Lessons Learned: Crowd-sourcing applications are one of the major contributors for proliferation of video streaming
traffic. As these services are demanding UHD level quality in videos to facilitate ubiquitous reception at mobile devices,
managing the bandwidth utilization is a conundrum for MNOs. This requisite is prominent in case of a big event
coverage is undergoing. Thus, MEC in-proximity servers are capable of buffering the content prior to launching the
streaming service, that enables the seamless video transmission. Advance video analytic capabilities are plausible with
MEC servers that align with CCTV, face and vehicular name plate recognition techniques adapted by authorities. Most
common type of security attack plausible for streaming channels is the interposing attacks conducted for altering the
content for misleading the receiver which are influenced by politics, terrorist, or cyber marketing strategies. To secure
the channel, an acceptable level of encryption should be employed. Though embedding security measures for video
streaming channels in these scenarios are costing the bandwidth utilization. Thus, metrics should be established to
retain the balance between security and bandwidth usage.
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Future Directions: As trending video streaming and crowd-sourcing applications are demanding their services to
mobile devices, mobility is an aspect to be considered for proposing security measures. Thus, PLS based approaches as
in [143] could be utilized to ensure security from the mobile device end. Joint network coding and re-transmission is an
approach to secure the video streaming channels in IoT systems as proposed in [106]. Moreover, embedding security
mechanisms in the video coding protocols at the design stage with minimum bandwidth adaptation is an interesting
research directive for the future.

5.1.3 mMTC links in IoT.

Lessons Learned: The mMTC applications are ranging from the personally using e-health type WBAN wearables to
massive industrial applications that employ MTCDs of different scales to create an autonomous environment. MEC
plays a vital role for ensuring security for wearables with attributed location and context awareness. Moreover, edge
infrastructure acts as a offloading serviceable platform to the industrial mMTC applications to improve their efficiency
and global reach. As MTCDs are operating with various non-cellular communication technologies, employing security
mechanisms should be applied to each technology separately in accordance with their protocols and specifications.
Authentication mechanisms to be adapted should vary dependent on the authenticating entity as both human and
machine entities are engaging in mMTC communications. Service impeding attacks such as DoS and DDoS are causing
more damages to mMTC based industrial systems due to their reliance on scheduled operations. Privacy is a considerable
factor for WBAN based services that is not addressed significantly.

Future Directions: For implementing security inWBAN based on nano-technological scale, biochemical cryptography
could be adopted where biological molecules such as DNA or Ribonucleic Acid (RNA) are used as a source of encryption
[138]. Though, this emerging field is creating new set of challenges, a cryptographic key based onmolecular configuration
or chemical reaction unique to a person would grant the level of inherence required from the bio-metrics in the nano-
domain. Moreover, ECC based lightweight cryptographic protocols could be employed with WBAN sensory devices
which are more resourceful than nano-level devices. In [153], a Lightweight and Robust Security Aware (LRSA) D2D
assisting Certificate Less Generalized SignCryption scheme is proposed for WBAN based Mobile Health (M-Health)
applications that resemble the requirement. As M2M based authentication schemes are prominent in this use case, PUF
based approaches would be viable for deployment. Integrating security into D2D offloading schemes is a potential
research area for the future under this application. Blockchain is becoming a solid resolution for privacy protection.
Thus, blockchain based solutions such as [54] for tele-health wearable privacy preservation and certificate revocation
approaches for M2M links as in [53] are promising directives for the future.

5.1.4 Autonomous Driving / Vehicle to Vehicle (V2V) Communication.

Lessons Learned: This is one of the leading use cases of MEC that relies on processing capability of the edge for
enabling autonomous driving to mitigate traffic congestions and accidents. Context awareness feature of the MEC is
the key to deploying these services. In this use case, most probable attack vectors are emanating from the in-vehicle
systems as they are prone to physical attacks. The radio based links that communicate with the MEC BSs directly are
exploitable by attackers to cause accidents. In an ITS system, infrastructure based intermediary entities are located for
expanding coverage. These entities are accessible for physical manipulations. Moreover, interfacing vehicular entities
that engage in V2E adaptations are plausible scenarios for MEC. In that aspect, security in DSRC protocols that enable
the V2V communication is a significant factor to be considered as explicated in [150].
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FutureDirections: Embedding adequate security measures to DSRC protocols as proposed in [80] should be considered
to enhance V2E type communication channels. As vehicular offloading channels are requiring high responsiveness
compared with other offloading mechanisms; an approach as Vehicular Edge Computing Network (VECN) proposed
in [125] could be employed to secure the offloading channels specific to vehicular communications. According to ITS
standard, vehicular entities are connecting with the edge under different scenarios of V2X. Thus, adaptive security
mechanisms should be utilized as proposed in [113]. Moreover, adaptable measures to enhance the security in ECU
of vehicles should be investigated to mitigate in-vehicle threats. Since all such security measures cannot be applied
manually, autonomous approaches should be sought out employing AI or ML methods with novel algorithms to exploit
the trade-off of security application, latency, and energy consumption [13].

5.1.5 AR/VR/MR.

Lessons Learned: AR and VR technologies are prominent for gaming and e-learning based applications that are
extended from eMBB and URLLC adaptation. Latency, bandwidth, and cellular capacity are prime factors to achieve
the required performance. Similar to video streaming applications, MEC facilitate a closer proximity video server for
processing and storing AR scenarios. Alleviating the latency associated with image rendering and transmission is
critical for the VR or AR users to avoid health issues as motion sickness. The remote surgeries, error diagnosis and
maintenance in industries are viable AR deployments for the future. Thus, minimizing the delay is vital for realizing
these deployments. In the perspective of security, service impeding attacks are jeopardizing such latency prone services.
Attack vectors such as physical tampering, side channel attacks, malicious code injections, and hardware Trojans are
applicable to AR/VR HMDs. Privacy is a key concern with AR systems, as they are extracting a higher range of sensory
acquisition scope (visual strength, ocular orientation, location, and arm/leg motion tracking) that expose user sensitive
credentials and behavioral statistics.

Future Directions: Developing security measures in the user devices as HMDs is imperative to ensure the privacy of
users. As behavioral statistics could be gained from AR or VR based games played by the users without their awareness;
legislation’s should be put forward to extract user consent before enrolling with a particular game. Moreover, human
health is a concerning factor for AR/VR based services that could result in ocular discomfort. Thus, proper methods
should exist to notify the user regrading the timely visual quality that AR application is attributing to safeguard the user
health. Though elevated number of sensory extracting apparatus embedded in AR devices are forming an opportunity
to improve the existing authentication schemes and network security through visualization as patented in [124] and
[10].

5.1.6 Unmanned Aerial Vehicles (UAVs).

Lessons Learned: As most UAV based services are operated with a direct connectivity maintained with the UAV
from a ground station, mobility tackling and LoS control signal transmissions are factors that raise concerns over the
communication aspects. The dispersed MEC servers are providing an extended coverage for UAVs to operate seamlessly.
UAVs could enhance the performance by offloading the processing to MEC servers. Due to the higher mobility and
eccentric reachability, UAV deployments are perceptible for surveillance activities in the future. Though battery life is
the prime factor that decides their performance. Thus, UAV targeted attacks are focusing on exhausting the resources
of it to terminate its life-cycle. In addition, eavesdropping scenarios are probable with intently placing of fake UAVs to
induce spoofing attacks.
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Future Directions: Proper measures should be explored to pursue the operation of the UAVs in instances that it fails
to maintain the LOS connectivity to the operating ground station. Utilizing AI for developing an adaptive auto-pilot
scheme is an approach to overcome that requirement[146]. PLS measures could be adapted as in [156] for maximizing
the Intercept Probability Security Region (IPSR) to obscure the eavesdroppers through friendly jamming. Moreover, UAV
enabled mobile relaying with an integrated MEC platform could be utilized for improving PLS in mobile communication
environments [141]. UAVs should be embedded with self-activated security features at the manufacturing stage to
counter intercepting attacks as isolation from the communication network is not an option. Similar to V2V applications,
UAV requires the autonomous edge intelligence through means of AI/ML methods to improve decision making, and
security management [48, 149].

5.2 Futuristic Applications

5.2.1 Rural Communication. The term ‘rural’ signifies an opposite meaning to an urbanized area that does not
inherit adequate amount of resources to facilitate a seamless communication operation. As telecom operators are
prioritizing their return on investment, developing telecommunication infrastructure extending to areas that occupy
minor population is ineffective in their perspective. Moreover, pragmatic circumstances such as geological location,
atmospheric conditions, LoS, and failure to acquire land to launch remote sites are plausible factors that enable rural
communication. Thus, existing communication options are limited to satellite links that are accessible globally with
attributed drawbacks of latency and high reliance on atmospheric conditions[23]. Rural communication is applicable for
various instances where rural communities are restricted of accessing novel technologies that rely onmobile connectivity
for operation [120]. Rural Smart Grids are one such instance in which an isolated facility or minor community are
serviced by a low capacity grid deployment [63]. Moreover, health sector is a widely applicable rural circumstance
that requires assistance from underlying communication infrastructure to handle emergency situations including
ambulances [31][57]. Due to the improved capacity and coverage in mobile sites of MEC systems, servicing the rural
areas are plausible with proper mobile propagation parametric adjustments. In addition, MEC enabled RAN access
interfaces are capable of supporting non-3GPP communication services that are plausible for connecting the rural sites
to the proximate BS. MEC based rural transmission of data endure an improved opportunity to ensure security and
privacy compared with satellite communications.

5.2.2 Smart Agriculture / Farming. The rapid population growth demands excessive food production to cater humans
and live stocks in farming industries. Resource depletion, pollution and scarcity for labor are elevating the arduousness
of maintaining agriculture based services to cater the demand [101]. Thus, automation is an imminent option for
improving the servicing of smart farms with IoT integration. IoT sensors are deployable for monitoring climatic and
crop development status to automate the water and fertilizer dispersing mechanisms. These automation strategies draw
insights from gathered data analytics to maximize the crop production. Adapting machine learning is such a strategy
for crop selection and maximizing crop yielding rates [68]. M2M links are typically established between IoT devices that
employ technologies such as BLE, NFC, or Wi-Fi. As these devices are located remotely to the main farm site, physical
tampering due to intended or natural causes is plausible. Vehicular monitoring is another aspect of smart agriculture
that enhances the efficiency of the outcome. UAVs are applicable to remote monitoring of crops while autonomous
vehicles (tractors) are enabling precision farming [104].

Nanotechnology based bio-sensors are a trending adoption for smart farming applications to conduct accurate
analysis on soil humidity, water, pesticide usage, and plant pathogens in a nano-scale [9]. Dong et al. in [28] proposed
an information centric approach to achieve the anycast service in MTC with ICN (Information Centric Networking)
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being enabled as a slice in the future network adaptable to smart farming. The mobile edge computing at the eNodeB
facilitates the anycast service to the clients with significantly less experienced latency and reduced control message
overhead generated in the core network. In the MEC perspective, similar to rural communication; MEC servers remotely
situated or reached via enhanced coverage of MEC enabled BSs, contribute to smart agriculture services significantly.
Though achieving security is a challenging task due to wide coverage.

5.2.3 Industrial IoT (IIoT) and Industry 4.0. Industrial Internet, IIoT or “Industry 4.0” is a standard represented by
the Fourth Industrial Revolution (4IR) for integrating IoT services for industrial sectors [104]. Initial intention of the
Industry 4.0 standard was to integrate Cyber-Physical Systems (CPS), IoT and cloud computing based data analytics to
facilitate automation for industries by assuring interoperability, information transparency, technical assistance, and
decentralize decision making design principles [107]. Sensors in IIoT are optimizing the production from captured
sensory data via Programmable Automation Controllers (PAC) that handle processing and communication [46, 127].
The majority of current industrial automation plants are embedded with SCADA systems. Thus, security vulnerabilities
explicated under critical infrastructure based applications are adoptable for this circumstance. Moreover, IIoT could be
visualized as a way of amalgamating the machine based and human based workforces for achieving a maximal outcome
that benefit industrial owners and human operators. Digitized data of every aspect in the manufacturing processes
offer opportunities to optimize the practices revealed through proper mechanisms. As industrial factories are large
vicinities, MEC enabled BSs could be launched inside the factories for enhanced service provisioning depending on the
occupied human and non-human workforce. MEC edge level launched within a factory premises could be configured
for servicing specialized industrial requisites to achieve low latency and high reliability. Several edge based approaches
are proposed for enhancing IIoT operation in [17, 98]. As M2M based communications are imminent, security protocols
should adopt proper D2D authentication mechanisms such as PUF and PLS for mitigating exploitations.

5.2.4 Tactile Internet. The Tactile internet is considered as the next evolutionary level of the Internet that deliver
real-time control, touch, sensing/actuation information via a reliable, available, responsive, secure, and intelligent
connectivity that envisions a broader internetworking context capable of handling unprecedented circumstances
probable with impending applications [5]. This vision preemptively coined by G. P. Fettweis in 2014, creates a plethora
of opportunities and applications that provision features required for expanding IT market base [86]. It is standardized
by the IEEE Tactile Internet (TI) Standards Working Group (WG) that is designated by IEEE 1918.1 [55]. The 5G mobile
network concept is the raison d’etre for Tactile internet that focuses on serving the industries expanding with the
Industry 4.0 standard [129]. Functional representation of the end-to-end Tactile internet architecture includes master,
slave, and network domains where master and slave domains are operating at Tactile edges[5]. These deployments
are mainly focused on serving CPSs, MTC, M2M, D2D, and VR applications that require 1 ms of round-trip latency.
Maier et al. in [86] investigates the deployment of Tactile internet concept with Fiber-Wireless (Fi-Wi) enhanced LTE-A
heterogeneous networks to be adopted in MEC considering the latency and reliability performance aspects. MEC with
its attributed ultra-low latency and high reliability processing infrastructure in the edge envisage the visions of Tactile
internet that enable proper security mechanisms as a significant factor.

5.2.5 Disaster Management. Environmental disasters were once believed as a means of balancing the human population
from over-exhausting the resources on earth from devastation’s such as landslides, earthquakes, avalanches, tsunamis,
volcanic eruptions, flooding, forest-fire, and lightning. Though current disasters are prone to be emanated by human
intervention as in massive explosions resulted from industrial malfunctions that extend to nuclear level or extremist
Manuscript submitted to ACM
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acts resulted from terrorism. In spite of the origination of disasters, the damage and casualties associated with them are
unpredictable. Unprecedented nature of the affected scope by geographical and atmospheric means are exacerbating
the circumstances for evacuation procedures conducted by the authorities. Thus, scientists are focusing on integrating
IoT for disaster management and relieving scenarios that contribute to early warning, notification, data analytics,
knowledge aggregation, remote monitoring, real-time analytics, and victim localization functions [114].

Deployment of IoT sensors for measuring the environmental statistics (such as atmospheric, seismic, volcanic,
radiation, and ocean level) is paramount to forecasting disasters and their magnitude. Maintaining the communication
links without been overloaded is a prime requisite for telecommunication service providers perspective in a disaster
situation. MEC is a paradigm introduced to improve the standards of current telecommunication infrastructure in
terms of service provisioning and access capacity. Thus, Disaster management services extended through WSNs could
be operated by a MEC edge level in a certain geographical coverage area, enabling the disaster mitigation functions
mentioned above. Proliferated responsiveness of the MEC RF based access interfaces, attribute the potential to improve
the evacuation procedures and notification schemes with the integration of crowd-sourcing applications [112]. As
Ray et al. in [114] presents various IoT based state-of-the-art solutions applicable to disaster management situations;
proposed cloud based IoT systems as RESCUE by Khan et al. in [65] are extensible for MEC platforms. Leveraging
UAVs for disaster relief missions specialized in crowd localization is an effective use case that MEC can contribute for
enhancing the performance [34].

5.3 Challenges for Wide Adaptation of 5G

The wide adaptation of 5G for IoT realization is imminent. The networking infrastructure standardized for 5G is different
from LTE based deployments in both access and core network formation. Thus, following aspects can be presented as
major challenges for 5G realization.

URLLC capabilities are burdening the security engineers in applying appropriate level of security for communication
protocols and payload overheads. Thus, novel cryptographic means should be investigated to minimize the overhead
drastically.Massive IoT applications are creating issues for resource utilization at the edge in terms of processing,
communication, and networking aspects with the proliferated IoT devices. Managing security is evidently arduous in
such circumstances. Energy efficiency of both UEs and intermediary resource constrained edge nodes are quite vital
for the service continuity. Thus, energy saving mechanisms (i.e. hibernation), energy harvesting techniques, and energy
optimum processing are quite crucial for 5G deployments.

Service migration is becoming an imminent aspect of edge computing; and with local 5G operator based gNBs.
Security concerns associated withmigration process in terms of virtualization technologies, MNO domains, and handover
handling should be investigated thoroughly. Scalable security requirements are vital for 5G based deployments where
security and latency have a clear trade-off. Thus, security features/ mechanisms should be applied in accordance to the
requisites from the application and its priority level. Orchestration is the most researched aspect in virtualization
domain; which requires complete autonomous control embedded with intelligence in case of edge computing. Security
is a vital function under orchestration, and should be standardized for autonomous operation.

6 CONCLUSION

Security and Privacy are vital requirements for upcoming digital services that holds similar significance to performance
metrics. Therefore, robustness of a particular application against cyber-intrusions is a demanding factor for raising
its selectivity among consumers. However, security flaws should be investigated according to a deployment scenario
for accurate identification of vulnerabilities and mapping existing security solutions to mitigate them. In this paper,
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we stated various vulnerabilities and attacks that range through cyber and physical space. The standardized MEC
architecture has aided us to specify the flaws unique to each use case. Novel security solutions that are proposed for
cyber-physical systems, ICN, NFV, and other impending technologies are mapped for each use case in the MEC context.
The excessive discussion on assimilated facts and future directives are reinforcing our proposals with comprehension.
As this survey focus on multiple use cases, it is our hope that, scientists working on these novel areas will find the
presented insights valuable.
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