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“If we knew what we were doing, it would not be called research, would it?”
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Abstract

Offline Speaker Diarization of Single-Channel Audio

by Madhur Panwar

The Speaker Diarization task involves annotating a given audio file with the speaker labels.

The requirement is to identify all the time segments in which each speaker is speaking. This

is difficult because the audio file may contain arbitrary number of speakers and have variable

length duration. The speakers may also have overlapping speech in the audio file. The traditional

diarization systems were module based. Current literature tries to combine multiple modules

into one for joint optimization. This thesis develops a fully pythonic pipeline for offline speaker

diarization of single-channel audio which can be trained end-to-end. It can be used as a baseline

over which several diarization systems can be built by changing the internal architecture of the

pipeline.

To support this development, an overview of Speaker Diarization along with historical and current

developments is presented. It is followed by the discussion of several neural based techniques

which have emerged in recent years. We also discuss the two important baseline diarization

models which yield state-of-the-art performance (7.06% and 7.12% DER) on 8 kHz CALLHOME

speech dataset.

We employ a pythonic Time Delay Neural Network (TDNN) to extract the x-vector features

from the audio. The extracted features are used by a Bi-LSTM to predict the affinity matrix

of the speech segments. It is trained using the crossentropy loss between the predicted and

the ground truth affinity matrix. Spectral clustering is used to cluster the rows of the affinity

matrix and hence to detect the speakers in the various segments. We adapt the pythonic TDNN

trained on 16 kHz speech to 8 kHz telephony data by fine-tuning it on speaker classification task.

Fine-tuning the TDNN on a subset of the telephony data results in improvement of DER from

38.78% to 33.15% for the entire pipeline. Plots of x-vector embeddings also show the effectiveness

of the resulting network.
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Chapter 1

Introduction

Diarize means to make a note or to list an event in some diary. Speaker Diarization systems,

much like record keeping, address the problem of ”who spoke when” in an audio recording. They

are important because they improve the Automatic Speech Recognition (ASR) System. They

also find applications in speaker indexing, audio information retrieval, speaker verificaton and

speech-to-text transciption.

Traditionally, diarization systems consist of various components which are independently opti-

mized. This is tedious because it requires us to maintain and handle various models, serving

as different stages of the pipeline. Recently, end-to-end diarization systems have emerged and

due to the advent of deep learning, multiple modules of the pipeline are being collapsed into

one. This thesis will focus on the development of a fully pythonic pipeline where the feature

extraction and similarity scoring modules can be optimized together.

1.1 Motivation

Speech is the most used way by which humans share ideas. It is not exaggerating to say that our

development, as a species, is dependent on the sharing of ideas, which is mostly done via medium

of speech. With the evolution in technology, we are now in an age of information explosion

where data can be stored cheaply. However, this collection of data poses a new challenge on us

i.e. to make sense out of it. We have a lot of speech data and if we can understand it better,

that can lead to faster scientific progress.

Speaker Diarization is an important task in that regard since it tells us the events that took place

in an audio file. Even though speaker diarization has been researched on for long time and several

advancements have been made, a general diarization system does not exist. Diarization is largely

1



Chapter 1. Introduction 2

a domain specific task and treated like so. A system trained on meeting room conversations

cannot be used to diarize the audio from a noisy environment.

Not only is the task of diarization solved for a particular environment, the many components

in the diarization pipeline are independently optimized. The research is largely being carried

out to employ the power of neural networks and solve this task end-to-end. This is hard due to

the permutation invariant nature of the diarization output. The current approaches solve this

issue by considering all possible permutations [23], however they do not scale for large number

of speakers and cannot be put to use in a practical environment.

The motivation of this thesis is to explore the field of diarization, evaluate few state of the art

diarization models and to develop a fully pythonic pipeline for diarization. It is hoped that

the developed pipeline will ease the formation of diarization systems and aid to speed up the

research in this field.

1.2 Contribution

In this thesis, we develop a fully pythonic pipeline for offline speaker diarization of single-channel

audio, and evaluate it empirically over CALLHOME dataset and synthetic datasets prepared

from NIST SRE10 and VoxCeleb1 [63]. We also present the qualitative results in terms of the

x-vector visualizations.

Our developed pipeline uses the x-vector embeddings from a Pythonic TDNN (PyTDNN),

which achieves state-of-the-art on Speaker Verification when evaluated over 16 kHz speech. We

observed that using the PyTDNN over 8 kHz CALLHOME speech as-is results in high DER. We

hypothesize that this problem is due the mismatch in the x-vector embedding due to difference

in sampling rates. To that end, we fine-tune the PyTDNN over 8 kHz telephony data subset

from Switchboard (SWBD) and SRE-databases (SRE 2004, 2005, 2006, 2008). This results in

decreasing of the DER and thereby verifying our hypothesis.

We also set up and evaluate two important diarization baselines in the process: kaldi [70]

diarization pipeline, and the LSTM based Similarity Measurement with Spectral Clustering

(LSTM-SC) [52] pipeline. These pipelines achieve the state-of-the-art DER of 7.06% and 7.12%

respectively on the CALLHOME dataset. Our fine-tuning procedure improves the DER of

PyTDNN diarization pipeline from 38.78% to 33.15% on CALLHOME and from 35.55% to

32.97% on synthetic dataset prepared from SRE10.
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1.3 Organisation

This thesis is organised as follows:

Chapter 2 presents an overview of the speaker diarization field starting from the traditional

approaches up to the current neural advancements. Particularly, we shall see the components of

diarization pipeline in detail and discuss various recent state-of-the-art approaches. We will also

look at the datasets and evaluation metrics used in speaker diarization.

In Chapter 3, we shall discuss in detail the two diarization pipelines: kaldi [70] diarization

pipeline, and the LSTM based Similarity Measurement with Spectral Clustering (LSTM-SC)

[52] pipeline. These are the baselines over which our pythonic pipeline is built.

Chapter 4 introduces the fully pythonic pipeline developed by employing a Pythonic TDNN.

We discuss the fine-tuning procedure and preparation of the synthetic dataset over which the

pipeline was evaluated. We also witness qualitative visualizations of the x-vector embeddings

which depict the effectiveness of the fine-tuning procedure.

Finally, Chapter 5 concludes with the summary of our developments and lists several possible

future directions in which further research can be carried out.



Chapter 2

Literature Review of Speaker

Diarization

Speaker Diarization is the task of annotating segments of an audio with the speaker identities.

It is identical to keeping records of the events happening in the audio, hence the term ”diarize”

is used. Automatic Speech Recognition (ASR) systems have a module for diarization, thus

improving on this task has widespread applications. Diarization is therefore a very popular

problem in ASR and annual contests are held in its name [79] [49] [48].

Traditional diarization systems were module based and treated the problem as a sequence of

multiple problems all of which were independently solved. The current research of diarization is

headed towards the development of an efficient end-to-end pipeline which solves the entire task

at once [23]. In this chapter we shall see the development of diarization research over the years

and gain background knowledge specific to this task.

The rest of this chapter is organised as follows: In section 2.1 we see the history and developments

of the speaker diarization, as well as discuss in detail each component of the pipeline.

In section 2.2, we discuss the recent advances made in speaker diarization by the advent of deep

learning.

In section 2.3, we note the diarization datasets and mechanisms used to evaluate speaker

diarization systems.

Finally, in section 2.4, we look at the various open source toolkits which can be used to develop

speaker diarization systems.

4
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2.1 Overview of Speaker Diarization

Traditional speaker diarization systems contain independent modules as shown in Figure 2.2.

To alleviate from acoustic environmental artifacts, a lot of processing techniques are utilised.

Speech Activity Detection (SAD) is applied to separate speech and non-speech segments. Signals

for the segments classified as speech are transformed to embeddings. Clustering stage groups

the speech portion representing the embedding vectors, and Post Processing refines the results

of clustering stage. This section discusses the history and development of these components of

diarization pipeline.

Figure 2.1: A visualization of speaker diarization.

2.1.1 History and Development of Speaker Diarization

In the 1990s, the diarization research focussed on clustering of sound events and on unsupervised

speech segmentation [27, 76, 39, 92]. Fundamental approaches like Bayesian Information Criterion

(BIC) and Generalized Likelihood Ratio (GLR) were developed in this period. Automatic Speech

recognition (ASR) on broadcast news recordings benefited from these advancements by training

the models in speaker adaptive fashion [26, 25, 53]. Research groups and committees started

forming around the world and diarization challenges started being organised in the early 2000s.

Among these groups were the Augmented Multi-party Interaction (AMI) Consortium 1 and

Rich Transcription Evaluation2 by the National Institute of Standards and Technology (NIST).

Formation of these organizations brought in various revolutions in the speaker diarization field

like Information Bottleneck Clustering (IBC) [9] and Joint Factor Analysis (JFA) [45, 43].

They positively impacted different data domains like meeting room conversations [40, 38, 102],

Conversational Telephone Speech (CTS) [75, 100, 73], and broadcast news [2, 62, 61].

Since 2010s, a lot of research has happened to model the diarization using neural networks. One

area which benefitted the most is the speech embedding extractors i.e. d-vector [31, 106] and

1AMI Consortium.
2NIST, Rich Transcription Evaluation.

http://www.amiproject.org/index.html
https://www.nist.gov/itl/iad/mig/rich-transcription-evaluation
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x-vector networks [94]. Speaker representations are embeddings from some latent space modeled

by a bottleneck layer in the speaker recognition neural networks. The transition from i-vectors

[90, 20, 91] to neural embeddings led to the development of more robust speaker diarization

systems.

Recent research in diarization is towards combining multiple components of the pipeline and

optimizing them jointly. An example of such effort is the End-to-End Neural Diarization (EEND)

[23, 24] model which gives promising results. A wave of such jointly optimized models has struck

speaker diarization and a lot of interesting development awaits the field. This would open up

unparalleled opportunities of tackling challenges like jointly optimizing diarization with other

speech systems, handling of overlapping speech, etc.

2.1.2 Components of Speaker Diarization Systems

In this section, we shall learn about the different components of speaker diarization systems in

detail.

Figure 2.2: Pipeline of speaker diarization, consisting of various components.

2.1.2.1 Front-end Processing

To refine the input audio, the first step in the diarization pipeline is to apply the various

front-end processing techniques. They deal with enhancement of speech, speech separation,

dereverberation and speech extraction. The idea is to estimate the original source signal given

the observed (possibly noisy) signal, where, this estimation takes place considering the Short-time

Fourier transform (STFT) representation of the input signal at frame level defined as follows.

Let si,f,t ∈ C be the STFT of source speaker i at frame t on frequency bin f . Observed noisy

signal xt,f is then given by a mixture of the source signals, an impulse response from the room

hi,f,t ∈ C, and an additive noise nt,f ∈ C,

xt,f =
K∑
i=1

∑
τ

hi,f,τSi,f,t−τ + nt,f , (2.1)

where K is the total number of speakers in the audio signal [67].

Denoising (or speech enhancement) focuses on suppressing the noisy parts from the speech.

Deep learning has shown significant improvement in single-channel denoising [54, 108, 21].
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In contrast to the other front-end processing techniques, dereverberation uses statistical signal

processing techniques. Weighted Prediction Error (WPE) [64, 109, 18] is the most prevalent

among them. The fundamental notion of WPE (for single source case i.e. K = 1) is to break

down the original signal model in Eq. 2.1 into two components: the early reflection xearlyt,f and

the late reverberation xlatet,f as follows:

xt,f =
∑
τ

hf,τSf,t−τ = xearlyt,f + xlatet,f

WPE estimates the filter coefficients ĥwpef,t ∈ C, maintaining the early reflection and suppressing

the late reverberation based on maximum likelihood estimation (MLE).

Speech separation is popular when the overlapping speech regions are present in significant

amounts. Deep learning based speech separation techniques have gained popularity, e.g. Permu-

tation Invariant Training (PIT) [47] and Deep Clustering [32]. Multi-channel speech separation

based on beamforming has also proven to be effective [110, 6].

2.1.2.2 Speech Activity Detection (SAD)

The task of SAD is to distinguish between speech and non-speech segments. SAD consists of two

parts: first is a feature extraction front-end where features like MFCCs are extracted, and the

other part is a classifier model which predicts the fate of the input frame being speech or not.

These models involve either Hidden Markov Models (HMMs) [83], Gaussian Mixture Models

(GMMs) [65],or Deep Neural Networks (DNNs) [19].

It is important to note that the performance of of SAD directly determines the overall performance

of the diarization system. This is due to the possibilities of large false positives being created by

the SAD system [30]. It is also a common practice in diarization to use the ground truth SAD

(called “oracle SAD”). When the system employs its own speech activity detector, it is referred

to as ”system SAD” setup.

2.1.2.3 Segmentation

Breaking the input audio into multiple segments is called segmentation. It is usually performed

in two ways: either segmenting the audio at the speaker change points, or using uniform

segmentation. The first approach was used traditionally, however, second approach is prevalent

nowadays. Uniform segmentation, however, poses certain problems: the segments need to be

short enough to ensure them being speaker homogeneous, but simultaneously we need to have

sufficient audio to extract meaningful representations as well. There is usually a trade-off between
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the two. Traditional diarization systems detected speaker change points by comparing two

contrasting hypotheses:

• H0: Both samples are from the same speaker

• H1: Both the samples are from the different speakers.

Although many methods for hypothesis testing were proposed viz. Generalized Likelihood Ratio

(GLR) [61], Kulback Leibler 2 (KL2) [92] and Bayesian Information Criterion (BIC) [10, 13].

BIC was the most used approach. It is applied to segmentation in the following manner: Assume

that the audio stream’s features are represented by the sequence X = [x1,x2, ..xN ], with each xi

being drawn from an independent multivariate Gaussian distribution:

xi ∼ N(µi,Σi),

where Σi and µi are the covariance matrix and mean of i-th feature window respectively. Now,

the two hypotheses H0 and H1 are denoted as follows:

H0 : x1...xN ∼ N(µ,Σ)

H1 : x1...xi ∼ N(µ1,Σ1)

xi+1...xN ∼ N(µ2,Σ2)

The maximum likelihood estimator is represented as:

R(i) = N log |Σ| −N1 log |Σ1| −N2 log |Σ2|

where covariances Σ, Σ1, and Σ2 are respectively from {x1, ..xN}, {x1, ..xi}, and {xi+1, ..xN}
Now, the BIC value between the two models is given by:

BIC(i) = R(i)− λP (2.2)

where P denotes the penalty term [10]:

P =
1

2

(
d+

1

2
d(d+ 1)

)
log N,

d being the feature dimensionality. λ is usually chosen as 1. The speaker change point is then

said to have occured if: {
max
i

BIC(i)

}
> 0.
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When using the speaker change point detection for segmentation, the segments are of varied

lengths. Therefore, the arrival of i-vectors [12] and the neural network based embeddings [103]

replaced it by uniform segmentation [87, 86], the reason being that variable lengths of segments

created additional variability for the model to deal with, which decreased the efficacy of speaker

representations.

2.1.2.4 Speaker Representations and Speaker Embeddings

This section explains popular methods for measuring speech segments’ similarity. These methods

are often paired with clustering algorithms which will be the topic of section 2.1.2.5. First, we

shall see GMM-based hypothesis testing methods which are used with speaker point change

segmentation, then, we see the widely used uniform segmentation based speaker representations

i.e. i-vector and d-vector.

GMM Speaker Model for Similarity Measure

Starting models of diarization were based on Gaussian mixture models (GMM) built on features

like MFCCs. Agglomerative Hierarchical Clustering (AHC) was also put to use alongside and

resulted in clusters which were speaker homogeneous. There are several hypothesis testing

methods for process of speech segment clustering like GLR [101], KL [77] and greedy BIC [10]

(most popular). Greedy BIC method uses the BIC value during the AHC process to measure

similarity between two nodes. Assume a set of nodes S = s1, s2, ...sk. Greegy BIC models each

si as a multivariate Gaussian distribution (denoted by N(µi,Σi) where µi & Σi respectively

represent the mean and covariance of samples merged in node si). The BIC value for node

merging of s1 and s2 is computed by:

BIC = n log |Σ| − n1 log |Σ1| − n2 log |Σ2| − λP (2.3)

where P and λ are same as in Eq. 2.2 in section 2.1.2.3, and n is the merged node size

n = (n1 + n2). We merge these nodes during the clustering procedure if Eq. 2.3 < 0. GMM

based clustering was prevalent until i-vector and later d-vector speaker representations came

into picture.

Joint Factor Analysis and i-vector

Before the arrival of representations such as i-vector [12] or x-vector [94], the Universal Background

Model (UBM) [74] showed persistent success in tasks of speaker recognition by using large mixture

of Gaussians which covered quite a large amount of speech data. The arrival of Joint Factor

Analysis (JFA) [46, 44] drastically improved the testing and modeling of similarity of vocal

characteristics with GMM-UBM [74].
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Figure 2.3: Flowchart of Google Speech’s d-vector diarization pipeline.

Hypothesis testing based on GMM-UBM suffered from the drawback of ’Maximum A Posteriori’

(MAP) which is affected not only by specific characteristics but by various inconvenient factors

e.g. background and channel noise, etc. as well. Hence, the supervector concept developed by

GMM-UBM was unideal.

JFA alleviates this problem by breaking down the supervector into several component matrices

viz. speaker dependent (D) & independent (m) components, channel dependent (U) components

and residual components. Hence, the supervector s can be decomposed as shown in Eq. 2.4,

where, alongside the component matrices, vectors x, y and z are for channel factors, speaker

factors and speaker-specific residual factors. These vectors are assumed to have a standard

normal distribution.

M(s) = m + Vy + Ux + Dz (2.4)

The ‘Total Variability’ matrix T, modeling channel and speaker variabilities together, further

simplifies the idea of JFA. The supervector M is then given as:

M = m + Tw, (2.5)

where w is referred to as the i-vector [12] and assumed to have a standard normal distribution.

It is computed by the MAP estimation [42]. m is the channel and sesion-independent component

of mean supervector. i-vector representation popularized the idea of speaker representations and

is said to characterize the vocal tract of the speaker. They have been used in speaker recognition

as well as speaker diarization studies [87, 85, 112] and have outperformed the hypothesis testing

approaches based on GMM.
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Figure 2.4: Overview of the x-vector embedding network.

Neural Network Based Speaker Representations

Speaker representation systems in diarization have largely been impacted by the rise of neural

networks and deep learning. Representation learning was first introduced for tasks in face

recognition domain [98, 99]. It involves using the neural network model to map the input (image,

audio, or text) to a high dimensional vector by sampling the activations from an intermediate

layer. This alleviates the problem of creating manual and handcrafted features which involve

eigenvalue decomposition and factor analysis. The input data also need not satisfy the normality

criteria. Therefore, representation learning for audio has become simpler and inference speeds

have also increased drastically.

Audio representations obtained by using deep neural networks are called d-vectors [103]. One

popular d-vector utilizes stacked filterbank features including the context frames as an input

and trains a sequence of multiple dense layers with the binary cross entropy (BCE) loss function.

The penultimate layer gives the d-vector representations of the input. d-vectors have been used

in many recent diarization systems [106, 111]. Figure 2.3 represents the diarization system [106]

developed by Google Speech team which used d-vector representations.

The arrival of x-vectors [93, 94] further improved the DNN-based speaker representations.

They immediately captured the scene by winning the first DIHARD challenge [86] and the NIST

Speaker Recognition Challenge [104]. Figure 2.4 (adapted from [89]) shows the architecture

of x-vector framework. x-vector differs from d-vector in terms of statistical pooling and the

time-delay architecture which reduces the effect of input length. This is useful in diarization

where segments shorter than normal window length need to be processed.
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2.1.2.5 Clustering

The next step after extraction of speaker representations is to cluster the audio segments. In

this section, we shall see the most prevalant clustering schemes used in speaker diarization.

Mean shift is a technique to locate the maxima (the modes) of a (non-parametric) density

function by considering discrete samples from it. Mean shift algorithm uses circular sliding

window whose radius is user-determined. It works as follows:

• Assign a unique cluster to each of the data points.

• Place the circular window at a random point and calculate the mean of all the points lying

within the window.

• Shift the window to the location of the computed mean.

• Repeat until the mean converges.

This algorithm has been applied to diarization in different settings: i-vector and PLDA [82],

i-vector and cosine distance [87, 88] and KL distance [95]. It is similar to k-means in terms of

having an update step but does not require the number of clusters beforehand. This aspect

especially makes it useful for diarization where an arbitrary number of speakers might be present.

Agglomerative Hierarchical Clustering (AHC) approach has been constantly utilized in

many speaker diarization systems besides multiple different distance metrics e.g. KL [77], BIC

[10, 29], and PLDA [86, 4, 66]. It is an iterative algorithm which works as follows:

• Assign all data points to individual clusters.

• Compute the similarity between the different clusters using the distance metric.

• Merge the clusters with the highest similarity.

• Repeat until the provided similarity threshold or number of clusters criteria is met.

For diarization, the stopping criteria is usually a target number of speakers. In practice, the

clustering algorithm calculates the optimum number of speakers by supervised calibration over a

development set.

Spectral Clustering is another type of clustering approach. It is a graph based method and

has been widely used in speaker diarization. There are many variants of spectral clustering, but

they all share the following steps:
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• Computation of Affinity Matrix: Affinity matrix A is generated by processing of the

affinity value d by a kernel. Zeroing the affinity values below a certain threshold can also

be carried out before computing A.

• Computation of Laplacian Matrix [55]: It is computed in two ways: normalized

and unnormalized. D (the degree matrix) has diagonal entries di =
∑n

j=1 aij where aij

denotes the affinity matrix’s element at row i and column j. Then, L = D−1/2AD−1/2

(normalized), or L = D−A (unnormalized).

• Eigen Decomposition: Laplacian matrix L is decomposed into a matrix of eigenvectors

X and a diagonal matrix E of eigenvalues, i.e. L = XEX>.

• Speaker Counting: Maximum eigengap is found and the speaker number is estimated.

• k-means Clustering: U ∈ Rm×n is formed by using the k-smallest eigenvalues and their

corresponding eigenvectors. The row vectors in U are clustered by k-means.

Some of the diarization models that employ spectral clustering are [106, 55, 52, 68].

2.1.2.6 Post Processing

Once clustering has been carried out, we get the diarization results. An additional step of post-

processing can be leveraged to further improve these results. It is of two types: Resegmentation,

where we refine the results obtained by a diarization system, and System Fusion, which combines

the results from multiple diarization systems. We shall now look at these two approaches.

Resegmentation refines the approximate speaker boundary calculated by the clustering

method.Viterbi resegmentation had been used in the diarization systems [43]. It is based

on the Baum-Welch algorithm, where we estimate the GMM for each speaker and apply the

Viterbi technique alternately.

A resegmentation technique based on Variational Bayesian Hidden Markov Model (VB-HMM)

later emerged and proved to be better than the Viterbi resegmentation [14, 15, 16]. This

technique has since then been widely applied as the final step in a diarization pipeline [84, 86].

System Fusion deals with the combination of diarization results from the multiple systems

which increases accuracy. However, unlike other speech tasks, system fusion in diarization suffers

from various issues due to the non-standard speaker labels in each system. The estimated number

of speakers and the segment time boundaies may also differ among different diarization models.

Different fusion techniques tackle these problems differently. [36] proposed an AHC-based fusion

approach using the symmetric DER as the distance function. [7] combines two diarization results

by finding the matching between them and then performing resegmentation on the matching
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result. A very recent diarization fusion scheme is DOVER (diarization output voting error

reduction) [96] which aggregates the different results based on a voting scheme.

2.2 Recent Advances in Speaker Diarization using Deep Learn-

ing

In this section we shall discuss various Neural Network based diarization methods which have

been recently proposed. We will organise our discussion by first outlining the models which

utilize neural networks in one component of the diarization pipeline in section 2.2.1. Then, in

section 2.2.2, we will see the models which combine multiple parts of diarization pipeline and

optimize them jointly.

2.2.1 Single-Module Optimization

The models which involve neural networks in one module of the pipeline can be categorized

based on where the neural approach was used. We shall see two stages where DNNs have been

used: DNN-based clustering and DNN-based post processing. We shall cover each of them one

by one.

DNN-based Clustering: Improved Deep Embedded Clustering (IDEC) was introduced in

[17]. The goal of this algorithm is to modify the input features, i.e. speaker embeddings, to

make them more separable. The key notion is that each speaker embedding has some probability

of being in each of the available clusters [107, 28]. The clusters are refined in iteration based

on a target distribution which relies on critical features estimated by an autoencoder. [105]

proposed an approach to purify the affinity matrix in spectral clustering based on Graph Neural

Networks (GNNs). [52] computes the affinity matrix by learning the distance function through a

bidirectional LSTM network. We shall see the details of its working in next chapter. [51] is an

improvement over the same model which incorporates self attention into the network.

DNN-based post processing: It has recently been studied to train a neural network on

top of the clustering-based diarization. These approaches are an extension of post processing.

Target-Speaker Voice Activity Detection (TS-VAD) has been proposed to diarize the audio in

overlapping and noisy conditions [58, 59]. It inputs the MFCCs and i-vectors of all the possible

speakers. The output layer outputs a vector whose i-th element is 1 if the i-th speaker is present

in the segment, else it is 0. The initialization of i-vectors takes place based on the usual clustering

based diarization result. The inference by TS-VAD and refinement of the i-vector by the result

can be repeated till convergence. TS-VAD significantly improved the DER over clustering based

approaches [58, 71]. As a separate effort, EEND model (discussed in 2.2.2.3) was introduced
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Figure 2.5: UIS RNN’s generative process. Colors indicate labels for speaker segments. Given
x[6] & y[6], there are four options for y7.

which refined the result of a clustering based diarization [33]. The characteristic of a clustering

based approach is that it can handle large number of speakers while it cannot efficiently manage

overlapped speech. EEND has exactly opposite characteristics. In an iterative fashion, authors

first apply a clustering approach and then utilize a two-speaker EEND per detected speaker-pair

for refining the time boundaries of overlapped regions.

2.2.2 Joint Optimization for Speaker Diarization

In this section, we shall witness the diarization techniques which combine multiple parts of the

pipeline and optimize them jointly as a single network.

2.2.2.1 Joint Segmentation and Clustering

Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) has been proposed by the

Google Speech team [111]. It eliminates the segmentation and clustering steps and does them

together by the means of an RNN. The motivation is that clustering algorithms cannot learn from

data and neglect the temporal order of segments. Hence, it makes sense to take the temporal

order of segments into account while predicting speaker labels, which is precisely what UIS-RNN

does.
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Denote the speaker embeddings by X = (xt ∈ Rd | t = 1, ...T ), the speaker labels by Y = (yt ∈
N | t =, ...T ), and speaker change indicators by Z = (zt ∈ {0, 1} | t = 2, ...T ). The idea is to

model a joint probability distribution P (X,Y,Z) as follows:

P (X,Y,Z) = P (x1, y1).
T∏
t=2

P (xt, yt, zt | x[t−1], y[t−1], z[t−1]),

where [n] denotes the ordered set (1, 2, ...n).

Each product term here can be factorized into three meaningful terms:

P (xt, yt, zt | x[t−1], y[t−1], z[t−1])

= P (xt | x[t−1], y[t])).P (yt | z[t], y[t−1]).P (zt | z[t−1]),

where the three resulting product terms respectively mean the following.

Speaker generation: It is assumed that each speaker’s embedding is generated by a parameter

sharing RNN (a gated-recurrent unit (GRU)).

Speaker assignment: It is modeled as distance-dependent Chinese Restaurant Process [5].

Speaker change: zt is a binary random variable modeled as a coin-flipping process.

At any time t, having seen k speakers, if the next speaker is new, then we instantiate the RNN.

If the speaker has already been seen before, then we update the existing RNN instance of that

speaker. The model is trained by maximizing the log likelihood of the distribution P (X,Y,Z)

conditioned on all the parameters.

Inference is conducted by finding Y that maximizes log P (X,Y) provided X depending on beam

search carried out in online fashion. Even though it works online, UIS-RNN showed better DER

than the offline counterparts which use spectral clustering.

UIS-RNN in briefly summarised in Figure 2.5. At the current stage (shown by solid lines) y[6] =

(1, 1, 2, 3, 2, 2). There are four options for y7: 1, 2, 3 (existing speakers), and 4 (a new speaker).

The probability for generating a new observation x7 (shown by dashed lines) is dependent both

on previous label assignment sequence y[6], and previous observation sequence x[6].

An improvement over UIS-RNN was introduced in paper [22]. It was called UIS-RNN-SML and

it put forth a novel loss function, called the Sample Mean Loss (SML), and presented a better

modeling of the speaker turn behaviour.
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Figure 2.6: Difference between the standard diarization system pipeline (left) and the RPNSD
system (right).

2.2.2.2 Joint Segmentation, Embedding extraction, and Resegmentation

Region Proposal Network based Speaker Diarization (RPNSD) was proposed based on Region

Proposal Networks (RPN) [35]. It jointly optimizes the segmentation, embedding extraction

and resegmentation stages of the pipeline via a single network. Region Proposal Networks

were originally introduced in the object detection domain [72]. 1-d variant of RPN is used in

diarization to give time segment proposals. RPNSD inputs STFT features and converts them

into a feature map. For each time segment proposal with speech activity (referred to as ’anchor’),

the network jointly performs tasks for (a) estimating whether anchor has speech or not, (b)

extracting the speaker embedding for the anchor, and (c) approximating the difference between

the center of reference speech and anchor. These three tasks respectively correspond to the

segmentation, extraction of embedding and resegmentation. Difference between the RPNSD and

other diarization systems is shown in Figure 2.6.

The inference procedure involves the RPN being applied to each of the anchors on test audio

data, and listing the regions of higher speech probability as candidate regions. These regions are

clustered using k-means based on their speaker embeddings. Finally, non-maximum suppression

(NMS) is applied to remove segments with very high overlap. The advantage of this approach is

that it can handle overlapped speech with arbitrary number of speakers. The authors empirically

show in the paper that RPNSD outperformed clustering-based systems on multiple datasets

[35, 71]. We set up RPNSD ourselves and evaluated it on CALLHOME dataset using 5-fold
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validation. We got DERs of 12.11% & 16.75% respectively for without and with overlapped

speech consideration. The set up can be found in the Google Colab Notebook3.

2.2.2.3 Fully end-to-end Neural Diarization

End-to-End Neural Diarization (EEND) has recently been proposed and it aims to perform all

the tasks of a diarization pipeline by a single network which can be trained end-to-end [23, 24].

The network of EEND is shown on the left of Figure 2.7. EEND takes as input the sequence of

sound features X = (xt ∈ RF | t = 1, ...T ). The system then outputs the speaker label sequence

Y = (yt | t = 1, ...T ) where yt = [yt,k ∈ 0, 1 | k = 1, ...K]. yt,k = 1 denotes the speech activity of

speaker k at time t. K denotes the maximum number of allowed speakers. Overlapping speech

is naturally accommodated in the above description since yt,k1 and yt,k2 (k1 6= k2) can both be 1

simultaneously at time frame t.

The network is trained by maximizing the log likelihood of P (Y | X) over the training data

under the approximation log P (Y | X) ∼
∑

t

∑
k log P (yt,k | X). Under this model, there can

be multiple sequences for Y, all differing in swaps of speaker indices k from each other. The

loss function is calculated for all the possible reference labels and the one which corresponds to

minimum loss is used to update the network’s weights. This is referred to as the Permutation

Invariant Training (PIT) loss, and is inspired by the permutation free objective in speech

separation [47]. The initial proposal of EEND was with a Bi-LSTM network [23], which was

later extended to incorporate self attention based Transformer architecture [24]. The differences

between the two architectures are shown in Figure 2.7.

EEND has advantages of dealing with overlapped speech and of optimizing the DER metric

directly. EEND outperforms in the settings where maximum number of speaker is bounded

by a small value. Note that K, the maximum number of speakers, must be known to the

model in advance and the loss computation over all the permutations in PIT is of exponential

complexity. Therefore, EEND cannot be applied to real world scenario where inference time

is crucial. To deal with arbitrary number of speakers, an extension of EEND was proposed

with encoder-decoder based attractors (EDA) [34]. An LSTM-based encoder-decoder is applied

on the EEND output for generating multiple attractors. Attractors are generated until the

probability of existing attractors goes below a threshold. Each attractor is then multiplied with

the embeddings generated from EEND for computing speech activity of each speaker.

According to the paper [24], EEND with self attention attains a DER of 10.99% on CALLHOME.

This is worse than 7.06% and 7.12% achieved by kaldi’s [70] x-vector diarization system and

LSTM-SC [52] model respectively (refer Tables 3.1 & 3.2). Also, LSTM-SC is simpler than

3Google Colab Notebook for RPNSD.

https://colab.research.google.com/drive/1SDpunV2TwneTUY017OFcScL6uAnHrpaA?usp=sharing
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Figure 2.7: Difference between the EEND (left) and EEND-SA (right) architectures. EEND-SA
results by replacing the Bi-LSTM block by a transformer block in EEND.

EEND in its base architecture. Therefore, we chose the same as our baseline and built the fully

pythonic pipeline using it.

Starting from the next chapter, we shall be focussing on the LSTM based Similarity Measurement

[52] diarization approach. Chapter 3 will discuss its theoretical background and results, while in

Chapter 4, we shall use it to build our fully pythonic diarization pipeline.

2.3 Evaluation

Having seen the history and development of the Speaker Diarization, we now divert our attention

to the evaluation of these systems. The output of any diarization system is the Rich Transcription

Time Marked (RTTM) file. It is also called the hypothesis, since this is what our model

hypothesizes. It maps the time segments with speaker labels. A ground truth RTTM file (also

called the reference RTTM), which is provided along with the dataset, is then used to match

with the hypothesis and yield a numerical value quantifying the performance of the model.

First, we shall see the details of the RTTM file. Next, we shall look into the various datasets

available for diarization. Then, we see two metrics viz. DER and JER, used to score the

hypothesis RTTM using the reference RTTM.

Following are the few lines from a RTTM file.

SPEAKER CMU_20020319-1400_d01_NONE 1 130.430000 2.350 <NA> <NA> juliet <NA> <NA>

SPEAKER CMU_20020319-1400_d01_NONE 1 157.610000 3.060 <NA> <NA> tbc <NA> <NA>

SPEAKER CMU_20020319-1400_d01_NONE 1 130.490000 0.450 <NA> <NA> chek <NA> <NA>

Let us see what each of the columns actually mean (The following description is adapted from

[78]).
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• Type: segment type; should always by SPEAKER.

• File ID: file name; basename of the recording minus extension (e.g.,rec1 a).

• Channel ID: channel that turn is on; should match between the hypothesis and reference.

• Turn Onset: onset of turn in seconds from beginning of recording.

• Turn Duration: duration of turn in seconds.

• Orthography Field: should always by <NA>.

• Speaker Type: should always be <NA>.

• Speaker Name: name of speaker of turn; should be unique within scope of each file.

• Confidence Score: system confidence (probability) that information is correct; should

always be <NA>.

• Signal Lookahead Time: should always be <NA>.

2.3.1 Datasets

The task of diarization is non-trivial. Even after the presence of a widespread number of

approaches, none of them performs best in all voice environments. This is why we have different

types of datasets based on the environments they were recorded in. Another aspect in which the

diarization datasets differ is the sampling rate of the audio. Traditional datasets primarily used

8 kHz sampling frequency since storage was a constraint. This is evident by the fact that NIST’s

datasets prior to 2010 were in 8 kHz. Nowadays 16 kHz is the normal sampling rate used.

It must also be noted that due to the evidently hard nature of the diarization task, the datasets

cannot be automatically annotated. This means all of the datasets must be annotated manually

by humans. This is reason that only a few large scale diarization datasets are available.

It is also common practice to synthetically generate diarization datasets and evaluate the model

using them. To that end, NIST’s SRE-datasets are used. We shall see an algorithm to generate

the synthetic dataset in section 4.2.1.2.

Below are mentioned a few of the prominent datasets used to train diarization models:

• 2000 NIST Speaker Recognition Evaluation4 (paid).

– Disk-6 (Switchboard).

4https://catalog.ldc.upenn.edu/LDC2001S97

https://catalog.ldc.upenn.edu/LDC2001S97
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– Disk-8 (CALLHOME) - multilingual.

• CALLHOME American English5 -English (paid).

• The ICSI Meeting Corpus6 (freely available).

• The AMI Meeting Corpus7 - English (freely available).

• VoxConverse [11] - English (freely available).

• DIHARD Datsets8.

Since we shall be using Disk 8 - SRE 2000 CALLHOME (LDC2001S97) extensively, we must

note that this dataset contains multiple languages including English and Spanish. The number

of speakers ranges from 2-7. The number of audio files with 2, 3, 4, 5, 6 & 7 speakers are 303,

136, 43, 10, 6 & 2 respectively. The dataset contains a total of 500 utterances which add up to a

total play time of about 18 hours.

2.3.2 Metrics

To evaluate the performance of diarization systems, we use the Diarization Error Rate (DER). A

less frequently used metric, the Jaccard Error Rate, which is based on the Jaccard index9, is also

used. It was first used in DIHARD II [80, 81] challenge alongside DER for a holistic evaluation.

The most commonly used script to compute the DER is the NIST’s md-eval.pl10. It takes as

input the collar value (i.e. the error while matching time segments we are willing to tolerate;

usually 0.25s; ’-c’ parameter), whether we want to consider the overlapped speech segments

or not (parameter ’-1’ and ’-o’ respectively) and the path to the reference and the hypothesis

RTTMs. A sample call to the script is as follows:

$ md-eval.pl -o -c 0.25 -r reference.rttm -s hypothesis.rttm 2> DER.log > DER.txt

Below we see the evaluation criteria of DER and JER in detail.

5https://catalog.ldc.upenn.edu/LDC97S42
6https://groups.inf.ed.ac.uk/ami/icsi/
7https://groups.inf.ed.ac.uk/ami/corpus/
8https://dihardchallenge.github.io/dihard3/
9Jaccard Index wikipedia link.

10md-eval.pl script link.

https://catalog.ldc.upenn.edu/LDC97S42
https://groups.inf.ed.ac.uk/ami/icsi/
https://groups.inf.ed.ac.uk/ami/corpus/
https://dihardchallenge.github.io/dihard3/
https://en.wikipedia.org/wiki/Jaccard_index
https://github.com/nryant/dscore/blob/master/scorelib/md-eval-22.pl
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2.3.2.1 DER

Diarization Error Rate (DER) is the main metric used to evaluate Speaker Diarization systems.

It was described and used by NIST in their 2006 RT (Rich Transcriptions) evaluations. Put

simply, DER measures the time wrongly assigned as non-speech or assigned to an incorrect

speaker. The measurement is done by md-eval.pl script provided by NIST [3]. Other open source

alternatives are mentioned in section 2.4 [78].

Since the problem of diarization is not to identify the speaker but rather to just discriminate

different speakers, the ID labels assigned to speakers in reference and hypothesis RTTM need

not be same. However, the non-speech tags must identically match between the reference and

hypothesis RTTM.

md-eval.pl does the optimum one-to-one mapping of speaker labels between hypothesis and

reference RTTMs. Based on this mapping the scoring takes place. The Diarization Error Rate is

computed as:

DER =

∑S
s=1 dur(s).(max(Nref (s), Nhyp(s))−Ncorrect(s))∑S

s=1 dur(s).Nref

where, S is the number of speech segments in which both the reference and hypothesis have

the identical speakers. Nref (s) and Nhyp(s) denote the number of speakers in a segment s.

Ncorrect(s) is the number of speakers which are in a segment s and have been matched correctly

between the reference and hypothesis.

It is easier to see the DER by decomposing it into the different sources that these errors come

from:

• Speaker Error: % of time that a speaker is misidentified. This error only accounts for the

segments which were detected as speech and for the segments where overlap was detected

succesfully. We denote it by ESpkr.

• False alarm speech: % of time that a segment is wrongly labelled as speech in the

hypothesis. It is denoted by EFA.

• Missed speech: % of time that a segment is wrongly labelled as non-speech in the

hypothesis. It is denoted by EMISS .

• Overlap speaker: % of time that some of the many speakers in a segment are not assigned

to any speaker. It is denoted by Eovl.
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Given these types of errors, we can redefine DER by the following equation:

DER = Espkr + EMISS + EFA + Eovl

2.3.2.2 JER

Jaccard Error Rate (JER) is based on the Jaccard Similarity Index, which is a metric used

commonly for evaluating the output of image segmentation systems. It is defined as the ratio

of the sizes of intersections and unions of two sets of segments. Similar to the case with DER

computation, an optimal mapping between speakers in the reference and hypothesis is determined.

Then, for each pair the Jaccard index of the segmentations is calculated. JER is expressed as a

percentage and given as 1 minus the mean of these scores over all speaker pairs [79].

JERref =
FA+MISS

TOTAL

Hence, JER is the average of the above equation over all the reference speakers ref . TOTAL is

the duration of union of hypothesis and reference speaker segments. FA and MISS are False

Alarm and Missed Speech as defined above in section 2.3.2.1.

2.4 Open Source Toolkits for Speaker Diarization

The various modules of the diarization pieline and the evaluation metrics are implemented in

various open source toolkits. This eases our task of not having to implement everything ourselves.

The most popular open source toolkits prevalent in the community are mentioned below along

with the specialities of each toolkit.

The task of speaker diarization, as we saw starts with Voice Activity Detection (VAD). The

most popular voice activity detectors are the Pythonic WebRTC VAD11 by Google and the

kaldi’s energy based VAD which is applied as a part of kaldi’s recipe12.

Audio feature extraction and Augmentation can be achieved by using the popular audio

processing library librosa [57] or PyTorch’s [69] own audio processing framework viz. torchau-

dio. Figure 2.8 shows the MFCCs of a CALLHOME recording extracted using librosa.

The clustering module of Speaker Diarization pipeline has been widely studied. A few of the

GitHub implementations of the clustering algorithms from the approaches seen in section 2.1 are

given below:

11Google WebRTC VAD GitHub link.
12kaldi diarization recipe GitHub link.

https://github.com/wiseman/py-webrtcvad
https://github.com/kaldi-asr/kaldi/blob/master/egs/callhome_diarization/v2/run.sh
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Figure 2.8: Visualization of MFCCs (30 mel bands) for CALLHOME audio recording iaaa
using librosa.

• Probabilistic Linear Discriminant Analysis implementation in Python13, implementation

of the paper [37].

• Supervised Online Clustering14, an implementation of the UIS-RNN [111].

• Supervised Online Clustering15, an implementation of the UIS-RNN-SML [22].

• Discriminative Neural Clustering for Speaker Diarisation [50] implementation16.

• Spectral Clustering17, as implemented in the paper [106].

For evaluating the output RTTM, NIST’s md-eval.pl is the most widely used script as

mentioned in the section 2.3 above. However, for Python based evaluation pyannote-metrics18

and nyrant-descore19 are increasingly gaining popularity.

There are several software which implement all parts of the pipeline and the three most used

ones are kaldi-asr [70], pyannote-audio [8], and LIUM SpkDiarization [60]. kaldi-asr is

the most eature rich speech processing library. It is written in C++, bash, Python and Perl.

For diarization, it provides two recipes, one using i-vectors and the other using the x-vectors.

pyyannote-audio is a great toolkit which is still in development. It is not very flexible and

can only be used as-is like an executable using its Command Line Interface (CLI). LIUM

SpkDiarization dates back to 2010 and was one of the first toolkits for diarization. It is

however written in Java and therefore relatively less used nowadays.

13Python PLDA link.
14uis-rnn link.
15uis-rnn-sml link.
16DNC link.
17google spectral clustering link.
18Pyannote-metrics GitHub link.
19nyrant dscore GitHub link.

https://github.com/RaviSoji/plda
https://github.com/google/uis-rnn
https://github.com/DonkeyShot21/uis-rnn-sml
https://github.com/FlorianKrey/DNC
https://github.com/wq2012/SpectralCluster
https://github.com/pyannote/pyannote-metrics
https://github.com/nryant/dscore


Chapter 3

Baselines: Speaker Diarization

System

3.1 Setting up Baselines

Setting up the baselines is an important step in any machine learning research. It is where we

start our improvements from. In this chapter we shall see the establishment of two baselines

which give state-of-the-art results on CALLHOME. The two baselines are kaldi’s [70] x-vector

baseline and the LSTM based Similarity Measurement (LSTM-SC) [52] baseline. To verify these

baselines, we evaluate them on CALLHOME and report the DER. kaldi is evaluated on 2-fold

CALLHOME, while LSTM-SC is evaluated on 5-fold CALLHOME.

The rest of this chapter is organised as follows:

Sections 3.1.1 and 3.1.2 describe the theory behind the two baseline systems.

Section 3.2 describes the details of the setup used to perform the experiments and section 3.3

mentions the results of these experiments.

Lastly, we summarise our observations and findings in the section 3.4.

3.1.1 kaldi x-vector system

Figure 3.1 represents an overview of the kaldi [70] diarization pipeline. We shall see each part of

the pipeline in a little more detail:

• Feature Extraction: The features of choice used by kaldi are the Mel-Frequency Cepstral

Coefficients (MFCCs). The Cepstral Mean and Variance Normalization (CMVN) is also

25
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Figure 3.1: Overview of kaldi’s diarization pipeline.

applied to normalize the MFCCs. MFCCs favour the sound that are best heard by huamn

ears. Therefore, their use is prevalent to produce state-of-the-art systems.

• Speech Activity Detection: Kaldi uses an energy based SAD. The signal energy is used

to classify a segment as speech or non-speech.

• X-vector extraction: The x-vector extractor used by kaldi is same as in Figure 2.4. It

is a Time Delay Neural Network (TDNN) with frame-level layers, statistical pooling layers,

fully connected (FC) layers and the softmax layers. The frame level layers are essentially

FC layers taking the input from the sliding window across the audio sample. Since each

frame produces a different vector, we concatenate their means and standard deviations to

get one single vector which characterizes the entire segment. The vector is fed through FC

layers and finally a softmax callifier is applied after ReLU. kaldi produces 128-dimensional

x-vectors.

• PLDA Similarity Scoring: Once we have the x-vector representations of our windowed

segments, we can use a similarity metric (PLDA in this case) on them to compute affinity

between different segments.

• AHC Clustering: These segment affinities serve as the input to the AHC clustering

module which groups segments of same speakers together.

• VB Resegmentation: Resegmentation is a refinement step on top of the clustering

output. VB resegmentation treats the speech features to be coming from a Hidden Markov

Model. This models the diarization problem as an inference problem, maximizing the

posterior distribution.

3.1.2 LSTM based Similarity Measurement

LSTM-SC pipeline is special in that it is simple to understand and easy to experiment with.

At the heart of it is the Bi-LSTM sequence model used to learn the similarity metric. It also

produces state-of-tha-art results on CALLHOME dataset. Therefore, we chose this as one of our

baselines. It provides a firm ground over which efficient diarization systems can be built.

We shall first see an overview of the pipeline as in Figure 3.2 and then dive deep into each of the

aspects.
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Figure 3.2: LSTM-SC framework for speaker diarization.

Oracle VAD is used to remove non-speech regions. Sliding window with overlap is used to

uniformly segment the audio signal. From each of the segments, MFCCs are extracted and

CMVN normalized. The MFCC features are used as an input to the x-vector extractor. The

x-vectors for one recording are then tiled to create one training batch. This batch is passed

to the Bi-LSTM which yields an affinity matrix. It is used for evaluating crossentropy loss

with the reference matrix generated from the reference RTTM file. During testing, we cluster the

output affinity matrix using Spectral Clustering. Finally, the output RTTM is generated

based on clustering of the rows of the affinity matrix. [52]

The number of mel bands used for MFCC extraction is 23. Augmentations in the form of babble,

noise, reverberation and music are added to the audio data to ensure robustness. Let us denote

the segment level x-vector embeddings as x1, x2, ... xn, where each xi is a d-dimensional vector,

d being 128 for kaldi’s x-vector. We assume that each of these segments correspond to single

speaker. This assumption is good enough as long as our segmentation is fine enough (i.e. we

have smaller window length). Further details about the approach are mentioned below.

• Construction of reference similarity matrix: The reference similarity matrix S, for

a recording R, is of shape n×n. n is the number of segments extracted by windowing over

the recording R. It can be determined using the reference RTTM whether segment i and

segment j (i, j ∈ 1, 2, .., n) have same speaker or different speakers. S[i, j] = 1 if segment i

and segment j have same speaker, otherwise S[i, j] = 0. Note that by definition of S, it is

robust against flipping or changing the index of the speaker. Therefore, S serves as a good

label for the entire speaker embedding sequence x to train the Bi-LSTM model.
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Figure 3.3: Bi-LSTM batch workflow.

• Stacking and Tiling: To predict an entry S[i, j] in the similarity matrix, we need the

x-vectors for segment i and segment j. Following similar chain of reasoning, to predict the

row i of the similarity matrix, we need xi paired with all the segments from x1 to xn.

Si = [Si1, Si2, ...Sin] = fLSTM

([
xi

x1

]
,

[
xi

x2

]
, ...

[
xi

xn

])
.

Therefore, we duplicate each of the n x-vectors n times and tile them with x1, x2, ... xn.

This results in one batch of Bi-LSTM training as shown in Figure 3.3. Input sequence k is

responsible to predict the kth row of the similarity matrix S.

• Mini-batching for larger matrices: Note that the length of the audio is arbitrary and

this can result in sequence x to be very large due to uniform segmentation. This ends up

requiring huge GPU memory and also posing a computational challenge on the LSTM

to process arbitrarily long sequences. To alleviate this, the authors propose to split the

n×n×2d batch input matrix as well as the n×n similarity matrix S into 4 parts as shown

in Figure 3.4. This does increase the number of batches that the model must train on but

it ensures that the computation of the predictions is tractable and LSTM can sufficiently

generalize. The practical limit set on n for such a split is 400. We split whenever n exceeds

400.

• Spectral Clustering: This step is identical to the Spectral Clustering procedure seen in

section 2.1.2.5.

• Network Architecture: The specifics of the network are as follows. Two Bi-LSTM layers

are followed by two fully connected layers. Since d = 128 for kaldi’s x-vector, the input to

the Bi-LSTM is 2d = 256 dimensional. The hidden size is also kept identical to the input

size and equals 256. Hence, Bi-LSTM produces 512 outputs (256 forward and backward

hidden states). The fully connected layers gradually reduce the output dimension from

512→ 64→ 1. The final layer’s output is passed through a sigmoid activation function to

yield a similarity score in (0,1).
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Figure 3.4: Partitioning of large matrix into multiple submatrices, which are processed as
mini-batches.

• Enhancement of Similarity Matrix: Following [106], authors apply the matrix refine-

ment operations to denoise and smoothen the similarity matrix. They, however, remove

the Gaussian Blur step. Their procedure is as follows:

– Symmetrization: Ai,j = max(Sij , Sji).

– Diffusion: Assign AAT to A.

– Max-normalization (row-wise): Sij = Aij/maxkYik

• Data for training the x-vector system: Authors train the x-vector models on a

combinaton of Switchboard (SWBD) and SRE-databases. In particular, SRE 2004, 2005,

2006 & 2008 are used.

3.2 Experimental Setup

The experimental setup of kaldi is straigtforward for CALLHOME and involves following their

diarization recipe. Dealing with Speech Recognition for the first time may cause some initial

issues since kaldi has a very standardized way of organizing and producing data in form of its

own file formats which may take some time to get used to.

We use the pre-trained PLDA backend of kaldi and use the pre-trained model for CALLHOME

downloaded from the kaldi’s website1. The data preparation and feature extraction steps are used

as provided in the kaldi’s callhome diarization recipe. A sliding window of length 1.5s moves

over audio with 50% overlap. After PLDA scoring and AHC clustering, VB resegmentation is

1kaldi’s CALLHOME diarization pre-trained model.

https://kaldi-asr.org/models/m6
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used to refine the results. The original VB resegmentation script present in kaldi was erroneous

and we had to go deeper into its implementation to find that coo matrix from the SciPy library

was missing a shape parameter. The same was fixed and a Pull Request (PR) was raised2 which

finally merged into kaldi’s codebase.

LSTM-SC uses kaldi’s front-end for feature extraction. Therefore, the steps until the generation

of x-vectors are identical to the setup of kaldi pipeline above, and the same 1.5s sliding window

with 50% overlap is used. The Bi-LSTM is trained for 100 epochs with an initial learning rate of

0.01. The authors have proposed a learning rate scheduler which sets the value of the rate to its

1/10th value every 40th epoch. The whole process takes place 5 times for the 5-fold valiation of

the model. CALLHOME has 500 recordings and the data preparation script divides it into 5

folds each with 400 recordings for training and 100 for evaluation.

The collar value of 0.25 seconds is used throughout for DER evaluation.

3.3 Experimental Results

Table 3.1 and 3.2 lists the experimental results of kaldi’s and LSTM-SC’s diarization pipelines.

In both cases, we evaluate the DER with and without considering overlapped speech. The results

clearly show that simply by taking overlapped speech into account, the DER rises by ∼ 10%.

Therefore, detection and management of overlapped speech in diarization is a separate research

area in itself.

DER(in %)

No. of speakers w/o overlap w/ overlap

oracle 7.06 16.67

supervised calibration 8.03 17.5

Table 3.1: Diarization results produced by the kaldi x-vector diarization pipeline (2-fold
CALLHOME). DER for with and without overlapped speech are shown for oracle number of

speakers (row 1) as well as number of speakers found by supervised calibration (row 2).

DER(in %)

Resegmentation w/o overlap w/ overlap

N/A 8.91 18.09

VB resegmentation 7.12 16.65

Table 3.2: Diarization results produced by the LSTM-SC diarization pipeline (5-fold CALL-
HOME). DER for with and without overlapped speech are shown for the cases where VB

resegmentation was (row 2) and was not (row 1) used.

In case of kaldi, there is an option to use the oracle number of speakers at the clustering step. If

this is not provided, the model calibrates itself to find the optimum number of speakers and

2PR fixing the broken VB resegmentation in the kaldi codebase.

https://github.com/kaldi-asr/kaldi/pull/4463
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clusters using that. We provide the results for this option as well. As expected, the model

performs better when it knows the correct number of speakers.

For LSTM-SC, we see the utility of VB resegmentation step. The results denote that about

∼ 1-2% improvement is seen when performing the resegmentation step.

3.4 Conclusion

We have discussed the two diarization pipelines (kaldi’s x-vector and LSTM-SC) which achieve

state-of-the-art DER on CALLHOME dataset. We saw their theoretical foundations and the

experimental setup required to reproduce their results. The best DER of these pipelines are

7.06% and 7.12% respectively. We build upon LSTM-SC in the next chapter to construct our

end-to-end pythonic pipeline.



Chapter 4

Fully Pythonic Pipeline for Speaker

Diarization

4.1 Introduction

As we have seen in previous sections, the field of diarization is moving towards an end-to-end

pipeline. The power of neural networks come from being able to optimize large architectures

via Gradient Descent. As of today, most of the diarization pipelines depend on kaldi, which is

written in C++, bash, Perl and Python. Even the ones that claim to be end-to-end, usually

involve kaldi at some point in their processing or use the Permutation Invariant Training loss

[23] which fails to scale in real world scenario.

We must note that as long as kaldi is a part of the speaker diarization pipeline, it cannot be made

fully end-to-end. Therefore, it is necessary to remove kaldi from the process by substituting its

utilities by their Pythonic counterparts. kaldi has been around for a long time and the diarization

field might take some time to be completely kaldi-free.

This chapter will discuss our efforts to remove kaldi from the diarization pipeline of the LSTM-SC

model discussed in previous chapter and to develop a fully pythonic pipeline.

We started our analysis by replacing the kaldi’s x-vector extractor by a Pythonic TDNN

(PyTDNN). This PyTDNN was trained on 16 kHz data from VoxCeleb [63] dataset and employed

extensive augmentations in its training. The results of the experiment can be seen in Tables 4.2

and 4.3. These results are discussed in forthcoming sections.

The rest of this chapter is organised as follows.

In the section 4.2, we shall see our experimental setup and the models used in the experiments.

32
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In section 4.3 we shall see the effects of data augmentation on x-vectors.

In section 4.4, we shall discuss the results of all of our experiments.

Lastly, section 4.5 will conclude the discussion.

4.2 Experimental Setup

The experimental setup in terms of code is similar to the previous chapter. Differences, wherever

applicable will be mentioned appropriately. Code for all the experiments in this section can be

found at the GitHub link1.

4.2.1 Datasets

While CALLHOME stays as our diarization dataset of choice, we use the following two new

datasets for specific purposes. The SWBD and SRE-databases, together referred to as the

telephony data, comprise 8 kHz speech and are used to fine-tune the PyTDNN on 8 kHz

speech.

SRE10 (8 kHz) and VoxCeleb1 (16 kHz) datasets are used for the development of alternate

diarization datases which serve as an additional point of evaluation for our model.

In the next sections we delve into the specifics of these datasets.

4.2.1.1 Switchboard (SWBD) and SRE-databases

SWBD and SRE-databases were used by the authors of LSTM-SC [52] to train their x-vector

extraction network. In particular, SRE 2004, 2005, 2006, 2008 were used.

Following the LSTM-SC authors, we also use the same databases to fine-tune our PyTDNN.

4.2.1.2 Synthetic Data from SRE10 and VoxCeleb1

To evaluate our model holistically, we generate synthetic data which alongside CALLHOME

serves to evaluate our diarization model. Two synthetic datasets were prepared, one each from

SRE10 and VoxCeleb1 [63]. The complete procedure followed for the generation of synthetic

datasets is given in Algorithm 1.

Following are the inputs taken by the synthetic data generation algorithm 1:

1https://github.com/mdrpanwar/SpeakerDiarization

https://github.com/mdrpanwar/SpeakerDiarization
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Figure 4.1: The architecture of the subsequent FC layers of PyTDNN during fine-tuning.

• num samples - The number of synthetic samples to generate.

• num speakers - The number of speakers to include in the synthetic samples.

• max num seg - Maximum number of segments per speaker.

• min olap prob and max olap prob - Minimum and Maximum overlap probabilities, taken

into account while forming overlapping segments.

• min olap len and max olap len - Minimum and Maximum lengths desired for overlap (in

seconds).

• max sil len - Maximun length of silence desired between speech segments.

• sample rate - Sampling rate of the input base dataset from which the synthetic samples

will be generated.

• wav dir - Directory containing the base wav files.

• normalise wav - flag denoting whether to normalise the synthetic samples in [-1, 1].

• out dir - Directory where generated samples are saved.

In an effort to keep the statistics of the generated data in control, we kept the number of audio

files for each speaker number identical to CALLHOME.

We also generate “simplified SRE10 data”: a collection of 10 audio files generated from SRE10

without overlapping speech, with only 2 speakers, and containing at most 5 segments per speaker

in one wav file.

4.2.2 Models

This section discusses the neural network models involved in our pipeline. These are the PyTDNN

and the LSTM-SC model.
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Algorithm 1 Algorithm for generating synthetic data from SRE10 and VoxCeleb1.

1: for each sample to be generated from num samples do
2: • Randomly choose num speakers speakers and put in chosen spk. These speakers will
3: be used to form the synthetic audio.
4: for each speaker S in chosen spk do
5: • Randomly choose a number num seg between 1 and max num seg (both inclusive)
6: to denote the number of speech segments from each speaker in the current sample.
7: • Randomly choose num seg segments from speaker S and append to list syn utt.
8: end for
9: • Shuffle syn utt and add silence of random duration in [0.001, max sil len) in between

10: speech segments.
11: • Randomly choose an overlap probability oprob from the user inputted bounds.
12: • Randomly choose a maximum overlap length olen for the current synthetic sample
13: from user inputted bounds.
14: • Randomly remove silences with a probability of oprob and overlap the two adjacent
15: speech segments with a random length in [min olap len, olen).
16: if normalise wav is true then
17: • Normalise the synthetic wav in [-1, 1].
18: end if
19: • Generate the reference RTTM syn rttm file for the syntehtic file.
20: • Write the synthetic wav file and the syn rttm to out dir.
21: end for

4.2.2.1 Speaker Classification Model

This model is a softmax classification model developed to fine-tune the PyTDNN. The feature

extractors used in diarization all come from the field of speaker verification. The training step of

speaker verification systems is same as the softmax classification, except for the fact that for

model selection, Equal Error Rate (EER) is monitored and not the classification accuracy.

We, however, monitor the classification accuracy only and notice that it also leads to a model

which performs well. The architecture of this model can be seen in Figure 4.1. Note that the

original PyTDNN has the same architecture as presented in the x-vector research paper [94],

and it therefore generates 512-dimensional x-vector.

Following kaldi, we wanted to keep the x-vector dimension to be 128 and therefore we chopped off

the final layers of the PyTDNN upto the 3000-dimensional embedding layer and and experimented

with different architectures all of which had final layer dimension as 128. This is the interpretation

of Figure 4.1.

We first extracted the 3000-dimensional embeddings for all the telephony recordings and then

used this Multi-Layer Perceptron (MLP) model to learn the weights for the terminal layers. This

fine-tuning classification model was written in tensorflow-keras [1] framework. Learning rates of

0.01 & 0.001 and various values of dropout were used with different architectures (based on the

number of layers). The Table 4.4 shows the best results for each configuration.
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(a) (b)

Table 4.1: Two sections (a) & (b) of the PCA visualization plot of x-vectors extracted
from original PyTDNN for the 4 perturbation types from CALLHOME’s utterances: 1 -
original utterance, 2 - pitch shift perturbations, 3 - time stretch perturbations, 4 - amplitude
perturbations. Different colours represent different utterances. It can be seen that amplitude
perturbations are most diffcult for the network to cluster, followed by pitch shift and time stretch

perturbations respectively.

To evaluate the effectiveness of the fine-tuned PyTDNN on CALLHOME, we extracted x-vectors

by windowing over some of the CALLHOME’s recordings and plotted them. The plots we shall

see in Table 4.7 are for the window size of 5 cm and o.5 cm overlap. We experimented with

plotting different segments from the following three types.

• All segments: Plotted all the segments that resulted from a sliding window.

• Remove fully overlapping multiple speakers: Removed those segments where for the

entire duration multiple speakers spoke (since we cannot unambiguously assign these seg-

ments to a unique speaker). The results in CALLHOME visualization plots in forthcoming

sections correspond to this category of segments being plotted.

• Only single speaker: Removed all segments with any overlap i.e. plotted only those

segments where exactly one speaker spoke.

4.2.2.2 LSTM based Similarity Measurement Model

The setup of this model is identical to the one used in section 3.1.2, except for the few changes

which are as follows.

• The input and hidden size of the Bi-LSTM depends on the size of the x-vector used.

Therefore, in case of original PyTDNN, these sizes were changed to 512× 2 = 1024.

• Instead of using the 5-fold validation, we just evaluate on 1-fold.
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LSTM-SC + kaldi
x-vector (128-dim)

LSTM-SC + original
PyTDNN x-vector (512-
dim)

DER 9.29% 38.78%

Test Loss over
100 epochs

0.692 → 0.51 (dec. rapidly) 0.693 → 0.682 (dec. slowly)

Train Loss
range after
100th epoch

[0.10, 0.69] [0.68, 0.70]

Table 4.2: Experiment 1(a): Comparison of two LSTM-SC models: 1. Using kaldi’s 128-dim
x-vector, 2. Using original PyTDNN’s 512-dim x-vector.

4.2.3 Evaluation Metric

For evaluating the Speaker Classification model, the classification accuracy was used as the

metric, while for the LSTM based Similarity Measurement Model, DER was used, as defined in

section 2.3.2.1.

4.3 Investigating the effects of Data Augmentation on Speaker

Embeddings

We wanted to analyse the effect of different perturbations on the x-vectors extracted from original

PyTDNN. This would tell us the proportions of different augmentations required while training

our PyTDNN. Following steps were followed to generate the plots for investigating perturbations:

• Find 100 utterances of 10 seconds each using the segments file of CALLHOME dataset

(therefore, all these utterances are sure to contain speech).

• Extract 61 x-vectors per utterance: 1 corresponding to original utterance, 20 pitch shifts

uniformly sampled from [-4,4), 20 time stretches uniformly sampled from [0.8,1.2), 20

augmentations with gain sampled from [0.33,3). Thus, we get 6100 x-vectors in total.

• Fit t-SNE on these 6100 x-vectors of 512 dimensions each.

• Randomly sample 5 utterances to plot. 61 x 5 = 305 points will be present in each plot.

The next section describes the usage of librosa for data augmentations.

4.3.1 Data Augmentation using librosa

Librosa is a very popular framework used for feature extraction, plotting and exploring audio

and music data. It provides extensive support for perturbing an audio using various built-in
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S. No. Experiment DER (in %)

1. Kaldi x-vector & LSTM-SC (5-folds) 8.91

2. Kaldi x-vector & LSTM-SC (1-fold) 9.29

3. PyTDNN & LSTM-SC (1-fold) 38.78

4. Tuning the LR in 3. (8 LRs used in [0.01,
0.5])

31.71 (best value, occurring at LR = 0.4)

5. Dim. reduction of Bi-LSTM input in 3.
(from 1024 to 256)

38.78

6. Upsampled (16 kHz) CALLHOME data
in 3.

38.78

Table 4.3: Experiment 1(b): Experimental results of LSTM-SC diarization experiments (on
CALLHOME) after replacing the kaldi x-vector by PyTDNN. LR = learning rate. Dimensionality

was reduced by means of FC layers.

methods. Below we see how pitch shift and time stretch perturbations can be applied using

librosa.

• Pitch Shift:

# data contains original audio sample (for all examples),

# and sr is its sampling rate.

pitch_shifted = librosa.effects.pitch_shift(data, sr, n_steps=shift_step)

We shift pitch by a random step sampled from [-4, 4).

• Time Stretch:

time_stretched = librosa.effects.time_stretch(data, stretch_step)

We stretch time by a random step sampled from [0.8, 1.2).

Alongside pitch shift and time stretch, we also use the noise addition and amplitude perturbation.

These augmentations do not require librosa and can be performed as follows.

• Noise Addition:

noise = numpy.random.randn(len(data))

noised_data = data + noise_factor * noise

The noise factor used is randomly sampled from [0.002, 0.007).

• Amplitude Perturbation:

amp_data = data * gain_step

The gain step is randomly sampled from [0.33, 3).
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n Architecture Best train-test
accuracies (in
%)

Configuration

2 d1=128, d2=128 82-76 LR=0.01, dp=0, b=32

3 d1=128, d2=128, d3=128 77-71 LR=0.01, dp=0, b=64

3 d1=512, d2=256, d3=128 68-77 LR=0.01, dp=0.1, b=64

3 d1=1024, d2=256,
d3=128

73-79 LR=0.01, dp=0.1,
b=32

4 d1=1024, d2=512, d3=256,
d4=128

79-72 LR=0.01, dp=0, b=64

Table 4.4: Experiment 1(c): Experimental results for PyTDNN fine-tuning experiments on
a subset of telephony data. (LR = learning rate, dp = dropout after each FC layer, b = batch

size). n denotes the number of FC layers before softmax. Best configuration is boldfaced.

Regardless of the type of augmentation or even no augmentation, the x-vector embeddings that

we need to plot are multi-dimensional. They cannot be visualized trivially on a 2-dimensional

plane. Therefore, we need to resort to the dimensionality reduction techniques mentioned in the

literature which efficiently bring the dimensions of x-vectors to 2 so that they can be plotted.

PCA and t-SNE are two popular algorithms of choice for visualizing points in higher dimensional

spaces by approximating their positions in the 2-dimensional space. In the next two sections we

look at them in little more detail.

4.3.2 PCA

While visualizing these higher dimensional datasets, our goal is to retain as much variance as

possible. It is the variability of the data that makes it what it is. Principal Component Analysis

(PCA) is a standard tool in the field of exploratory data analysis. It is an orthogonal linear

transformation which takes the data into a new coordinate system under the constraint that the

most variance lies on the first coordinate (now called the first principal component). Similarly,

second largest variance lies on the second coordinate and so on.

Let a n× p matrix X contain our data whose dimension we want to reduce. Here, n denotes the

number of samples we have and p denotes their features. We also additionally assume that the

mean of each column is zero i.e. the all the features averaged over the entire data result in zero

mean. If this consition is not met, we can simply subtract the mean of the column from each

entry and ensure that this condition is met [41].

The transformation is then given by a set of cardinality l of p-dimensional vectors, each of which

denote weights. w(k) = (w1, w2, ..wn)(k). These weights map each row vector x(i) to a vector of

scores for principal component t(i) = (t1, t2, ..tl)(i). The transformation is given by

tk(i) = x(i).w(k) ∀ i ∈ {1, 2, ..n} & k ∈ {1, 2, ..l}
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Model (Front-end + LSTM-SC)

Front-end x-vector extractor Learning Rate DER(in %)

Kaldi (128-dim) 0.01 9.29

Original PyTDNN (512-dim)
0.01
0.4

38.78
31.71

Fine-tuned PyTDNN (128-dim)
0.01
0.4
0.05

33.15
31.37
31.64

Table 4.5: Experiment 1(d): Results of LSTM-SC experiments (on CALLHOME) with
different front-ends (100 epochs).

This is done such that each of the individual components of t retain maximum possible variance

from the data, and w is constrained as a unit vector.

We use the implementation of PCA from the scikit-learn library’s decomposition module.

4.3.3 t-SNE

t-distributed Stochastic Neighbor Embedding (or t-SNE) is another algorithm from the class of

dimensionality reduction algorithms. However, it differs from PCA in that t-SNE is nonlinear.

This means that while PCA can only efficiently work with a linearly separable data, t-SNE does

not suffer from this restriction.

The essence of t-SNE is that it measures similarity between pair of points in higher as well as

lower dimensional space. It then optimizes these similarity measures via a cost function. The

authors Van der Maaten and Hinton explained: ”The similarity of datapoint xj to datapoint xi,

is the conditional probability, pj|i, that xi would pick xj as its neighbor if neighbors were picked

in proportion to their probability density under a Gaussian centered at xi.” [56]

Given N points x1, x2,..xN , t-SNE computes the probabilities pij that are proportional to

similarities of the data points. To do so, it first finds the conditional probabilities pj|i and then

sets pij as follows.

pij =
pj|i + pi|j

2N

.

The aim of t-SNE is to learn a map y1, y2, ..., yN with yi ∈ Rd which reflects pij similarities as

well as possible. To do so, it measures similarities qij between points in map yi and yj using

the approach similar to the computation of pij . Finally, the actual map y is determined by

minimizing the Kullback-Leibler divergence between distributions P and Q using the Gradient

descent algorithm.



Chapter 4. Fully Pythonic Pipeline for Speaker Diarization 41

Model [Front-end + LSTM-SC + specifics]

Front-end x-vector ex-
tractor

Specifics DER(%) on
SRE10

DER(%) on
VoxCeleb1

Original PyTDNN
(512-dim)

synthetic data 35.55 36.85

Fine-tuned PyTDNN
(128-dim)

synthetic data
Pre-tr and simp-SRE10

32.97
36.76

35.82
N/A

Kaldi (128-dim) Pre-tr and simp-SRE10 22.44 N/A

Table 4.6: Experiment 2: Results of LSTM-SC experiments with different front-ends (100
epochs, learning rate = 0.01) on synthetic diarization data prepared from SRE10 and VoxCeleb1.
Pre-tr = LSTM-SC model pre-trained on CALLHOME (9.29% DER) and simp-SRE10 = the

simplified version of synthetic data prepared from SRE10 as mentioned in section 4.2.1.2.

KL(P ||Q) =
∑
i 6=j

pij log
pij
qij

We use the implementation of t-SNE from the scikit-learn library’s manifold module.

4.3.4 Results

The zoomed in sections from the PCA augmentation plots can be seen in Table 4.1. The

perturbations of same utterance are all displayed in one colour and the type of perturbation is

marked as mentioned in the caption. We make the following observations.

• The points corresponding to the same utterance tend to be close to each other.This is

expected and desired.

• The time shift x-vectors corresponding to the same utterance tend to form one cluster,

while the pitch shift points tend to split into multiple clusters.

• The points corresponding to the amplitude perturbations are spread all over the place.

This tells us that the original PyTDNN cannot identify the amplitude augmented utterance

effectively.

Overall, this proves that the original PyTDNN has trouble adapting to 8 kHz speech. The order

of perturbations in which the PyTDNN faces difficulty in identifying the utterances is as follows:

time− stretch < pitch− shift << amplitude− perturbation

. One solution to alleviate this issue is to retrain the PyTDNN on 8 kHz speech with these

augmentations being in the ratio 2:3:5.
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Figure 4.2: Experiment 3(a): x-vectors plotted for the 150 utterances each for the 10 out
of 20 held-out speakers from the subset of telephony data. x-vectors were extracted from the

model configuration giving best classification results.

4.4 Experimental Results

In this section, we discuss the results of the experiments performed above. The experiments we

shall discuss are as follows.

Experiment 1:

• 1(a): Replacing the kaldi’s x-vector network by PyTDNN: comparison of two LSTM-SC

models.

• 1(b): Hyperparameter tuning of the original PyTDNN + LSTM-SC system.

• 1(c): Fine-tuning the PyTDNN on a subset of telephony data.

• 1(d): Evaluating the fine-tuned PyTDNN + LSTM-SC model on CALLHOME: experi-

menting with different front-end extractors.

Experiment 2: Evaluating the fine-tuned PyTDNN + LSTM-SC model on synthetic data:

experimenting with different front-end extractors.

Experiment 3:

• 3(a): Visualization of x-vectors from fine-tuned PyTDNN for held-out set of speakers.

• 3(b): Visualization of x-vectors from fine-tuned PyTDNN for CALLHOME recordings.
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(a) (b)

(c)

Table 4.7: Experiment 3(b): Visualization of x-vectors from CALLHOME’s recordings
extracted using the PyTDNN fine-tuned on a subset of telephony data. (a) Recording iaaa,
2 speakers with 70%-30% speech duration. (b) Recording iamo, 2 speakers, 50%-50% speech

duration. (c) Recording iaqs, 3 speakers, 20%-30%-50% speech duration.

4.4.1 Observations

We make the following observations from the results.

Experiment 1:

• 1(a): Table 4.2. Simply replacing the kaldi’s TDNN by PyTDNN results in a high DER.

The loss also tells that model is having difficulty to learn given the new x-vectors. We

hypothesize that this is due to the mismatch in the sampling rates between the two

x-vectors.

• 1(b): Table 4.3. Tuning the learning rate results in decreasing the DER by 7%. How-

ever, there is no effect of reducing the dimensionality of x-vectors or of upsampling the

CALLHOME data.
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• 1(c): Table 4.4. Of all the experiments performed for fine-tuning the PyTDNN, the best

classification test accuracy is 79% .

• 1(d): Table 4.5. The fine-tuned PyTDNN + LSTM-SC when evaluated over CALLHOME,

resulted in a decrease of about 5% in DER from 38.78% to 33.15%. This verifies our

hypothesis about the mismatch in sampling rate. However, further tuning the LSTM-SC

is not effective and DER does not go below 31%.

Experiment 2: Table 4.6. Fine-tuned PyTDNN + LSTM-SC evaluated on synthetic SRE10

data results in a DER decrease of about 3% from 35.55% to 32.97%. The same decrease is not

seen with synthetic VoxCeleb1 data, because VoxCeleb is 16 kHz while the mismatch is between

8 kHz and 16 kHz. This further strengthens our hypothesis.

Experiment 3:

• 3(a): Figure 4.2. For this experiment, we held-out a set of 20 speakers from the training

set and plotted the x-vectors for their utterances. 10 of those 20 speakers are shown for

brevity. We note that fine-tuned PyTDNN very well clusters the utterances of the held-out

speakers.

• 3(b): Table 4.7. For the recordings with number of speakers as 2, i.e. (a) and (b), the two

speakers are well separated with some mixing of points. However, the x-vectors fail to

discriminate between speakers when the number of speakers increases to 3 in (c). Also

note that the assignment of speaker to a segment is based on majority voting (the speaker

who speaks for the longest duration is assigned to the segment) which may not be accurate.

Therefore, the plots are only an approximation of the reality.

4.5 Conclusion

We saw the fully Pythonic pipeline and accompanying experiments. We noted that simply

replacing the kaldi’s TDNN by PyTDNN results in a DER increment because of the mismatch

in sampling rate between the two x-vector systems. To fix the same, we fine-tune the TDNN on

a subset of 8 kHz telephony speech data, which decreases the DER. To restore the DER to the

optimal value of 9.29%, we need to train the TDNN on complete telephony data.
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Conclusion

5.1 Discussion

In this thesis we developed a fully pythonic pipeline for speaker diarization and evaluated it

qualitatively as well as quantitatively.

In Chapter 2, we reviewed the different components of Speaker Diarization systems. We witnessed

the history and development of each component and saw various state-of-the-art diarization

systems. We also noted the datasets used in dizarization and the evaluation metrics used to

assess the performance of diarization systems. Lastly, we saw the various open source toolkits

available for diarization which ease certain tasks in the pipeline.

In Chapter 3, we chose two state-of-the-art baselines on CALLHOME dataset and reproduced

their results. The two approaches were the kaldi [70] x-vector diarization pipeline for CALLHOME

and LSTM based Similarity Measurement [52] pipeline. We discussed their theoretical background

and experimental details. We ended the Chapter with the discussion of reproduced results.

In Chapter 4, we discussed the development and analysis of our pythonic pipeline step by step.

We started by replacing the kaldi’s x-vector front-end from the LSTM-SC pipeline by a Pythonic

TDNN (PyTDNN) which had the same base architecture as kaldi’s TDNN. We investigated

the reason for a rise in DER and hypothesized the reason to be the frequency mismatch in the

x-vector due to difference in sampling rates of the data that PyTDNN was trained on (16 kHz)

and of CALLHOME (8 kHz). We fine-tuned and evaluated PyTDNN on CALLHOME as well as

on synthetic data to verify our hypothesis empirically. We also presented a qualitative analysis

of our system by visualizing the x-vectors.

Overall, we established the effectiveness of the pythonic pipeline and its potential in being used

as a baseline system for the development of robust speaker diarization models.

45
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We also point out the following two observations:

1. The sampling rate is an important characteristic which is encoded along with the features

used in speaker diarization systems. A change of sampling rate results in features which give

very different results for diarization. Features trained on dataset with sampling rate s1 cannot

directly be used on dataset with samping rate s2.

2. Let u1 be an utterance with sampling rate s1 and let perturbation p be applied on u1 to

produce u2. Now, if an x-vector extraction network N , trained on data with sampling rate s2

(6= s1), is used to extract x-vectors for u1 & u2, then representations of u1 & u2 may not be

similar, even though N was trained explicitly for the perturbation p. This is apparent from

the observation that x-vectors from PyTDNN have trouble distinguishing amplitude variants

of one utterance from another even though PyTDNN was trained on extensive augmentations

containing the amplitude augmentations as well.

5.2 Future Work

The field of Speaker Diarization is quite nuanced and there is a potential of development and

progress at every stage of the pipeline. Based on our observations, we present some of the future

directions where research can be carried out.

• Domain adaptation for sampling rate: Based on the first observation from section 5.1,

domain adaptation of speaker diarization systems from one sampling rate to another can

result in massive technological advancements. We would then be able to use one trained

diarization system and adapt it to other sampling rate without changing the features or

without any retraining.

• Using Spectrograms as an additional feature for diarization: Spectrograms are a

visual representations of speech information and can serve as additional features which can

be used alongside the d- or x-vectors. We have made several advancements in Computer

Vision and employing all of it to speech processing can lead to state-of-the-art systems.

The speech processing community is already working on the same and spectrograms have

been put to use in various other speech related tasks, just not diarization yet. Detection

and Classification of Acoustic Scenes and Events (DCASE) is an annual challenge for

sound classification. The winning team of one of the DCASE 2020 tasks used an ensemble

of CNNs over log Mel Spectrograms [97].

• Multimodal Diarization: Additional modalities are useful in gaining additional infor-

mation about any problem. The effectiveness of interface between the different modalities

determines the scope of the approach. Until now, only audio has been used to perform
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diarization. However, video of human interactions contain viable cues e.g. movement of

the mouth, body language, etc. which can be used to predict speaker turns and improve

diarization. To date, no multimodal diarization dataset is available. Creation of one can

be a great starting point in this direction.

• Alternative to Permutation Invariant Loss: The Permutation-free training loss

presented in [23] is not scalable when the number of speakers is large. An alternate

approach to deal with the Permutation invariant nature of diarization output is by bringing

the model’s prediction as well as the label to the lexicographically smallest permutation.

If they correspond to same output, they must match. This removes the task of having to

consider all the permutations. It could be an interesting exploration to see if this idea

scales to large number of speakers.
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