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Contactless electroreflectance is applied to study the band gap (E0) and spin-orbit splitting (DSO)

in InP1�xBix alloys with 0< x� 0.034. The E0 transition shifts to longer wavelengths very

significantly (�83meV/% Bi), while the E0þDSO transition shifts very weakly (�13meV/% Bi)

with the rise of Bi concentration. These changes in energies of optical transitions are discussed in

the context of the valence band anticrossing model and ab initio calculations. Shifts of E0 and

E0þDSO transitions, obtained within ab-initio calculations, are �106 and �20meV per % Bi,

respectively, which is in a good agreement with experimental results.VC 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4903179]

Ga(In)AsBi alloys with a few percent of Bi atoms (com-

monly known as “dilute bismides”), attracted great attention

in the past decade because of their interesting fundamental

properties including a large bandgap reduction (�50–90meV

per percent of Bi) and a strong enhancement of the spin-orbit

splitting due to the incorporation of Bi atoms.1–5 Very similar

phenomena are expected when Bi atoms are incorporated into

an InP host. However, InP1�xBix alloys have not been inves-

tigated intensively either experimentally or theoretically.

Only a few reports exist on the InP1�xBix material system6,7

and none of these is focus on experimental studies of spin-

orbit splitting in this alloy. Moreover, none of these previous

reports study the band gap of InP1�xBix alloys by electromo-

dulation spectroscopy, i.e., contactless electroreflectance

(CER) or photoreflectance. CER, due to its differential and

absorption-like character, is an excellent tool to study the

band gap and the spin-orbit splitting in III-V semiconduc-

tors.5 This Letter reports the application of CER spectroscopy

to study the fundamental band gap (E0) and the spin-orbit

split (E0þDSO) transition in InP1�xBix alloys with

0< x� 0.034, as well ab-inito calculations of the band struc-

ture for this alloy.

The InPBi films were grown on (100) semi-insulating

InP substrates by V90 gas source molecular beam epitaxy.6

Elemental In, Bi, and P2 cracked from phosphine were

applied. After the surface oxide desorption of InP substrate

at 524 �C, a 75-nm undoped InP buffer was grown at 474 �C.
Then the growth temperature was decreased significantly for

the growth of each InPBi film. The Bi/P ratio was adjusted to

achieve InPBi films with various Bi compositions. The thick-

ness of the InPBi films was kept around 430 nm. For CER

measurements, the samples were placed in a capacitor with a

half-transparent top electrode made from a copper-wire

mesh.5,8 To obtain absorption spectra, transmission data

were recorded using a Bruker Vertex 70V Fourier transform

infrared/visible spectrometer using a tungsten lamp, a Si

diode detector, and a CaF2 beam splitter. In order to deter-

mine Bi concentration in InP1�xBix samples, careful X-ray

diffraction (XRD) and Rutherford backscattering spectrome-

try (RBS) studies were performed.6,7 A summary of XRD

and RBS studies is given in Table I.

Figure 1 shows the room temperature CER spectra

measured for InP1�xBix samples with various Bi concentra-

tions together with the absorption curves (grey lines) meas-

ured at the same temperature. It is clearly visible that the

energy of CER resonance, which is related to E0 transition,

agrees with the energy gap determined from absorption

measurements quite satisfactorily. With increasing in Bi con-

centration, the E0 transition shifts to longer wavelengths,

while the E0þDSO transition is observed to be almost at the

same energy. For the sample with the largest Bi concentra-

tion, the E0þDSO transition is not visible in the CER spec-

trum (see Fig. 1(c)) because strong CER resonances related

to the E0 and E0þDSO transitions in the InP buffer layer are

observed in this spectral region. InP-related transitions are

not observed in the other samples since CER spectroscopy

probes the sample region near the surface where band bend-

ing modulation is strongest. For the sample with the largest

Bi concentration, the band bending modulation at the surface

is suppressed, probably due to the Bi droplets on the surface,

and therefore the band bending is modulated more strongly

at the InPBi/InP interface. Because of this, a strong signal

from the InP buffer layer is observed in CER spectrum

beside the signal from InPBi epi-layer. It is worth noting that

a strong signal from the InP buffer layer is also observed for

all InPBi samples in photoreflectance spectra (not showna)E-mail: robert.kudrawiec@pwr.wroc.pl
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here) which is typical for this technique but is unprofitable in

this case, since the InP-related transitions interfere spectrally

with the E0þDSO transition of the InP1�xBix epi-layer. It

means that CER spectroscopy is the best tool to study the

spin-orbit splitting in these samples.

In order to extract energies of E0 and E0þDSO transi-

tions, CER spectra have been analyzed as in Ref. 5. The fit-

ted curves are shown as thick grey lines in Fig. 1 together

with the moduli of CER resonances which are shown as

dashed lines. Figure 2 shows energies of E0 and E0þDSO

transitions for InPBi layers extracted from the fitting proce-

dure (open triangles) together with energies of E0 transition

obtained from absorption measurements (open squares). It is

clearly visible that the energy gap narrows with increasing

Bi concentration. A reasonable first approximation is to say,

energies of E0 and E0þDSO transitions in this alloy with low

Bi concentration (Bi� 3.4%) decrease linearly with the slope

of �83 and �13meV/% Bi, respectively. The observed

reduction of bandgap upon Bi incorporation is very different

than those obtained within the virtual crystal approximation

(VCA) with the InBi bandgap assumed to be �1.63 eV,9 see

the thin solid line in Fig. 2. This means that the simple VCA

is inappropriate for this alloy.

To further investigate the evolution of the E0 and

E0þDSO transitions with Bi content, ab initio calculations

were performed within the density functional theory (DFT)

with fully relativistic pseudopotentials on a 54 atom super-

cell using the SC-AM approach, which has been applied

to GaAsBi and GaSbBi alloys,10 where it is described in

detail. An example of the electronic band structure of

InP0.963Bi0.037 obtained from DFT calculations is shown by

thick curves in Fig. 3. It is clearly visible that the incorpora-

tion of Bi atoms into an InP host significantly modifies the

band structure of InP. Bi-related changes are more distinct in

Fig. 3(b) where the bands are plotted in the vicinity of the C
point of the Brillouin zone. Figure 4 shows Bi-related

changes in the position of the CB, heavy/light hole band, and

the spin-orbit split off band obtained from ab initio calcula-

tions. These results clearly show that the band gap of InPBi

narrows upon the incorporation of Bi atoms while the

spin-orbit split-off significantly increases. The shift rates are,

TABLE I. Summary of XRD and RBS studies of InP1�xBix layers. fk and f? are the parallel and perpendicular mismatch defined, respectively, as fk¼ (ak
InPBi

� aInP)/aInP and f?¼ (a?
InPBi � aInP)/aInP, where ak

InPBi and a?
InPBi are the lattice constants of InP1�xBix films parallel and perpendicular to the growth direc-

tion, respectively, determined from (004) and (115) x-2h rocking curves.

Sample No. fk (ppm) f? (ppm) Bulk mismatch (ppm) Relaxation (%)

Bi concentration obtained

from XRD study (%)

Bi concentration obtained

from RBS study (%)

A 115 5100 2457 5.0 1.6 NA

B 134 5400 2610 5.6 1.7 2.4

C 1415 6500 3826 40.5 2.8 2.8

D 517 10400 5158 11.5 3.4 4.4

FIG. 1. Room temperature CER spectra of InP1�xBix layers with various Bi

concentrations together with the fitting curves (thick grey lines) and the

moduli of CER resonance (dashed lines). Grey lines are absorption curves

obtained at room temperature.

FIG. 2. Energies of E0 and E0þDSO transitions in InP1�xBix alloys

extracted from room temperature CER measurements (open triangles) and

absorption measurements (open squares), which are corrected by the strain

related shift,11 together with theoretical predictions of energies of E0 and

E0þDSO transitions obtained within ab-inito calculations (grey lines) as

well as the theoretical formula given by Eq. (1) with the band gap bowing

given by Eqs. (2) and (3). Assuming that the incorporation of Bi atoms in

this range of concentration does not change significantly the hydrostatic de-

formation potentials and elastic constants the strain related shift of E0 (heavy

hole in this case) and E0þDSO transition is estimated to be dE0
HH � 5.5 eV

f? and d(E0þDSO) � 5.3 eV f?, where f? is the perpendicular mismatch

given in Table I.
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respectively, �27meV/% Bi for CB, 79meV/% Bi for VB,

and �7meV/% Bi for the split-off band. These shifts of the

conduction and valence band extrema give �75% (25%)

valence (conduction) band offset between InP1�xBix and

InP. This means that the narrowing of the band gap is

observed to be due to both the downward shift of the CB

minimum and upward shift of the valence band (VB) maxi-

mum, while the enhancement of spin-orbit splitting is caused

mainly by a strong shift of the heavy/light hole VB maxi-

mum towards the CB and only a very weak shift of the

spin-orbit split off band.

The results of ab initio calculations are also plotted in

Fig. 2 for comparison with experimental data. In order to

match experimental data obtained at room temperature with

the ab initio calculations, which corresponds to 0K, energies

of E0 and E0þDSO transitions obtained from ab initio calcu-

lations are shifted by �70meV, i.e., a bandgap shift which is

observed for these samples in absorption spectra in the

4–295K temperature range.

Analyzing Fig. 2 we can conclude that the qualitative

agreement between the DFT calculated energies of E0 and

E0þDSO transitions and the experimental values is very

satisfactory, i.e., the E0þDSO transition redshifts with the

increase in Bi concentration much less than the E0 transition.

However, the quantitative agreement between experimental

data and theoretical calculations is less satisfactory. There

are at least two factors, which lead to such a situation. The

first is the built-in compressive strain in InPBi layers, which

opens the band gap (i.e., leads to an increase in the energies

of the E0 and E0þDSO transitions) and the second is the Bi

content of InPBi layers. While the first factor can be easily

included in our analysis (see, for example, Ref. 11 and

details in the figure caption), the second factor is more com-

plex. In order to determine the Bi concentration in the InPBi

layers from XRD measurements, we have to know the lattice

constant of zinc-blende InBi. This is somewhat controversial

since InBi crystallizes in the tetragonal PbO-type structure

rather than the cubic zinc-blende structure.7,12 After previous

studies7 we assume that the lattice constant of InBi is 6.52 Å

since this value is consistent with studies reported in Ref. 1

and leads to Bi concentrations which are close to those

obtained from RBS studies. On the other hand, it is well

known that any fraction of the atoms in highly mismatched

alloys (in this case Bi atoms in InP host) that is not substitu-

tional strongly affects the XRD results and analysis. The

ionic radius of Bi is very similar to the ionic radius of In

(1.17 vs. 0.94 Å for 3þ ionic charge; note that the ionic

radius of P is 0.58 Å (Ref. 13)) and hence some Bi atoms

may occupy In sides. This can explain the difference

between Bi concentrations determined from XRD and RBS

studies for these samples. Moreover, it is very probable that

Bi pairs or other clusters can be formed in InPBi similarly as

in GaAsBi.14 Taking into account experimental errors, the

accuracy of ab inito calculations and above discussion we

can summarize that the agreement between experimental

data and theoretical predictions is acceptable for the early

stages of investigation of this alloy.

The Bi-related variation of InPBi band gap can be mod-

eled by a combination of the VCA with the VBAC model

according to

EInP1�xBix
g ¼ ð1� xÞEInP

g þ xEInP
g � DEg; (1)

where EInP
g and EInBi

g are the band gaps of InP and InBi,

respectively. The DEg is the band gap bowing, which can be

calculated within the VBAC using

DEg ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEBi

2 þ 4CBiM
2x

p
� DEBi

� �
; (2)

where DEBi is the energy distance from the Bi-level to the

maximum of the VB, CBiM is a constant, which describes the

magnitude of interaction between Bi-related levels and VB

states in InP, and x is a mole fraction of substitutional Bi

atoms.

In order to determine the VBAC parameters for

InP1�xBix, CER results have been fitted by Eq. (1) with the

band gap bowing given by Eq. (2). The fitted curve is shown

by dashed red line in Fig. 2. The magnitude of interaction

between Bi-related levels and VB states in InP has been

determined from this fit to be CBiM ¼ 1.96 0.2 eV. In this fit,

the DEBi was fixed to be 0.23 eV. This value of DEBi results

from the assumption that the Bi level lies at the same energy

(on an absolute scale) for GaP and InP,4 the VB offset

between GaP and InP is 0.33 eV,15 and that the Bi-level in

FIG. 3. Electronic band structure of InP0.963Bi0.037 (thick solid lines) calcu-

lated ab initio within the DFT together with the electronic band structure of

InP host (grey dashed lines) at 0K. L-C-X(-U)-C0 (C0 point from a neigh-

bouring BZ) progression is presented.

FIG. 4. Bi-related shifts of CB, VB, and spin-orbit split-off band in

InP1�xBix.
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GaP is located 0.1 eV above the VB maximum.16 In a first

approximation, such estimation of the Bi-level in III-V host

(i.e., the value of DEBi) can be accepted in the regime of

dilute Bi concentrations similar as the estimation of N level

in dilute nitrides.17

The other formula, which is typically used to describe

the band gap bowing, is given by

DEg ¼ bxð1� xÞ; (3)

where b is the bowing parameter and x is the alloy content.

A fit of CER data with the band gap bowing given by Eq. (3)

is shown by a short dashed blue line in Fig. 2. The bowing

parameter determined from this fit equals 8.56 0.5 eV. Such

a large bowing parameter is unusual for regular III-V

alloys,15 but is typical for highly mismatched alloys which

can be described within the BAC model.

In conclusion, applying CER spectroscopy to InP1�xBix
alloys with 0< x� 0.034 it has been determined that the E0

transition shifts to longer wavelengths very significantly

(�83meV/% Bi), while the E0þDSO transition red shifts

very weakly (�13meV/% Bi) with increasing Bi concentra-

tion. From the ab initio calculations, it has been determined

that the incorporation of Bi atoms into an InP host modifies

both the conduction and valence band. The shifts found in

this work are, respectively, �27meV per % Bi for CB and

79meV per % Bi for the VB which leads to a band gap

reduction of 106meV per % Bi. The obtained DFT results

are very consistent with the experimental data.
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