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Choi L, Chen KY, Acra SA, Buchowski MS. Distributed lag and
spline modeling for predicting energy expenditure from accelerometry in
youth. J Appl Physiol 108: 314–327, 2010. First published December 3,
2009; doi:10.1152/japplphysiol.00374.2009.—Movement sensing using
accelerometers is commonly used for the measurement of physical
activity (PA) and estimating energy expenditure (EE) under free-living
conditions. The major limitation of this approach is lack of accuracy and
precision in estimating EE, especially in low-intensity activities. Thus the
objective of this study was to investigate benefits of a distributed lag
spline (DLS) modeling approach for the prediction of total daily EE
(TEE) and EE in sedentary (1.0–1.5 metabolic equivalents; MET), light
(1.5–3.0 MET), and moderate/vigorous (�3.0 MET) intensity activities
in 10- to 17-year-old youth (n � 76). We also explored feasibility of the
DLS modeling approach to predict physical activity EE (PAEE) and
METs. Movement was measured by Actigraph accelerometers placed on
the hip, wrist, and ankle. With whole-room indirect calorimeter as the
reference standard, prediction models (Hip, Wrist, Ankle, Hip�Wrist,
Hip�Wrist�Ankle) for TEE, PAEE, and MET were developed and
validated using the fivefold cross-validation method. The TEE predic-
tions by these DLS models were not significantly different from the room
calorimeter measurements (all P � 0.05). The Hip�Wrist�Ankle pre-
dicted TEE better than other models and reduced prediction errors in
moderate/vigorous PA for TEE, MET, and PAEE (all P � 0.001). The
Hip�Wrist reduced prediction errors for the PAEE and MET at sedentary
PA (P � 0.020 and 0.021) compared with the Hip. Models that included
Wrist correctly classified time spent at light PA better than other models.
The means and standard deviations of the prediction errors for the
Hip�Wrist�Ankle and Hip were 0.4 � 144.0 and 1.5 � 164.7 kcal for
the TEE, 0.0 � 84.2 and 1.3 � 104.7 kcal for the PAEE, and �1.1 �
97.6 and �0.1 � 108.6 MET min for the MET models. We conclude that
the DLS approach for accelerometer data improves detailed EE predic-
tion in youth.

prediction model; accelerometry; physical activity; distributed lag
model; spline model

A SEDENTARY LIFESTYLE with diminished physical activity (PA) is
considered one of the major contributors to the increased preva-
lence of obesity in youth in recent decades (17, 18, 28). Therefore,
precise measurements of PA are important to our understanding of
physiological, behavioral, and environmental factors causing en-
ergy imbalance and obesity (36). The determinants of PA include
type, intensity, frequency, and duration (6). In recent years, PA
intensity received considerable attention because of a reported
increase in sedentary behaviors characterized by increased seden-
tary and light PA and decreased moderate and vigorous intensity
PA (22).

Among noninvasive, nonintrusive, and low-cost methods, ac-
celerometry has received the most attention, and has been fre-
quently used to characterize PA. The output from commercially
available accelerometers is typically reported in arbitrary units
such as counts, reflecting body movements over a selected time
interval (4, 9). These units do not have physiological meaning and
usually are converted to physiological measures such as energy
expenditure (EE) using prediction models.

To predict EE from accelerometry output, several approaches
and usually monitor-specific prediction models, have been devel-
oped for youth (10, 21) and adults (8, 35). The benefits and
limitation of using accelerometers for EE prediction have been
recently reviewed (7, 15, 19, 24, 32). The major reasons for poor
prediction of PA-related EE from accelerometers are 1) most
predictive equations are developed from limited data generated in
laboratory settings; 2) the variability in the accelerometers’ output
(counts) is greater than variability in EE measured using a refer-
ence standard method; 3) the relationship between measured EE
and the accelerometer counts is often assumed to be linear;
and 4) most studies used a single monitor placed on the waist
or hip, limiting the assessment of arm and leg movement.

To overcome these limitations, we investigated the potential
benefits of a distributed lag spline (DLS) modeling approach for
the prediction of total daily EE (TEE) and EE spent in sedentary,
light, and moderate/vigorous activities in youth using a whole-
room indirect calorimetry as the reference standard. We applied a
distributed lag model to address the fact that EE rises gradually
after starting a PA bout and decreases gradually after finishing the
bout. This is in contrast to rapid rises and falls in accelerometer
PA counts when starting and ending the PA bout. To establish
nonlinear relationships between the measured EE and the accel-
erometers’ counts, we applied spline functions to model EE using
PA counts during a wide range of activities. We also examined the
benefits of using additional monitors located on the wrist and
ankle and developed a series of prediction models. As a secondary
goal, we applied the DLS modeling to predict PAEE and meta-
bolic equivalents (MET) during the waking (nonsleeping) period
for comparison with previously published and commonly used
models for youth (11, 21, 25, 30, 31) and adults (8).

MATERIALS AND METHODS

Study Design and Participants

The study design entailed simultaneous measurements of EE and
PA during an �24-h stay in a whole-room indirect calorimeter.
Seventy-six healthy children (29 boys and 47 girls), 10–17 years old
with a range of body mass index (BMI) percentiles from 10 to 99
(BMI 16.1 to 44.0 kg/m2) completed the study protocol. The partic-
ipating children were healthy as assessed by a physician. Their
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demographic characteristics are shown in Table 1. Participants were
recruited from the Nashville, TN, area using flyers, e-mail distribu-
tion, and word of mouth. Before the study, both children and parents
or guardians signed informed consent approved by the Vanderbilt
University Medical Center Institutional Review Board.

Whole-Room Indirect Room Calorimeter Protocol

During the overnight stay (�24 h) in the room calorimeter, partic-
ipating youth followed a structured protocol during which activity
data were collected. Participants were prompted to begin each re-
quired activity with an auditory alert, cuing them to interact with a
touch screen interface that recorded start and end times for each
activity interval. Morning activities included stretching, pacing, walk-
ing, and jogging on a treadmill with various speeds, sorting objects
with a dominant hand, and using a computer mouse (solitaire).
Afternoon activities included sedentary behaviors such as talking on
the phone, handwriting, typing, playing video games, and shuffling
cards, as well as sweeping the floor, biking, and stepping. Each
prompted activity was performed for 10 min followed by a 10-min
rest period. Other activities included eating meals and snacks at the
table and self-care activities. During periods when no specific
activity was scheduled, the participants were asked to engage in
their normal daily routine without specific suggestions. To reflect
habitual activity patterns in our study population, the protocol
included more sedentary (�35%) and light (�55%) than moderate/
vigorous (�10%) intensities during waking period. Data collected
during all activities including sleeping were used to develop the
DLS models for prediction of TEE and all data except sleeping
period were used to develop the DLS models for prediction of
PAEE and MET during waking period.

Anthropometric Measurements

Body weight was measured to the nearest 0.01 kg with a
monthly calibrated digital scale (Detecto-Medic, Detecto Scales,
Northbrook, IL) while the participants wore light clothing and no
shoes. Height was measured using a wall-mounted stadiometer
calibrated upon wall installation and recalibrated yearly (Perspec-
tive Enterprises, Portage, MI).

Measurement of EE

The EE (kcal/min) was measured using the Vanderbilt whole-room
indirect calorimeter described previously (26). The room calorimeter
is equipped with a treadmill, stationary bike, wooden step, bed,
television, DVD player, video game console, laptop computer with
internet connection, desk, chair, toilet, and sink. The room calorimeter
contains a precision force platform covering most of the floor for
movement detection. The EE was calculated from the rates of oxygen
(O2) consumption and carbon dioxide (CO2) production using mea-
sured concentrations of O2 and CO2 of the air inside the room
calorimeter and multiplying by the flow rate of purged air. Sleeping
energy expenditure (SEE; kcal/min) was calculated as the average EE
during sleep (34). The waking period was defined as time from
entering the room until going to bed in the evening and confirmed by

the room calorimeter. The PAEE (kcal/min) was calculated by sub-
tracting SEE from EE. The PA intensity categories were defined using
METs calculated minute-to-minute as a ratio of EE and SEE. These
PA categories entail sedentary (1.0–1.5 MET), light (1.5–3.0 MET),
and combined moderate and vigorous (moderate/vigorous, �3.0
MET) intensities.

PA Monitoring

The PA was measured using a commercially available Actigraph
GT1M accelerometer (ActiGraph, Pensacola, FL) placed on the hip at
the dominant side of the anterior axillary line, the dominant wrist, and
dominant ankle. Among commercially used accelerometers, Acti-
graph provides consistent and high quality data supported by its
feasibility, reliability, and validity (9). The monitor measures accel-
erations 30 times/s in the range of 0.05–2.00 G and reports counts
from the summation of the measured accelerations over a specified
epoch (1). Actigraph data were collected at a 1-s epoch and summed
as counts per minute.

Modeling Approach: Distributed Lag Spline Model

Applying the same distributed lag spline (DLS) modeling ap-
proach, we developed models for prediction of TEE (including sleep-
ing), PAEE, and MET (during the waking period). Our modeling
approach was based on an exploratory analysis examining the rela-
tionships between the room calorimeter-measured EE and the PA
counts obtained from accelerometers placed on the hip, wrist, and
ankle. Plots for the measured EE and the raw counts were overlaid in
a normalized scale from 0 to 1 for each participant to examine the
pattern of associations in a continuous time domain. Plots in Fig. 1A
show relatively smooth changes in EE magnitude (gray lines) and
more abrupt changes in raw PA counts magnitude (black lines) from
hip, wrist, and ankle sites. This reflects differences between changes
in EE and changes in motion in response to performed activities.
Moreover, we found that the adjacent PA counts (lag PA) were
strongly associated with both EE and PA measured at the current time
point.

These observations promoted the use of a distributed lag model
as our modeling approach, which belongs to parametric general-
ized additive models. The model initially included several individ-
ual lag PA counts and their average as in models developed by
Welty and Zeger (33). The inclusion of individual lag PA counts
did not improve the prediction of EE, hence the average variable
was chosen for further modeling and termed a distributed lag
variable.

Next, we explored a nonlinear relationship between the mea-
sured EE and the PA counts (and the distributed lag variable) using
nonparametric smoothing curves (5). Since no single equation
(e.g., quadratic) could be applicable to modeling the relationship
between PA counts and EE across all participants, we modeled
smooth nonlinear relationship using restricted cubic splines (12).

Finally, our exploratory analysis showed that a high percentage of
“zero” PA counts was associated with activities ranging from
sleeping to moderate activities (0.6 – 6.4 kcal/min), suggesting that

Table 1. Characteristics of study participants

All Subjects (n � 76) Boys (n � 29) Girls (n � 47)

Age, yr 13.4 � 2.2 (10–17) 13.4 � 2.5 (10–17) 13.4 � 2.1 (10–17)
Ethnicity/race, %w/b/o 36.8/61.8/1.3 41.4/58.6 34.0/63.8/2.1
Height, cm 160.8 � 9.3 (140.7–187.0) 162.8 � 12.6 (140.7–187.0) 159.6 � 6.4 (146.3–176.5)
Weight, kg 67.7 � 20.0 (38.6–129.5) 71.0 � 24.4 (38.6–129.5) 65.7 � 16.7 (39.0–111.5)
BMI percentile 80.7 � 24.1 (4–99) 82.9 � 19.3 (38–99) 79.3 � 26.8 (4–99)
% with BMI �95th percentile 36.8 37.9 36.2

Values are means � SD. Values in parentheses are ranges. Body mass index (BMI) percentile was calculated using Centers for Disease Control software. w,
White; b, black; o, other ethnicities.
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the same “zero” counts predict the wide range of EE values. To
address this challenge, we generated a nonzero variable, defined as
the time span (minutes) of continuous nonzero counts prior to the
current PA measurement (counts). The rationale behind this is that
the longer the time span of nonzero counts in the past time period,
the more likely that it is an active period. Likewise, a shorter time
span of nonzero counts in the past time period would more likely
correspond to a sedentary or sleeping period associated with
low EE.

We also included demographic covariates such as gender (0 for
females, 1 for males), age (years), body weight (kg), and height (cm)
in the models. Nonlinear relationships between the measured EE and
some demographic covariates (age, weight, and height) were modeled
using the restricted cubic spline functions. A detailed description of
the distributed lag variable and the nonzero variable is provided in
Statistical Methods and Analysis.

Comparison with Commonly Used Models

We also compared TEE, PAEE, and MET predicted by the DLS
models with the results predicted by several commonly used models
for youth (11, 21, 25, 30, 31) and adults (8). The room calorimeter EE
measurements were used as a reference standard.

Statistical Methods and Analysis

Distributed lag variable. We define lag as the length of time (min)
from the current EE measurement: lag 0 is the current time (t), lag 1
is 1 min prior to the current t, lag �1 is 1 min after the current t, and
so on (see Fig. 2). The positive sign of the lag represents past time,
whereas the negative sign represents future time. To examine the
predictive ability for the neighboring PA counts measurements, we
estimated the mean of predicted EE per PA count by regressing the
measured EE (kcal/min) on the PA raw counts at each lag (Fig. 2).

The greater the mean of predicted EE per the PA count, the greater
would be the predictability of the PA counts at each lag. The
predictive ability for the EE per the PA count persisted up to lag 2 for
all sites. This suggested that the PA raw counts measured at lag �2,
lag �1, lag 0 (the current time point), lag 1 and lag 2 may be used for
each monitor. Thus we defined the distributed lag variable as a

Fig. 1. Normalized overlaid plot for a representative participant (10-year-old boy, weight � 76.5 kg, height � 155 cm) obtained during first 600 min of the �24-h
stay in the whole-room indirect calorimeter. A: energy expenditure (EE) measured by room calorimetry (gray lines) and the raw physical activity (PA) counts
(dark lines) obtained at hip, wrist, and ankle. B: EE measured by room calorimetry (gray lines) and the distributed lag PA counts (dark lines). The distributed
lag PA counts were generated by taking the weighted average of the raw PA counts from lag �1 to lag 2.

Fig. 2. The means of predicted EE (kcal/min) per PA raw count worn at hip,
wrist, and ankle against lag and time (min). The predicted means are for lags
9 to �2 from the current measurement (lag 0 or time t), and time (min) is from
past (�9 min) to future (�2 min).
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weighted average of the individual PA counts from lag a to b obtained
from each monitor site, denoting xt � �l�t�a

t�b plxl, where pl are
weights that sum to one and xl is PA raw counts at lag l. To
determine the appropriate weights and lags, we tested several
candidates for a, b, and pl in the Hip�Wrist�Ankle TEE model
using the mean squared errors (MSE; kcal2/min) as the optimiza-
tion target. The predictive abilities were not significantly impacted
by various pl, and hence the equal weights were chosen for
simplicity in the final model.

Nonzero counts variable. An automatic algorithm was used to
generate the nonzero counts variable. The algorithm examined a
sequence of data points (counts/min) acquired before the current
measurement (at time t) for a specific search-back time period (i.e., 40
min). Starting from the current data point at t, the number of nonzero
data points (counts/min) was found by counting nonzero data points
until two consecutive zero counts values were found. The final
duration of the search-back period (40 min) was chosen based on the
distribution of the nonzero counts variable generated with a larger
search-back period of 60-min.

Model validation. The fivefold cross-validation was used to eval-
uate all models performance (13). Briefly, the participants were
randomly divided into five groups. One group was held out as a test
set and the remaining four groups were used as a training set to
develop a model. The developed model was used to predict the EE in
the held-out test group. This process was repeated five times for each
held-out test set and the training set consisting of the remaining
four-fifths participants. Thus, although the EE were predicted for all
participants, an individual was never used in the prediction of their
own EE. To check sensitivity of the results to the choice of fold, we
compared the prediction errors from the Hip�Wrist�Ankle TEE
model using 5-fold, 10-fold, and 50 times of 10-fold cross-validation.
Since there were little differences between the results, we used
fivefold cross-validation except for the regression coefficients, which
was estimated using the entire data set (see APPENDIX, TABLES A1, A2,
and A3).

Statistical analysis. Model performance was evaluated using sum-
mary statistics summarized for individuals for TEE (kcal) during
�24-h room calorimeter stay, and PAEE (kcal) and MET (MET min)
during the waking period. The minute-to-minute MSE (kcal2/min)
was calculated as the average of squared differences between the
predicted and measured values per minute for each participant. The
means and standard deviations (mean � SD) of prediction error
(measured � predicted), percent prediction error, and the root mean
squared error (RMS; the square root of the average of squared prediction
error for individuals) were calculated as differences between TEE, PAEE,
and MET measured using the room calorimeter and predicted by the
DLS models. Note that the square roots of MSE are a minute-to-
minute measure of error (e.g., kcal/min), whereas the RMS is an
overall measure of error (e.g., kcal/day).

Bland-Altman plots (2) were used to assess agreements between
the TEE, PAEE, and MET measured by the room calorimeter and
predicted by the DLS models. The differences between the mea-
sured and predicted values (measured � predicted) and the 95%
limits of agreement are presented against the measured values. The
95% confidence intervals (CI) of the mean differences between
measured and predicted values were estimated using Student’s t
statistics.

Differences (measured � predicted) for EE, PAEE, and MET
during waking period at three PA intensity levels (sedentary 1.0–1.5,
light 1.5–3.0, and moderate/vigorous �3.0 METs) were calculated.
The distributions of the differences were examined by strip charts
with box plots. The sensitivity analysis (the probability of correct
classification) of time spent prediction at each PA intensity was
performed by calculating the percent of time points (min) the DLS
models correctly categorized PA intensity compared with the room
calorimeter (true category).

Wilcoxon signed rank tests, rank sum tests, or the corresponding
nonparametric CI were used whenever appropriate due to skewed
distributions. Data are presented as means, standard deviations (SD),
and ranges. All analyses were performed using STATA 9.2 (Stata-
Corp, College Station, TX) and a programming language R (29).

RESULTS

DLS Model Development

Development of the distributed lag and nonzero variables.
Plots in Fig. 1 illustrate that the distributed lag variables are
better associated with the EE measurements compared with the
PA raw counts. Direct neighboring measurements at lag �1 to
�1 (minutes) had the strongest predictability for EE (Fig. 2).
The measurement at lag 2 reduced MSE significantly com-
pared with the model with lag �1 to �1 (P � 0.001). Thus,
lags from �2 min to �1 min were chosen as time points for the
distributed lag variables.

To generate the nonzero counts variable, the length of the
search-back period was examined using its distribution. We
chose a 40-min period, which covered the 99th percentile of the
distribution of the variable. Inclusion of the nonzero counts
variable in the TEE model significantly reduced MSE com-
pared with the model without this variable (P � 0.05). The
nonzero counts variable improved the model by explaining
additional variability during periods of low activity.

Development of site and outcome specific DLS models. DLS
models for prediction of TEE during �24-h room calorim-
eter stay were developed separately for Hip�Wrist�Ankle,
Hip�Wrist, Hip, Wrist, and Ankle. Prediction models for
PAEE and MET during waking period were developed with
the same combination of accelerometer sites and modeling
approach. Mathematical models are described in the APPEN-
DIX, and the regression coefficients are presented in Tables
A-1, A-2, and A-3 for the TEE, PAEE, and MET models,
respectively.

Model Performance and Validation

Overall model performance. The prediction errors (mea-
sured � predicted), percent errors, and RMS for TEE, PAEE
and MET models are presented in Table 2. Compared with the
Hip model, models including wrist and/or ankle reduced RMS
and the variability in prediction for all DLS models.

The square roots of the individual MSE for the TEE models
are shown in Fig. 3. Adding wrist or/and ankle monitor
significantly improved accuracy and precision of minute-to-
minute EE prediction. The Hip�Wrist�Ankle predicted EE
better than other models (all P � 0.05), while the Hip�Wrist
performed better than all single site models (all P � 0.05). The
Hip model also performed better than the Wrist and Ankle
models (all P � 0.05). We obtained similar results for predic-
tion of PAEE and MET (data not shown).

Table 3 summarizes means, SD, and the 95% percentile
intervals (2.5th and 97.5th percentiles) for TEE, PAEE, and
MET predicted by the DLS models and measured by the room
calorimeter. Bland-Altman plots for TEE and PAEE models
and the Hip�Wrist�Ankle and Hip models for MET are shown
in Figs. 4, 5, and 6, respectively. They all show good agree-
ments between the measured TEE, PAEE, or MET and the
corresponding predicted values. The TEE, PAEE, or MET
predicted by the models were not significantly different from
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the corresponding room calorimeter measurements (all P �
0.05). All DLS models accurately predicted TEE with good
precision (shorter 95% CI) for Hip�Wrist�Ankle (�33 to 33
kcal), Hip�Wrist (�35 to 37 kcal), Hip (�36 to 39 kcal),
Wrist (�42 to 41 kcal), and Ankle (�37 to 33 kcal) models.
The overall performance of the PAEE and MET models was
similar to the TEE models.

EE prediction at PA intensity levels. As expected, partici-
pants spent more waking time in sedentary and light (303 �
130 and 454 � 118 min, respectively) compared with moder-
ate/vigorous intensity activities (78 � 22 min).

The distribution of EE prediction errors at different PA
intensities (measured � predicted) are shown in Fig. 7. Over-
all, the TEE models predicted EE well at both sedentary and
light PA intensities, but underpredicted EE at moderate/vigor-
ous PA intensity. The PAEE models predicted the light PAEE
well but slightly overpredicted the sedentary PAEE. This trend
was similar for the MET models (data not shown).

The benefits of using additional accelerometers were assessed
by comparing prediction errors between the Hip�Wrist�Ankle,
Hip�Wrist, and Hip models at the PA intensities. The EE pre-
diction errors from the Hip�Wrist�Ankle were significantly
smaller than those from the Hip�Wrist at moderate/vigorous PA
intensity (P � 0.001). The prediction errors from the Hip�Wrist
at light PA intensity were smaller (P � 0.058) than those from the
Hip. The Hip and the Ankle models were not significantly differ-
ent in prediction errors at all PA intensities (all P � 0.05). The
results were similar for the PAEE and MET models except that
the prediction errors from the Hip�Wrist at sedentary PA level
were significantly smaller than those from the Hip model for the
PAEE and MET (P � 0.020 and 0.021, respectively).

Correct classification of time spent in PA intensities during
waking (nonsleeping) periods. Correct classification of time
spent by the Hip�Wrist�Ankle TEE model was high at all
intensity PA levels (Table 4). Compared with the Hip, the
Hip�Wrist increased the correct categorization of time spent at
light PA by 10% (P � 0.001). The Hip�Wrist�Ankle in-
creased the correct categorization of time spent at moderate/
vigorous PA by 17% compared with the Hip�Wrist (P �
0.001). The Hip�Wrist�Ankle and Ankle models resulted in
the highest correct categorization of time spent at moderate/
vigorous PA. The Hip�Wrist and the Wrist models had the
highest correct categorization of time spent at light PA. Correct
categorization of time spent at combined sedentary and light
PA levels was very high (� 95%) for all DLS models. The
results were similar for the PAEE and the MET models (data
not shown).

We also examined the effect of PA data smoothing on time
spent categorization. Compared with the DLS models, the
correct categorization of time spent by models with the raw PA
counts was lower at sedentary (72 vs. 75%), light (69 vs.77%)
and moderate/vigorous (74 vs. 80%) PA intensities for the
Hip�Wrist�Ankle model.

Comparison with Existing Models

Among several commonly used models, the predictions
by the linear model for children proposed by Freedson and
coworkers (Freedson child model) (11, 30) and the two-
component regression model developed by Crouter and
coworkers (Crouter model) (8) showed the highest agree-
ment with the room calorimeter measurements, and hence
were chosen for the Bland-Altman agreement comparison
with the DLS models. Since both the linear and the two-
component regression models use data from one-site (hip)
monitor and predict METs, we used our MET Hip model
and the best performing Hip�Wrist�Ankle model for final

Fig. 3. The distributions of the square root of the mean of squared errors (MSE;
kcal/min) for prediction of TEE from the distributed lag and spline (DLS)
models calculated for each participant. The horizontal bars represent the
means. *P � 0.001 vs. Hip�Wrist�Ankle model; †P � 0.001 vs. Hip�Wrist
model; §P � 0.001 vs. Hip model.

Table 2. Prediction errors, percent prediction errors, and
RMS calculated as differences between TEE, PAEE, and
MET measured using the whole-room indirect calorimeter
during approximately 24-h room calorimeter stay (TEE) and
during approximately 800 min waking (nonsleeping) period
(PAEE and MET) and predicted by DLS models

DLS Models

Prediction Error

Error Percent error RMS

(kcal/day) TEE model, % (kcal/day)
Hip�Wrist�Ankle 0.4 � 144.0 �0.4 � 6.8 143.0
Hip�Wrist 1.2 � 156.8 �0.4 � 7.3 155.8
Hip 1.5 � 164.7 �0.3 � 7.7 163.6
Wrist �0.3 � 181.8 �0.5 � 8.0 180.6
Ankle �2.0 � 152.2 �0.5 � 7.3 151.2

(kcal) PAEE model, % (kcal)
Hip�Wrist�Ankle 0.0 � 84.2 �0.9 � 10.6 83.6
Hip�Wrist 1.3 � 97.7 �0.7 � 11.8 97.1
Hip 1.3 � 104.7 �0.9 � 13.4 104.1
Wrist �0.5 � 131.9 �1.1 � 14.6 131.1
Ankle �2.2 � 106.4 �1.6 � 13.8 105.7

(MET min) MET model, % (MET min)
Hip�Wrist�Ankle �1.1 � 97.6 �0.3 � 5.9 97.0
Hip�Wrist �0.1 � 102.8 �0.2 � 6.2 102.1
Hip �0.1 � 108.6 �0.2 � 6.5 107.8
Wrist �1.9 � 122.9 �0.3 � 7.5 122.1
Ankle �2.7 � 119.8 �0.5 � 7.3 119.0

Values are means � SD. RMS, root mean squared errors; TEE, total energy
expenditure; PAEE, physical activity energy expenditure; MET, metabolic
equivalent; DLS, distributed lag spline.
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comparisons. Both Hip�Wrist�Ankle and Hip models were
less biased (all P � 0.001) compared with the two tested
models and more precise in the MET prediction (Fig. 6).
The Hip model bias was significantly smaller than the bias
generated by the two models (95% nonparametric CIs for the
difference in bias were 91 to 182 and 172 to 227 MET min,
respectively). Similarly, the bias from the Hip�Wrist�Ankle was
also significantly smaller than those from the two models (95%
nonparametric CIs for the difference in bias were 92 to 187 and
167 to 229 MET min, respectively).

DISCUSSION

The major accomplishment of this study is the development
of a new modeling approach to predict TEE and EE in
sedentary and light intensity PA categories for youth using PA
counts measured by accelerometers and observable character-
istics of sex, weight, height, and age. We also showed that EE
prediction in sedentary, light, and moderate/vigorous intensity
PA categories could be further improved by collecting data
from monitors placed on wrist and ankle.

Our approach is novel in predicting EE from PA measure-
ments in several ways. First, we used the distributed lag
modeling to improve EE predictions by smoothing PA mea-

surements of body movements, which improved correlation
of PA measurements with room calorimeter EE measure-
ments. Second, we used spline functions to model nonlinear
relationships between the measured EE and the PA counts
while most published models developed for EE prediction
from accelerometer data used regression modeling assuming
a linear relationship, a quadratic function, or two-regres-
sions with polynomial function (8, 25). It may be possible
that these approaches do not have sufficient flexibility to
explain variability in a wide spectrum of PA intensities.
Third, we generated a nonzero counts variable to improve
EE prediction from “zero” PA counts at low intensity
activities. Fourth, we examined the benefits of using addi-
tional monitors located at wrist and/or ankle to improve the
EE prediction. Finally, we applied the DLS modeling to
predict PAEE and METs during waking period. To ensure
high applicability of our models to other youth populations,
participants were heterogeneous in terms of height, weight,
BMI (16.1 to 44.0 kg/m2), with a wide range of ages (10 to
17 yr), and were ethnically diverse.

In recent years, more complex modeling approaches for
EE prediction have emerged such as two-regression model-
ing (8), Markov chain pattern recognition (20), and neural

Table 3. TEE, PAEE, and MET measured by the whole-room indirect calorimeter (approximately 24 h) and predicted by the
corresponding DLS models for TEE, PAEE and MET for individuals

TEE, kcal/day PAEE, kcal MET, MET min

Room calorimetry 2,200 � 427 (1,434, 3,023) 817 � 201 (478, 1,202) 1,642 � 160 (1,353, 1,974)
Hip�Wrist�Ankle 2,199 � 408 (1,531, 3,115) 817 � 190 (478, 1,170) 1,643 � 149 (1,383, 1,921)
Hip�Wrist 2,199 � 410 (1,516, 3,045) 815 � 196 (488, 1,202) 1,642 � 159 (1,397, 1,956)
Hip 2,198 � 410 (1,490, 3,047) 815 � 191 (481, 1,174) 1,642 � 157 (1,387, 1,948)
Wrist 2,200 � 419 (1,542, 2,952) 817 � 210 (508, 1,172) 1,644 � 171 (1,394, 1,919)
Ankle 2,202 � 405 (1,549, 3,191) 819 � 183 (482, 1,147) 1,644 � 142 (1,405, 1,876)

Values are means � SD. Values in parentheses are 95% percentile intervals.

Fig. 4. Bland-Altman agreement plots between total energy expenditure (TEE, kcal/day) measured during �24-h stay in the whole-room indirect calorimeter,
and TEE predicted from the DLS models using PA measurements (counts) obtained from Actigraph accelerometers. The horizontal dashed line represents the
mean difference between the TEE measured by the room calorimeter and predicted by the DLS models, and the upper and lower dotted lines are 95% limits of
agreement calculated as mean difference � 2 SDs. Values above and below the middle horizontal zero line are underestimation and overestimation of TEE,
respectively. � and Œ, boys and girls, respectively.
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network (23) modeling. All these models require data col-
lected at 1- or 10-s epoch, which may not be feasible in
many large-scale epidemiological studies (6). Other ap-
proaches such as recent cross-sectional time series modeling
(36) require simultaneous heart rate measurements. Model
performance could be compared across the models and
monitors if the prediction error, percent error, and/or RMS
are reported. Among a few studies that developed models
for youth, Zakeri et al. (36) recently reported prediction
errors from the cross-sectional time series models developed
using the Actiheart monitor. All DLS 24-h TEE models

showed lower RMS than the Actiheart model (143.0 to
180.6 kcal vs. 200.8 kcal). For the prediction of PAEE, all
DLS Actigraph models except the Wrist model generated
smaller RMS than the Actiheart model (e.g., Hip�
Wrist�Ankle: 83.6 kcal, Hip�Wrist: 97.1 kcal, Hip: 104.1
kcal vs. Actiheart: 107.7 kcal). The DLS 24-h TEE models
also resulted in lower mean absolute errors and percent
errors than the Actiheart model. A younger population,
different monitor used, and a single-site approach in the
Zakeri et al. (36) study may be a plausible explanation of the
differences between the two studies.

Fig. 5. Bland-Altman agreement plots between PAEE (kcal) during waking (nonsleeping) period measured during �24-h stay in the whole-room indirect
calorimeter and PAEE predicted from the DLS models using PA measurements (counts) obtained from Actigraph accelerometers. The horizontal dashed line
represents the mean difference between the PAEE measured by the room calorimeter and predicted by the DLS models and the upper and lower dotted lines are
95% limits of agreement calculated as mean difference � 2 SDs. Values above and below the middle horizontal zero line are underestimation and overestimation
of PAEE, respectively. � and Œ, boys and girls, respectively.

Fig. 6. Bland-Altman agreement plots between
measured metabolic equivalents (MET) in the
whole-room indirect calorimeter calculated as a
ratio of EE during waking period and sleeping
EE and predicted from models. The METs were
summed over waking period (MET min). The
METs were predicted from the DLS MET mod-
els developed to predict MET during waking
period and 2 previously published models, the
linear model for children (Freedson child
model) (11, 30) and the 2-component regression
model (Crouter model) (8). The horizontal
dashed line represents the mean difference be-
tween the methods, and the upper and lower
dotted lines are 95% limits of agreement calcu-
lated as mean difference � 2 SDs. Values above
and below the middle horizontal zero line are
underestimation and overestimation of METs,
respectively. � and Œ, boys and girls, respec-
tively.
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Most published models were developed using accelerome-
ters worn on the waist (hip) since this placement is optimal for
detecting the central body movements. Single locations, how-
ever, may not fully capture low intensity activities performed
with limited trunk movements (i.e., playing computer games,
using computer mouse, talking or “texting” using cellular
phone, or internet browsing). Few studies have examined the
benefits of using additional monitoring sites, and the findings
were not consistent between studies. Swartz et al. (27) and
Leenders et al. (14) showed that the additional wrist Actigraph

did little in improving the prediction of EE, whereas Melanson
and Freedson (16) reported that the additional monitor
improved the EE prediction. In our previous study, using
different types of accelerometers, we showed benefits of
using hip and wrist worn monitors (3) in predicting EE. In
the present study, the Hip model was accurate in overall
prediction of TEE, PAEE, or MET, and addition of wrist and
ankle monitors did not significantly improve the overall
prediction. Therefore, in studies designed to measure group
averages of TEE, PAEE, or MET in youth, using a monitor

Fig. 7. Box plots of differences (measured � predicted) in EE (kcal) between measurements obtained from the whole-room indirect calorimeter and predicted
from the DLS TEE models during waking period in sedentary (1.0–1.5 MET), light (1.5–3.0 MET), and moderate/vigorous (�3.0 MET) PA intensity levels.
�, individual TEE differences.

Table 4. Correct classification of time spent in sedentary, light, combined sedentary and light, and combined moderate and
vigorous PA intensity categories during waking (nonsleeping) period predicted by DLS models for prediction of TEE

Sedentary
(1.0 � METs �1.5)

Light
(1.5 � METs �3.0)

Sedentary � Light
(1.0 � METs �3.0)

Moderate/Vigorous
(3.0 � METs)

Measured by room calorimeter, min 303 � 130 454 � 118 756 � 82 78 � 22
DLS models, %

Hip�Wrist�Ankle 75 77 98.5 80
(71, 78) (75, 78) (97.9, 99.0) (77, 84)

Hip�Wrist 67 79 97.8 63
(64, 71) (77, 80) (96.8, 98.8) (59, 66)

Hip 76 68 99.0 62
(73, 79) (65, 71) (98.6, 99. (58, 65)

Wrist 63 78 96.5 34
(59, 67) (76, 80) (95.5, 97.5) (31, 40)

Ankle 73 69 99.1 69
(69, 76) (67, 72) (98.9, 99.3) (65, 73)

Values for room calorimeter are means � SD. Values for the models are medians and 95% confidence intervals in parentheses.
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placed at the waist (hip) and appropriate prediction equation
might be sufficient.

However, the benefit of additional monitors is apparent
when the prediction errors and RMS at PA levels were com-
pared. The means and SD of the prediction errors and the RMS
were reduced in the Hip�Wrist and Hip�Wrist�Ankle mod-
els. Compared with the Hip model, addition of a wrist monitor
improved the prediction of EE, PAEE, or MET at light and
sedentary PA intensity levels. A plausible explanation is the
ability of the wrist monitor to measure hand movements
associated with some sedentary behaviors. Addition of an
ankle monitor to the Hip�Wrist model resulted in further
improvement in the prediction of EE at moderate/vigorous PA
intensity. Overall, the Hip�Wrist�Ankle model had smaller
bias and variance than any other models at tested PA intensity
levels. Thus, in studies focused on predicting EE of sedentary
behaviors, the additional wrist or wrist and ankle monitors
could improve the prediction of the EE, PAEE, or METs.
Regarding the correct prediction of time spent in PA intensity
categories, our results showed that wrist and ankle monitors
could help in more accurate prediction of time spent at light
and moderate/vigorous PA intensities, respectively. However,
feasibility of using more than one monitor site in the free-living
environment should be investigated, and the optimal balance
between validity and feasibility of such approach should be
assessed.

We also compared the prediction from our models with
those from several commonly used models developed for
Actigraph data. Our DLS models predicted METs more
accurately and precisely than the best performing model for
children (30) and the two-component regression model (8).
It is also important to note that our modeling approach is
general and could be modified for the prediction of EE from
data generated by other types of accelerometers.

There are some limitations to our study and the developed
DLS models. We used the room calorimeter generated EE
data for modeling, including routine activities reflective of
activities performed under free-living conditions. Although
we included many different types of PA, some activities
such as playing basketball or baseball cannot be performed
in the room calorimeter. Thus future studies should incor-
porate doubly labeled water techniques to test the perfor-
mance of the DLS models in the free living. Although the
DLS models were developed for youth with a wide range of
age and BMI, they might predict EE less accurately in
younger children or adults. The DLS models for the differ-
ent age groups and populations may need to be validated or
optimized with specific model components. In this study, we
used 1.5 MET to distinguish between sedentary and light PA
intensities, although a clear threshold cut-off between sed-
entary and light PA intensities has not been well established.
We used the 1.5-MET threshold to categorize these two PA
levels to examine the benefits of using additional monitors
more closely. Since many data points were close to the
boundary of sedentary and light PA intensities, our results
obtained for these categories may not be definite and should
be used with caution. Although the DLS models for PAEE
and METs performed satisfactorily compared with the com-
monly used models, they could be improved further. Finally,
we observed that the DLS models have lower predictive
power for EE or PAEE at moderate/vigorous than light and
sedentary PA intensities, and hence should be used with
caution in studies focused on predicting EE in higher (�3
METs) PA intensities.

In summary, we developed a new approach to predict EE
from PA counts collected by accelerometers using a distrib-
uted lag variable in flexible spline models. The TEE pre-
dicted by our DLS models was not significantly different

Table A1. Regression coefficients for DLS TEE models for prediction of TEE.

Hip�Wrist�Ankle Hip�Wrist Hip Wrist Ankle

�sex 1.801e-01 1.791e-01 1.601e-01 1.903e-01 1.606e-01
�height 4.618e-01 5.131e-01 5.519e-01 5.538e-01 5.711e-01
�1

age 0.0098474647 0.011442208 0.010602982 0.015915414 0.010537649
�2

age �0.0020577091 �0.0021616148 �0.0017917301 �0.0029429420 �0.0019240991
�3

age 0.0041154183 0.0043232295 0.0035834602 0.0058858839 0.0038481982
�4

age �0.0020577091 �0.0021616148 �0.0017917301 �0.0029429420 �0.0019240991
�1

weight 0.012889108 0.013592301 0.012279253 0.010960134 0.011788989
�2

weight �3.9838978e-06 �4.4419523e-06 �3.9764484e-06 �5.4221807e-06 �3.0563212e-6
�3

weight 5.577457e-06 6.2187332e-06 5.5670278e-06 7.591053e-06 4.2788497e-6
�4

weight �1.5935591e-06 �1.7767809e-06 �1.5905794e-06 �2.1688723e-06 �1.2225285e-6
�1

nonzero 0.016154343 0.037478371 0.067217778
�2

nonzero �0.00031522878 �0.00076250126 �0.0013219342
�3

nonzero 0.00063045756 0.0015250025 0.0026438683
�4

nonzero �0.00031522878 �0.00076250126 �0.0013219342
�1

hip 6.1038919e-06 3.4802184e-05 0.00010289413
�2

hip 3.6955909e-14 �1.4504872e-13 �6.3722528e-13
�3

hip �5.4509965e-14 2.1394686e-13 9.399073e-13
�4

hip 1.7554057e-14 �6.889814e-14 �3.0268201e-13
�1

wrist 0.00060991711 0.00071803981 1.7003818e-05
�2

wrist �3.756143e-10 �4.99587e-10 �1.5167660e-15
�3

wrist 4.8829859e-10 6.494631e-10 2.6543406e-15
�4

wrist �1.1268429e-10 �1.498761e-10 �1.1375745e-15
�1

ankle 3.0542383e-05 0.00016025566
�2

ankle �2.0682920e-13 �1.1539739e-12
�3

ankle 3.0507308e-13 1.7021115e-12
�4

ankle �9.8243872e-14 �5.481376e-13
�0 �5.908e-01 �7.400e-01 �6.199e-01 �6.531e-01 �6.426e-01
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from the TEE measured by the room calorimeter. However,
our DLS models should be further validated in an indepen-
dent data set of children and adolescents in laboratory
conditions using calorimetry and in the free living using
doubly labeled water. Prediction by the DLS models ap-
peared to be more accurate, precise, and sensitive in seden-
tary and light PA intensities. Moreover, the prediction of
time spent in sedentary and light intensities benefited from
the addition of wrist and ankle monitors. These findings may
be useful in studies where measuring changes in sedentary
behavior is important. Examples include preventive or ther-
apeutic weight regulation programs with a PA component
designed for obese or at risk for obesity youth.

APPENDIX: MODEL SPECIFICATION FOR DLS MODELS

General model notations are as follows. The variables xt
hip,

xt
*wrist, and xt

ankle are the distributed lag variables (lags 2 to �1) at time t for
Hip, Wrist, and Ankle multiplied by each participant’s body weight. The
x�t

wrist is the distributed lag variable for Wrist without being multiplied by the
body weight. The variable xt

nonzero.hip is the number of minutes of continuous
nonzero Hip counts in the previous 40-min period at time t. A restricted cubic
spline function is used with three specified knots. For an example of the
weight in the DLS TEE models, the knots are specified at 40, 50, and 75 kg.
A predicted value of x is represented by x̂. A notation for a covariate
(x �40)� represents that the covariate equals to (x � 40) if x � 40 and equals
to 0 if x � 40. The knots for the splines were chosen based on the distribution
of the covariates and were robust to precise choice of locations.

Table A2. Regression coefficients for DLS PAEE models for PAEE

Hip�Wrist�Ankle Hip�Wrist Hip Wrist Ankle

�sex 6.340e-02 6.061e-02 4.285e-02 7.000e-02 5.141e-02
�height 3.326e-01 4.454e-01 4.462e-01 5.614e-01 3.971e-01
�age �1.023e-02 �9.043e-03 �7.060e-03 �1.525e-02 �7.231e-03
�1

weight 0.0063881575 0.0071198469 0.0062470157 0.0050236536 0.0071413129
�2

weight �3.0779033e-06 �3.5020714e-06 �3.5909033e-06 �6.0810182e-06 �3.5036577e-06
�3

weight 4.3090647e-06 4.9029e-06 5.0272646e-06 8.5134255e-06 4.9051208e-06
�4

weight �1.2311613e-06 �1.4008286e-06 �1.4363613e-06 �2.4324073e-06 �1.4014631e-06
�1

nonzero 0.0094423991 0.032353784 0.045767961
�2

nonzero �0.00021081922 �0.00069615082 �0.00093777958
�3

nonzero 0.00042163844 0.0013923016 0.0018755592
�4

nonzero �0.00021081922 �0.00069615082 �0.00093777958
�1

hip 2.0740686e-05 5.0148819e-05 8.8411013e-05
�2

hip �7.2883273e-14 �2.6048381e-13 �5.3001964e-13
�3

hip 1.0750283e-13 3.8421361e-13 7.8177897e-13
�4

hip �3.4619555e-14 �1.2372981e-13 �2.5175933e-13
�1

wrist 0.00028580228 0.00040005359 1.2198069e-05
�2

wrist �8.9523862e-11 �2.2095764e-10 �7.4097988e-16
�3

wrist 1.1638102e-10 2.8724494e-10 1.2967148e-15
�4

wrist �2.6857159e-11 �6.6287293e-11 �5.5573491e-16
�1

ankle 2.6366781e-05 0.00013084094
�2

ankle �1.7582419e-13 �9.3607983e-13
�3

ankle 2.5934067e-13 1.3807177e-12
�4

ankle �8.3516488e-14 �4.4463792e-13
�0 �4.945e-01 �7.589e-01 �6.098e-01 �6.608e-01 �6.059e-01

Table A3. Regression coefficients for DLS MET models for prediction of MET

Hip�Wrist�Ankle Hip�Wrist Hip Wrist Ankle

�sex �6.237e-02 �6.547e-02 �8.156e-02 �5.455e-02 �7.435e-02
�height 1.525e-01 2.639e-01 2.670e-01 3.934e-01 2.208e-01
�age �3.109e-03 �2.243e-03 �2.042e-05 �9.313e-03 �6.952e-04
�weight �2.272e-03 �1.940e-03 �2.930e-03 �6.085e-03 �2.069e-03
�1

nonzero 0.010773824 0.032365330 0.045856839
�2

nonzero �0.00023613161 �0.00069350054 �0.00093281675
�3

nonzero 0.00047226321 0.0013870011 0.0018656335
�4

nonzero �0.00023613161 �0.00069350054 �0.00093281675
�1

hip 2.9618283e-05 5.849171e-05 9.5284008e-05
�2

hip �1.5188450e-13 �3.3744338e-13 �5.9390138e-13
�3

hip 2.2402964e-13 4.9772898e-13 8.7600453e-13
�4

hip �7.2145138e-14 �1.6028561e-13 �2.8210315e-13
�1

wrist 0.00023583468 0.00034666784 1.3678485e-05
�2

wrist �3.0702699e-11 �1.5703812e-10 �1.1114611e-15
�3

wrist 3.9913509e-11 2.0414955e-10 1.9450569e-15
�4

wrist �9.2108098e-12 �4.7111435e-11 �8.3359581e-16
�1

wrist 2.6873824e-05 0.00013305167
�2

wrist �1.8086133e-13 �9.5560507e-13
�3

wrist 2.6677046e-13 1.4095175e-12
�4

wrist �8.5909131e-14 �4.5391241e-13
�0 1.288e �00 1.052e �00 1.186e �00 1.209e �00 1.202e �00
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DLS TEE models

1) Hip�Wrist�Ankle model.

E
^
Et � �0 � �sex � sex � �height � height

� �1
age �age� � �2

age �age � 12��

3 � �3
age �age � 14��

3 � �4
age �age � 16��

3

� �1
weight �weight� � �2

weight �weight � 40��

3 � �3
weight �weight � 50��

3 � �4
weight �weight � 75��

3

� �1
nonzero �xt

nonzero.hip� � �2
nonzero �xt

nonzero.hip � 3��

3
� �3

nonzero �xt
nonzero.hip � 6��

3
� �4

nonzero �xt
nonzero.hip � 9��

3

� �1
hip �xt

hip� � �2
hip �xt

hip � 200��

3
� �3

hip �xt
hip � 4,000��

3
� �4

hip �xt
hip � 12,000��

3

� �1
wrist �xt

wrist� � �2
wrist �xt

wrist � 200��

3
� �3

wrist �xt
wrist � 500��

3
� �4

wrist �xt
wrist � 1,500��

3

� �1
ankle �xt

ankle� � �2
ankle �xt

ankle � 200��

3
� �3

ankle �xt
ankle � 4,000��

3
� �4

ankle �xt
ankle � 12,000��

3

2) Hip�Wrist model.

E
^
Et � �0 � �sex � sex � �height � height

� �1
age �age� � �2

age �age � 12��

3 � �3
age �age � 14��

3 � �4
age �age � 16��

3

� �1
weight �weight� � �2

weight �weight � 40��

3 � �3
weight �weight � 50��

3 � �4
weight �weight � 75��

3

� �1
nonzero �xt

nonzero.hip� � �2
nonzero �xt

nonzero.hip � 3��

3
� �3

nonzero �xt
nonzero.hip � 6��

3
� �4

nonzero �xt
nonzero.hip � 9��

3

� �1
hip �xt

hip� � �2
hip �xt

hip � 200��

3
� �3

hip �xt
hip � 4,000��

3
� �4

hip �xt
hip � 12,000��

3

� �1
wrist �xt

wrist� � �2
wrist �xt

wrist � 200��

3
� �3

wrist �xt
wrist � 500��

3
� �4

wrist �xt
wrist � 1,500��

3

3) Hip model.

E
^
Et � �0 � �sex � sex � �height � height

� �1
age �age� � �2

age �age � 12��

3 � �3
age �age � 14��

3 � �4
age �age � 16��

3

� �1
weight �weight� � �2

weight �weight � 40��

3 � �3
weight �weight � 50��

3 � �4
weight �weight � 75��

3

� �1
nonzero �xt

nonzero.hip� � �2
nonzero �xt

nonzero.hip � 3��

3
� �3

nonzero �xt
nonzero.hip � 6��

3
� �4

nonzero �xt
nonzero.hip � 9��

3

� �1
hip �xt

hip� � �2
hip �xt

hip � 200��

3
� �3

hip �xt
hip � 4,000��

3
� �4

hip �xt
hip � 12,000��

3

4) Wrist model.

E
^
Et � �0 � �sex � sex � �height � height

� �1
age �age� � �2

age �age � 12��

3 � �3
age �age � 14��

3 � �4
age �age � 16��

3

� �1
weight �weight� � �2

weight �weight � 40��

3 � �3
weight �weight � 50��

3 � �4
weight �weight � 75��

3

� �1
wrist �xt

*wrist� � �2
wrist �xt

*wrist � 10,000��

3
� �3

wrist �xt
*wrist � 40,000��

3
� �4

wrist �xt
*wrist � 80,000��

3

5) Ankle model.

E
^
Et � �0 � �sex � sex � �height � height

� �1
age �age� � �2

age �age � 12��

3 � �3
age �age � 14��

3 � �4
age �age � 16��

3

� �1
weight �weight� � �2

weight �weight � 40��

3 � �3
weight �weight � 50��

3 � �4
weight �weight � 75��

3

� �1
ankle �xt

ankle� � �2
ankle �xt

ankle � 200��

3
� �3

ankle �xt
ankle � 4,000��

3
� �4

ankle �xt
ankle � 12,000��

3
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DLS PAEE models

1) Hip�Wrist�Ankle model.

PA^ EEt � �0 � �sex � sex � �height � height � �age � age
� �1

weight �weight� � �2
weight �weight � 40��

3 � �3
weight �weight � 50��

3 � �4
weight �weight � 75��

3

� �1
nonzero �xt

nonzero.hip� � �2
nonzero �xt

nonzero.hip � 3��

3
� �3

nonzero �xt
nonzero.hip � 6��

3
� �4

nonzero �xt
nonzero.hip � 9��

3

� �1
hip �xt

hip� � �2
hip �xt

hip � 200��

3
� �3

hip �xt
hip � 4,000��

3
� �4

hip �xt
hip � 12,000��

3

� �1
wrist �xt

wrist� � �2
wrist �xt

wrist � 200��

3
� �3

wrist �xt
wrist � 500��

3
� �4

wrist �xt
wrist � 1,500��

3

� �1
ankle �xt

ankle� � �2
ankle �xt

ankle � 200��

3
� �3

ankle �xt
ankle � 4,000��

3
� �4

ankle �xt
ankle � 12,000��

3

2) Hip�Wrist model.

PA^ EEt � �0 � �sex � sex � �height � height � �age � age
� �1

weight �weight� � �2
weight �weight � 40��

3 � �3
weight �weight � 50��

3 � �4
weight �weight � 75��

3

� �1
nonzero �xt

nonzero.hip� � �2
nonzero �xt

nonzero.hip � 3��

3
� �3

nonzero �xt
nonzero.hip � 6��

3
� �4

nonzero �xt
nonzero.hip � 9��

3

� �1
hip �xt

hip� � �2
hip �xt

hip � 200��

3
� �3

hip �xt
hip � 4,000��

3
� �4

hip �xt
hip � 12,000��

3

� �1
wrist �xt

wrist� � �2
wrist �xt

wrist � 200��

3
� �3

wrist �xt
wrist � 500��

3
� �4

wrist �xt
wrist � 1,500��

3

3) Hip model.

PA^ EEt � �0 � �sex � sex � �height � height � �age � age
� �1

weight �weight� � �2
weight �weight � 40��

3 � �3
weight �weight � 50��

3 � �4
weight �weight � 75��

3

� �1
nonzero �xt

nonzero.hip� � �2
nonzero �xt

nonzero.hip � 3��

3
� �3

nonzero �xt
nonzero.hip � 6��

3
� �4

nonzero �xt
nonzero.hip � 9��

3

� �1
hip �xt

hip� � �2
hip �xt

hip � 200��

3
� �3

hip �xt
hip � 4,000��

3
� �4

hip �xt
hip � 12,000��

3

4) Wrist model.

PA^ EEt � �0 � �sex � sex � �height � height � �age � age
� �1

weight �weight� � �2
weight �weight � 40��

3 � �3
weight �weight � 50��

3 � �4
weight �weight � 75��

3

� �1
wrist �xt

*wrist� � �2
wrist �xt

*wrist � 10,000��

3
� �3

wrist �xt
*wrist � 40,000��

3
� �4

wrist �xt
*wrist � 80,000��

3

5) Ankle model.

PA^ EEt � �0 � �sex � sex � �height � height � �age � age

� �1
weight �weight� � �2

weight �weight � 40��

3 � �3
weight �weight � 50��

3 � �4
weight �weight � 75��

3

� �1
ankle �xt

ankle� � �2
wrist �xt

ankle � 200��

3
� �3

ankle �xt
ankle � 4,000��

3
� �4

ankle �xt
ankle � 12,000��

3
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DLS MET models

1) Hip�Wrist�Ankle model.

ME
^
Tt � �0 � �sex � sex � �height � height � �age � age � �weight � weight

� �1
nonzero �xt

nonzero.hip� � �2
nonzero �xt

nonzero.hip � 3��

3
� �3

nonzero �xt
nonzero.hip � 6��

3
� �4

nonzero �xt
nonzero.hip � 9��

3

� �1
hip �xt

hip� � �2
hip �xt

hip � 200��

3
� �3

hip �xt
hip � 4,000��

3
� �4

hip �xt
hip � 12,000��

3

� �1
wrist �xt

wrist� � �2
wrist �xt

wrist � 200��

3
� �3

wrist �xt
wrist � 500��

3
� �4

wrist �xt
wrist � 1,500��

3

� �1
ankle �xt

ankle� � �2
ankle �xt

ankle � 200��

3
� �3

ankle �xt
ankle � 4,000��

3
� �4

ankle �xt
ankle � 12,000��

3

2) Hip�Wrist model.

ME
^
Tt � �0 � �sex � sex � �height � height � �age � age � �weight � weight

� �1
nonzero �xt

nonzero.hip� � �2
nonzero �xt

nonzero.hip � 3��

3
� �3

nonzero �xt
nonzero.hip � 6��

3
� �4

nonzero�xt
nonzero.hip � 9��

3

� �1
hip �xt

hip� � �2
hip �xt

hip � 200��

3
� �3

hip �xt
hip � 4,000��

3
� �4

hip �xt
hip � 12,000��

3

� �1
wrist �xt

wrist� � �2
wrist �xt

wrist � 200��

3
� �3

wrist �xt
wrist � 500��

3
� �4

wrist �xt
wrist � 1,500��

3

3) Hip model.

ME
^
Tt � �0 � �sex � sex � �height � height � �age � age � �weight � weight

� �1
nonzero �xt

nonzero.hip� � �2
nonzero �xt

nonzero.hip � 3��

3
� �3

nonzero �xt
nonzero.hip � 6��

3
� �4

nonzero �xt
nonzero.hip � 9��

3

� �1
hip �xt

hip� � �2
hip �xt

hip � 200��

3
� �3

hip �xt
hip � 4,000��

3
� �4

hip �xt
hip � 12,000��

3

4) Wrist model.

ME
^
Tt � �0 � �sex � sex � �height � height � �age � age � �weight � weight

� �1
wrist�xt

*wrist� � �2
wrist�xt

*wrist � 10,000��

3
� �3

wrist�xt
*wrist � 40,000��

3
� �4

wrist�xt
*wrist � 80,000��

3

5) Ankle model.

ME
^
Tt � �0 � �sex � sex � �height � height � �age � age � �weight � weight

� �1
ankle �xt

ankle� � �2
ankle �xt

ankle � 200��

3
� �3

ankle �xt
ankle � 4,000��

3
� �4

ankle �xt
ankle � 12,000��

3
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