Maarten Sap

Maarten Sap
  • University of Washington

About

120
Publications
23,891
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,098
Citations
Current institution
University of Washington

Publications

Publications (120)
Preprint
Full-text available
Queer people are often discussed as targets of bias, harm, or discrimination in research on generative AI. However, the specific ways that queer people engage with generative AI, and thus possible uses that support queer people, have yet to be explored. We conducted a workshop study with 13 queer artists, during which we gave participants access to...
Preprint
Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning tasks, leading to their widespread deployment. However, recent studies have highlighted concerning biases in these models, particularly in their handling of dialectal variations like African American English (AAE). In this work, we systematically investigate dialect...
Preprint
Full-text available
Foundation Models that are capable of processing and generating multi-modal data have transformed AI's role in medicine. However, a key limitation of their reliability is hallucination, where inaccurate or fabricated information can impact clinical decisions and patient safety. We define medical hallucination as any instance in which a model genera...
Preprint
Full-text available
Large language models (LLMs) often fail to ask effective questions under uncertainty, making them unreliable in domains where proactive information-gathering is essential for decisionmaking. We present ALFA, a framework that improves LLM question-asking by (i) decomposing the notion of a "good" question into a set of theory-grounded attributes (e.g...
Preprint
Full-text available
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions. Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes, safety risks due to tool misuse, and wasted computational resources. In this work, we study the ability of LLM agents to h...
Preprint
Full-text available
Preference alignment via reward models helps build safe, helpful, and reliable large language models (LLMs). However, subjectivity in preference judgments and the lack of representative sampling in preference data collection can introduce new biases, hindering reward models' fairness and equity. In this work, we introduce a framework for evaluating...
Preprint
Full-text available
In recent years, there has been a growing recognition of the need to incorporate lay-people's input into the governance and acceptability assessment of AI usage. However, how and why people judge different AI use cases to be acceptable or unacceptable remains under-explored. In this work, we investigate the attitudes and reasons that influence peop...
Article
Full-text available
As our society adopts increasingly powerful artificial intelligence (AI) systems for pervasive use, there are growing concerns about machine morality—or lack thereof. Millions of users already rely on the outputs of AI systems, such as chatbots, as decision aids. Meanwhile, AI researchers continue to grapple with the challenge of aligning these sys...
Preprint
Full-text available
Designing structured visuals such as presentation slides is essential for communicative needs, necessitating both content creation and visual planning skills. In this work, we tackle the challenge of automated slide generation, where models produce slide presentations from natural language (NL) instructions. We first introduce the SlidesBench bench...
Preprint
Full-text available
Obeying precise constraints on top of multiple external attributes is a common computational problem underlying seemingly different domains, from controlled text generation to protein engineering. Existing language model (LM) controllability methods for multi-attribute constraint satisfaction often rely on specialized architectures or gradient-base...
Preprint
Full-text available
The Generative AI Ethics Playbook provides guidance for identifying and mitigating risks of machine learning systems across various domains, including natural language processing, computer vision, and generative AI. This playbook aims to assist practitioners in diagnosing potential harms that may arise during the design, development, and deployment...
Preprint
AI companions based on large language models can role-play and converse very naturally. When value conflicts arise between the AI companion and the user, it may offend or upset the user. Yet, little research has examined such conflicts. We first conducted a formative study that analyzed 151 user complaints about conflicts with AI companions, provid...
Preprint
Full-text available
In this work, we tackle the challenge of embedding realistic human personality traits into LLMs. Previous approaches have primarily focused on prompt-based methods that describe the behavior associated with the desired personality traits, suffering from realism and validity issues. To address these limitations, we introduce BIG5-CHAT, a large-scale...
Preprint
Full-text available
The ideal LLM content moderation system would be both structurally interpretable (so its decisions can be explained to users) and steerable (to reflect a community's values or align to safety standards). However, current systems fall short on both of these dimensions. To address this gap, we present SafetyAnalyst, a novel LLM safety moderation fram...
Preprint
Full-text available
Large language models excel at performing inference over text to extract information, summarize information, or generate additional text. These inference capabilities are implicated in a variety of ethical harms spanning surveillance, labor displacement, and IP/copyright theft. While many policy, legal, and technical mitigations have been proposed...
Article
General purpose AI, such as ChatGPT, seems to have lowered the barriers for the public to use AI and harness its power. However, the governance and development of AI still remain in the hands of a few, and the pace of development is accelerating without a comprehensive assessment of risks. As a first step towards democratic risk assessment and desi...
Article
Background Empathy is a driving force in our connection to others, our mental well-being, and resilience to challenges. With the rise of generative artificial intelligence (AI) systems, mental health chatbots, and AI social support companions, it is important to understand how empathy unfolds toward stories from human versus AI narrators and how tr...
Preprint
Full-text available
AI agents are increasingly autonomous in their interactions with human users and tools, leading to increased interactional safety risks. We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions. HAICOSYSTEM features a modular sandbox environment that simulates multi-turn interactions between human...
Preprint
Full-text available
To be safely and successfully deployed, LLMs must simultaneously satisfy truthfulness and utility goals. Yet, often these two goals compete (e.g., an AI agent assisting a used car salesman selling a car with flaws), partly due to ambiguous or misleading user instructions. We propose AI-LieDar, a framework to study how LLM-based agents navigate scen...
Preprint
Large language model-based AI companions are increasingly viewed by users as friends or romantic partners, leading to deep emotional bonds. However, they can generate biased, discriminatory, and harmful outputs. Recently, users are taking the initiative to address these harms and re-align AI companions. We introduce the concept of user-driven value...
Preprint
The reconfiguration of human-LM interactions from simple sentence completions to complex, multi-domain, humanlike engagements necessitates new methodologies to understand how humans choose to rely on LMs. In our work, we contend that reliance is influenced by numerous factors within the interactional context of a generation, a departure from prior...
Preprint
Full-text available
We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes multiple tactics for systematic exploration of novel jailbreaks. Compared to prior work that performed red-teaming via recruited human workers, gradie...
Preprint
BACKGROUND Empathy is a driving force in our connection to others, our mental wellbeing, and resilience to challenges. With the rise of generative AI systems, mental health chatbots, and AI social support companions, it is important to understand how empathy unfolds towards stories from human vs AI narrators and how user emotions might change when...
Preprint
Full-text available
Empathy serves as a cornerstone in enabling prosocial behaviors, and can be evoked through sharing of personal experiences in stories. While empathy is influenced by narrative content, intuitively, people respond to the way a story is told as well, through narrative style. Yet the relationship between empathy and narrative style is not fully unders...
Preprint
Full-text available
Recent advances in large language models (LLMs) have led to their extensive global deployment, and ensuring their safety calls for comprehensive and multilingual toxicity evaluations. However, existing toxicity benchmarks are overwhelmingly focused on English, posing serious risks to deploying LLMs in other languages. We address this by introducing...
Article
Human values are crucial to human decision-making. Value pluralism is the view that multiple correct values may be held in tension with one another (e.g., when considering lying to a friend to protect their feelings, how does one balance honesty with friendship?). As statistical learners, AI systems fit to averages by default, washing out these pot...
Preprint
Full-text available
Human values are crucial to human decision-making. Value pluralism is the view that multiple correct values may be held in tension with one another (e.g., when considering lying to a friend to protect their feelings, how does one balance honesty with friendship?). As statistical learners, AI systems fit to averages by default, washing out these pot...
Preprint
Full-text available
Dogwhistles are coded expressions that simultaneously convey one meaning to a broad audience and a second one, often hateful or provocative, to a narrow in-group; they are deployed to evade both political repercussions and algorithmic content moderation. For example, in the sentence 'we need to end the cosmopolitan experiment,' the word 'cosmopolit...
Preprint
Full-text available
Improving language model generations according to some user-defined quality or style constraints is challenging. Typical approaches include learning on additional human-written data, filtering ``low-quality'' data using heuristics and/or using reinforcement learning with human feedback (RLHF). However, filtering can remove valuable training signals...
Preprint
Most existing stylistic text rewriting methods operate on a sentence level, but ignoring the broader context of the text can lead to generic, ambiguous, and incoherent rewrites. In this paper, we propose the integration of preceding textual context into both the rewriting and evaluation stages of stylistic text rewriting, focusing on formality, tox...
Preprint
Full-text available
The escalating debate on AI's capabilities warrants developing reliable metrics to assess machine "intelligence". Recently, many anecdotal examples were used to suggest that newer large language models (LLMs) like ChatGPT and GPT-4 exhibit Neural Theory-of-Mind (N-ToM); however, prior work reached conflicting conclusions regarding those abilities....
Preprint
Full-text available
The most meaningful connections between people are often fostered through expression of shared vulnerability and emotional experiences in personal narratives. We introduce a new task of identifying similarity in personal stories based on empathic resonance, i.e., the extent to which two people empathize with each others' experiences, as opposed to...
Preprint
Full-text available
Toxicity annotators and content moderators often default to mental shortcuts when making decisions. This can lead to subtle toxicity being missed, and seemingly toxic but harmless content being over-detected. We introduce BiasX, a framework that enhances content moderation setups with free-text explanations of statements' implied social biases, and...
Preprint
Full-text available
We present Queer in AI as a case study for community-led participatory design in AI. We examine how participatory design and intersectional tenets started and shaped this community's programs over the years. We discuss different challenges that emerged in the process, look at ways this organization has fallen short of operationalizing participatory...
Preprint
Full-text available
Essentialist beliefs (i.e., believing that members of the same group are fundamentally alike) play a central role in social stereotypes and can lead to harm when left unchallenged. In our work, we conduct exploratory studies into the task of countering essentialist beliefs (e.g., ``liberals are stupid''). Drawing on prior work from psychology and N...
Preprint
We present SODA: the first publicly available, million-scale high-quality social dialogue dataset. Using SODA, we train COSMO: a generalizable conversation agent outperforming previous best-performing agents on both in- and out-of-domain datasets. In contrast to most existing crowdsourced, small-scale dialogue corpora, we distill 1.5M socially-grou...
Preprint
Text detoxification has the potential to mitigate the harms of toxicity by rephrasing text to remove offensive meaning, but subtle toxicity remains challenging to tackle. We introduce MaRCo, a detoxification algorithm that combines controllable generation and text rewriting methods using a Product of Experts with autoencoder language models (LMs)....
Preprint
Full-text available
Social intelligence and Theory of Mind (ToM), i.e., the ability to reason about the different mental states, intents, and reactions of all people involved, allow humans to effectively navigate and understand everyday social interactions. As NLP systems are used in increasingly complex social situations, their ability to grasp social dynamics become...
Preprint
Full-text available
AI systems are becoming increasingly intertwined with human life. In order to effectively collaborate with humans and ensure safety, AI systems need to be able to understand, interpret and predict human moral judgments and decisions. Human moral judgments are often guided by rules, but not always. A central challenge for AI safety is capturing the...
Preprint
Most existing dialogue systems fail to respond properly to potentially unsafe user utterances by either ignoring or passively agreeing with them. To address this issue, we introduce ProsocialDialog, the first large-scale multi-turn dialogue dataset to teach conversational agents to respond to problematic content following social norms. Covering div...
Preprint
We focus on creating agents that act in alignment with socially beneficial norms and values in interactive narratives or text-based games -- environments wherein an agent perceives and interacts with a world through natural language. Such interactive agents are often trained via reinforcement learning to optimize task performance, even when such re...
Preprint
Full-text available
Toxic language detection systems often falsely flag text that contains minority group mentions as toxic, as those groups are often the targets of online hate. Such over-reliance on spurious correlations also causes systems to struggle with detecting implicitly toxic language. To help mitigate these issues, we create ToxiGen, a new large-scale and m...
Preprint
Full-text available
Lifelong experiences and learned knowledge lead to shared expectations about how common situations tend to unfold. Such knowledge enables people to interpret story narratives and identify salient events effortlessly. We study differences in the narrative flow of events in autobiographical versus imagined stories using GPT-3, one of the largest neur...
Preprint
Full-text available
The perceived toxicity of language can vary based on someone's identity and beliefs, but this variation is often ignored when collecting toxic language datasets, resulting in dataset and model biases. We seek to understand the who, why, and what behind biases in toxicity annotations. In two online studies with demographically and politically divers...
Preprint
What would it take to teach a machine to behave ethically? While broad ethical rules may seem straightforward to state ("thou shalt not kill"), applying such rules to real-world situations is far more complex. For example, while "helping a friend" is generally a good thing to do, "helping a friend spread fake news" is not. We identify four underlyi...
Preprint
Dialogue models trained on human conversations inadvertently learn to generate offensive responses. Moreover, models can insult anyone by agreeing with an offensive context. To understand the dynamics of contextually offensive language, we study the stance of dialogue model responses in offensive Reddit conversations. Specifically, we crowd-annotat...
Preprint
Full-text available
Despite recent advances in natural language generation, it remains challenging to control attributes of generated text. We propose DExperts: Decoding-time Experts, a decoding-time method for controlled text generation which combines a pretrained language model with experts and/or anti-experts in an ensemble of language models. Intuitively, under ou...
Preprint
Full-text available
As language models are trained on ever more text, researchers are turning to some of the largest corpora available. Unlike most other types of datasets in NLP, large unlabeled text corpora are often presented with minimal documentation, and best practices for documenting them have not been established. In this work we provide the first documentatio...
Preprint
Prior beliefs of readers impact the way in which they project meaning onto news headlines. These beliefs can influence their perception of news reliability, as well as their reaction to news, and their likelihood of spreading the misinformation through social networks. However, most prior work focuses on fact-checking veracity of news or stylometry...
Preprint
Language models (LMs) must be both safe and equitable to be responsibly deployed in practice. With safety in mind, numerous detoxification techniques (e.g., Dathathri et al. 2020; Krause et al. 2020) have been proposed to mitigate toxic LM generations. In this work, we show that current detoxification techniques hurt equity: they decrease the utili...
Preprint
Full-text available
Biased associations have been a challenge in the development of classifiers for detecting toxic language, hindering both fairness and accuracy. As potential solutions, we investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection. Our focus is on lexical (e.g., swear words,...
Preprint
Social norms---the unspoken commonsense rules about acceptable social behavior---are crucial in understanding the underlying causes and intents of people's actions in narratives. For example, underlying an action such as "wanting to call cops on my neighbors" are social norms that inform our conduct, such as "It is expected that you report crimes."...
Preprint
Unconscious biases continue to be prevalent in modern text and media, calling for algorithms that can assist writers with bias correction. For example, a female character in a story is often portrayed as passive and powerless ("She daydreams about being a doctor") while a man is portrayed as more proactive and powerful ("He pursues his dream of bei...
Preprint
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment. We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration. We crea...
Preprint
Language has the power to reinforce stereotypes and project social biases onto others. At the core of the challenge is that it is rarely what is stated explicitly, but all the implied meanings that frame people's judgements about others. For example, given a seemingly innocuous statement "we shouldn't lower our standards to hire more women," most l...
Article
We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., “if X pays Y a compliment, then Y will likely r...
Preprint
We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge with canonical templates, commonsense KBs only store loosely structured open-text descriptions of know...
Preprint
We introduce SocialIQa, the first large-scale benchmark for commonsense reasoning about social situations. This resource contains 45,000 multiple choice questions for probing *emotional* and *social* intelligence in a variety of everyday situations (e.g., Q: ``Skylar went to Jan's birthday party and gave her a gift. What does Skylar need to do befo...
Preprint
Full-text available
We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 300k textual descriptions. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). W...
Preprint
We investigate a new commonsense inference task: given an event described in a short free-form text ("X drinks coffee in the morning"), a system reasons about the likely intents ("X wants to stay awake") and reactions ("X feels alert") of the event's participants. To support this study, we construct a new crowdsourced corpus of 25,000 event phrases...
Preprint
Understanding a narrative requires reading between the lines and reasoning about the unspoken but obvious implications about events and people's mental states - a capability that is trivial for humans but remarkably hard for machines. To facilitate research addressing this challenge, we introduce a new annotation framework to explain naive psycholo...

Network

Cited By