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Abstract— Protein-protein interactions (PPI) play a crucial
role in cellular functions and biological processes in all
organisms. The identification of protein interactions can
lead to a better understanding of infection mechanisms
and the development of several medication drugs and
treatment optimization. Several physiochemical experimental
techniques have been applied to identify PPIs. However,
these techniques are computationally expensive, significantly
time consuming, and have covered only a small portion
of the complete PPI networks. As a result, the need for
computational techniques has been increased to validate
experimental results and to predict non-discovered PPIs.
This review investigates and compares most of the recent
computational PPI prediction techniques, and discusses the
technical challenges and open issues in this domain.
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1. Introduction
Proteins are the building blocks of all living organisms.

The primary structure of a protein is the linear sequence of
its amino acid (AA) units starting from the amino-terminal
residue (N-terminal) to the carboxyl-terminal residue (C-
terminal). Amino acids consist of carbon, hydrogen, oxygen,
and nitrogen atoms that are clustered into functional groups.
All amino acids have the same general structure, but each
has a different R-group. The carbon atom to which the R
group is connected is called the alpha carbon. There are
twenty amino acids in proteins and are connected by a
chemical reaction in which a molecule of water is removed,
leaving two amino acids residues connected by a peptide
bond. These twenty amino acids are Alanine, Arginine, As-
paragine, Aspartic acid, Cysteine, Glutamic acid, Glutamine,
Glycine, Histidine, Isoleucine, Leucine, Lysine, Methionine,
Phenylalanine, Proline, Serine, Threonine, Tryptophan, Ty-
rosine, and Valine. These amino acids are represented by
one-letter abbreviation as A, R, N, D, C, Q, E, G, H, I, L,
K, M, F, P, S, T, W, Y, and V [1].

The secondary structure of a protein is the general three-
dimensional form of its local parts. The most common
secondary structures are alpha (α) helices and beta (β)
sheets. The α-helix is a right-handed spiral array while the
β sheet is made up of beta strands connected crosswise by
two or more hydrogen bonds, forming a twisted pleated
sheet. These secondary structures are linked together by

tight turns and loose flexible loops [1]. Protein domains are
the basic functional units of protein tertiary structures. A
protein domain is a conserved part of a protein sequence
that can evolve, function, and exist independently. Each
domain forms a three-dimensional structure and can be
stable and folded independently. Several domains are joined
together in different combinations forming multi-domain
protein sequences [2], [3].

A protein interacts with other proteins in order to per-
form certain tasks. Protein-protein interaction (PPI) occurs
at almost every level of cell functions. The identification
of interactions among proteins provides a global picture
of cellular functions and biological processes. Since most
biological processes involve one or more protein-protein in-
teractions, the accurate identification of the set of interacting
proteins in an organism is very useful for deciphering the
molecular mechanisms underlying given biological functions
and for assigning functions to unknown proteins based on
their interacting partners [4]–[6]. Protein interaction pre-
diction is also a fundamental step in the construction of
PPI networks for human and other organisms. The identi-
fication of possible viral-host protein interactions can lead
to a better understanding of infection mechanisms and, in
turn, to the development of several medication drugs and
treatment optimization. Abnormal PPIs have implications in
several neurological disorders such as Creutzfeld-Jacob and
Alzheimer [7]–[9]. Therefore, the development of accurate
and reliable methods for identifying PPIs has very important
impacts in several protein research areas.

This review, as an extension of our paper shatnawi (2014)
[10], provides a comprehensive comparative study and cat-
egorization of the existing computational approaches in PPI
prediction and discuss the technical challenges and open
issues in this field. The rest of this review is organized
as follows. Next section addresses the key technical chal-
lenges that face PPI prediction and the open issues in this
field. Section 3 discusses the performance measures that
are typically used in PPI prediction. Section 4 provides
a comprehensive description and comparison of the most
current computational PPI predictors. Concluding remarks
are presented in Section 5.

2. Technical Challenges and Open Issues
There are several technical challenges that face com-

putational analysis of protein sequences in general and



PPI prediction in particular. First, there have been a huge
amount of newly discovered protein sequences in the past
genomic era. Second, protein chains are typically long which
are difficult, time-consuming, and expensive to characterize
by experimental methods. Third, the availability of large,
comprehensive, and accurate benchmark datasets is required
for the training and evaluation of prediction methods. Fourth,
appropriate performance measures to evaluate the signifi-
cance of the predictors should be developed to minimize the
number of results that give false positives and false negatives.
Fifth, it is difficult to distinguish between novel interactions
and false positives. Sixth, computational PPI methods are
based on experimentally collected data, and therefore, any
error in the experimental data will effect the computational
PPI predictions.

One of the challenges of protein prediction methods is
protein representation. Protein prediction methods vary in
protein representation and feature extraction in order to build
their classification models. There are two kinds of models
that were generally used to represent protein samples; the
sequential model and the discrete model. The most and sim-
plest sequential model for a protein is its entire AA sequence.
However, this representation does not work well when the
query protein does not have high sequence similarity to any
attribute-known proteins. Several non-sequential models, or
discrete models, have been proposed. The simplest discrete
model is AA composition which is the normalized occur-
rence frequencies of the twenty native amino acids in a
protein. However, all the sequence-order knowledge will be
lost using this representation which, in turn, will negatively
affect the prediction quality [11]. Some approaches use AA
physiochemical properties. Other approaches use pairwise
similarity. Some approaches are template-based while others
are statistical-based or machine learning-based.

There are various challenges that face machine-learning
(ML) protein interaction prediction methods. Selecting the
best ML approach is a great challenge. There is a variety of
techniques that diverse in accuracy, robustness, complexity,
computational cost, data diversity, over-fitting, and ability
to deal with missing attributes and different features. Most
ML approaches of protein sequences are computationally
expensive and often suffer from low prediction accuracy.
They are further susceptible to overfitting [12].

Most PPI prediction approaches have achieved reasonable
performance on balanced datasets containing equal number
of interacting and non-interacting protein pairs. However,
this ratio is highly unbalanced in nature and these approaches
have not been comprehensively assessed with respect to the
effect of the large number of non-interacting pairs in realistic
datasets. In addition, since highly unbalanced distributions
usually lead to large datasets, more efficient prediction
methods, algorithmic optimizations and continued improve-
ments in hardware performance are required to handle such
challenging tasks.

3. Performance Measures
There are several performance measures that are used

to evaluate a PPI predictor and compare it with other
approaches. The most frequently used evaluation measures
in this field are accuracy, sensitivity, specificity, precision,
F1,MCC,ROC, and AUC.

Accuracy (Ac) is the proportion of correctly predicted
interacting and non-interacting protein pairs to all of the
protein pairs listed in the dataset. Sensitivity, or recall (R), is
the proportion of correctly predicted interacting protein pairs
to all of the interacting protein pairs listed in the dataset. Pre-
cision (P ) is the proportion of correctly predicted interacting
protein pairs to all of the predicted interacting protein pairs.
Specificity (Sp) is the proportion of correctly predicted non-
interacting protein pairs to all the non-interacting protein
pairs listed in the dataset. These metrics can be represented
mathematically as follows:

Ac =
TP + TN

TP + TN + FN + FP
(1)

R =
TP

TP + FN
(2)

P =
TP

TP + FP
(3)

Sp =
TN

TN + FP
(4)

where TP, TN,FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.

The F-measure (F1) is an evaluation metric that combines
precision and recall into a single value and is defined as the
harmonic mean of precision and recall [13], [14].

F1 =
2PR

P +R
(5)

Mathew correlation coefficient (MCC) is a measure that
balances prediction sensitivity and specificity. MCC ranges
from -1, indicating an inverse prediction, through 0, which
corresponds to a random classifier, to +1 for perfect predic-
tion.

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(6)

The Receiver Operating Characteristic (ROC) curve is
created by plotting the true positive rate (Recall) against
the false positive rate (1- Specificity) at various threshold
settings. AUC is the area under the ROC curve. AUC
represents the probability that a classifier will rank a ran-
domly chosen positive instance higher than a randomly
chosen negative one. The AUC can also be interpreted as the
average recall over the entire range of possible specificity,
or the average specificity over the entire range of possible
recalls [15]–[17].



4. Computational Approaches
PPI prediction has been studied extensively by sev-

eral researchers and a large number of approaches have
been proposed. These approaches can be classified into
physiochemical experimental and computational approaches.
Physiochemical experimental techniques identify the phys-
iochemical interactions between proteins which, in turn, are
used to predict the functional relationships between them.
These techniques include yeast two-hybrid based methods
[18], mass spectrometry [19], Tandem Affinity Purifica-
tion [20], protein chips [21], and hybrid approaches [22].
Although these techniques have succeeded in identifying
several important interacting proteins in several species such
as Yeast, Drosophila, and Helicobacter-pylori [23], they are
computationally expensive and significantly time consuming,
and so far the predicted PPIs have covered only a small
portion of the complete PPI network. As a result, the need for
computational tools has been increased in order to validate
physiochemical experimental results and to predict non-
discovered PPIs [4], [24].

Several computational methods have been proposed for
PPI prediction and can be classified according to the used
protein features into sequence-based and structure-based
methods. Sequence-based methods utilize AA features and
can be further categorized into statistical and Machine
Learning (ML)-based methods. The structure-based methods
use three-dimensional structural features [25] and can be
categorized into template-based, statistical and ML-based
methods. This section provides an overview and discussion
of some of the current computational sequence-based and
structure-based PPI prediction approaches.

4.1 Sequence-Based Approaches
Sequence-based PPI prediction methods utilize AA fea-

tures such as hydrophobicity, physiochemical properties,
evolutionary profiles, AA composition, AA mean, or
weighted average over a sliding window [25]. Sequence-
based methods can be categorized into statistical and Ma-
chine Learning (ML)-based methods. This section presents
and evaluates some of the existing sequence-based ap-
proaches.

4.1.1 Statistical Sequence-Based Approaches

This section presents and describes several existing
statistical sequence-based PPI prediction approaches.

Mirror Tree Method:
Pazos and Valencia [26] introduced the Mirror Tree

Method based on the comparison of the evolutionary dis-
tances between the sequences of the associated protein
families and using topological similarity of phylogenetic
trees to predict PPIs. These distances were calculated as
the average value of the residue similarities taken from the

McLachlan amino acid homology matrix [27]. The similarity
between trees was calculated as the correlation between the
distance matrices used to build the trees.

The Mirror Tree Method does not require the creation
of the phylogenetic trees but only the underlying distance
matrices are analyzed, and therefore, this approach is
independent of any given tree-construction method.
Although the mirror tree method does not require the
presence of fully sequenced genomes, it requires the
presence of the orthologous proteins in all the species under
consideration. As a result, when more species genomes
become available, fewer proteins could be applied. In
addition to that, the method is restricted to cases where at
least eleven sequences were collected from the same species
for both proteins. This minimum limit was set empirically
as a compromise between being sufficiently small to provide
enough cases and large enough for the matrices to contain
sufficient information. The approach can be improved by
increasing the number of possible interactions by collecting
sequences from a larger number of genomes. Further, since
the distance matrices are not a perfect representation of the
corresponding phylogenetic trees, it is possible that some
inaccuracies are introduced by comparing distance matrices
instead of the real phylogenetic trees.

PIPE:
Pitre et al. [28] introduced PIPE (Protein-protein Interac-

tion Prediction Engine) to estimate the likelihood of inter-
actions between pairs of the yeast Saccharomyces cerevisiae
proteins using protein primary structure information. PIPE is
based on the assumption that interactions between proteins
occur by a finite number of short polypeptide sequences
observed in a database of known interacting protein pairs.
These sequences are typically shorter than the classical
domains and reoccur in different proteins within the cell.
PIPE estimates the likelihood of a PPI by measuring the
reoccurrence of these short polypeptides within known in-
teracting proteins pairs. To determine whether two proteins
A and B interact, the two query proteins are scanned for
similarity to a database of known interacting proteins pairs.
For each known interacting pair (X,Y ), PIPE uses sliding
windows to compares the AA residues in protein A against
that in X and protein B against Y , and then measures how
many times a window of protein A finds a match in X
and at the same time a window in protein B matches a
window in Y . These matches are counted and added up
in a 2D matrix. A positive protein interaction is predicted
when the reoccurrence count in certain cells of the matrix
exceed a predefined threshold value. PIPE was evaluated
on a randomly selected set of 100 interacting yeast protein
pairs and 100 non-interacting proteins from the database
of interacting proteins (DIP) (http://dip.doe-mbi.ucla.edu)
[29] and MIPS [30] databases. PIPE showed a prediction
sensitivity of 0.61 and specificity of 0.89.



Since PIPE is based on protein primary structure infor-
mation without any previous knowledge about the higher
structure, domain composition, evolutionary conservation or
the function of the target proteins. It can identify interactions
of protein pairs for which limited structural information is
available. The limitations of PIPE are as follows. PIPE is
computationally intensive and requires hours of computation
per protein pair as it scans the interaction library repeatedly
every time. Second, PIPE shows weakness in detecting novel
interactions among genome wide large-scale datasets as it
reported a large number of false positives. Third, PIPE
was evaluated on uncertain data of interactions that were
determined using several methods, each having a limited
accuracy.

Pitre et al. [31] then developed PIPE2 as an improved and
more efficient version of PIPE which showed a specificity
of 0.999. PIPE2 represents AA sequences in a binary code
which speeds up searching the similarity matrix. Unlike the
original PIPE that scans the interaction database repeatedly
every time, PIPE2 pre-computes all window comparisons in
advance and stores them on a local disk.

Although PIPE2 achieves a high specificity, it has a
large number of false positives with a sensitivity of 0.146
only. False positives rate can be reduced by incorporating
other information about the target protein pairs including
sub-cellular localization or functional annotation. A major
limitation of PIPE2 is that it relies exclusively on a database
of pre-existing interaction pairs for the identification of
re-occurring short polypeptide sequences and in the absence
of sufficient data, PIPE2 will be ineffective. PIPE2 is also
less effective for motifs that span discontinuous primary
sequence as it does not account for gaps within the short
polypeptide sequences.

Co-evolutionary Divergence:
Liu et al. [32] introduced a sequence-based co-evolution

PPI prediction method in the human proteins. The authors
defined the co-evolutionary divergence (CD) based on two
assumptions. First, PPI pairs may have similar substitution
rates. Second, protein interaction is more likely to conserve
across related species. CD is defined as the absolute value
of the substitution rate difference between two proteins. CD
can be used to predict PPIs as the CD values of interacting
protein pairs are expected to be smaller than those of non-
interacting pairs. The method was evaluated using 172,338
protein sequences obtained from Evola database [33] for
Homo sapiens and their orthologous protein sequences in
thirteen different vertebrates. The PPI dataset was down-
loaded from the Human Protein Reference Database [34].
Pairwise alignment of the orthologous proteins was made
with ClustalW2 software. The absolute value of substitution
rate difference between two proteins was used to measure
the CDs of protein pairs which were then used to construct
the likelihood ratio table of interacting protein pairs.

The CD method combines co-evolutionary information of
interacting protein pairs from many species. The method
does not use multiple alignments, thus taking less time than
other alignment methods such as the mirror tree method. The
method is not limited to proteins with orthologous across all
species under consideration. However, increasing the number
of species will provide more information to improve the ac-
curacy of the co-evolutionary divergence method. Although
this method could rank the likelihood of interaction for a
given pair of proteins, it did not infer specific features of
interaction such as the interacting residues in the interfaces.

Table 1 summarizes these statistical sequence-based ap-
proaches including the features that are used, the technique
and/or the tools applied, and the validation datasets used.

4.1.2 Machine Learning Sequence-Based Approaches
This section describes several existing ML sequence-

based PPI prediction approaches.

Auto Covariance:
Guo et al. [36] proposed a sequence-based method using

Auto Covariance (AC) and Support Vector Machines (SVM).
AA residues were represented by seven physicochemical
properties. These properties are hydrophobicity, hydrophilic-
ity, volumes of side chains, polarity, polarizability, solvent-
accessible surface area, and net charge index of AA side
chains. AC counts for the interactions between residues a
certain distance apart in the sequence. AA physicochemical
properties were analyzed by AC based on the calculation
of covariance. A protein sequence was characterized by a
series of ACs that covered the information of interactions
between each AA residue and its 30 vicinal residues in
the sequence. Finally, a SVM model with a Radial Basis
Function (RBF) kernel was constructed using the vectors
of AC variables as input. The optimization experiment
demonstrated that the interactions of one AA residue and
its 30 vicinal AAs would contribute to characterizing the
PPI information. The software and datasets are available
at http://www.scucic.cn/Predict_PPI/index.htm. A dataset of
11,474 yeast PPIs extracted from DIP [37] was used to
evaluate the model and the average prediction accuracy,
sensitivity, and precision achieved are respectively 0.86,
0.85, and 0.87.

One of the advantages of this approach is that AC
includes long-range interaction information of AA residues
which are important in PPI identification. The use of SVM
as a predictor is another advantage. SVM is the state of the
art ML technique and has many benefits and overcomes
many limitations of other techniques. SVM has strong
foundations in statistical learning theory [38] and has been
successfully applied in various classification problems [39].
SVM offers several related computational advantages such
as the lack of local minima in the optimization [40].

http://www.scucic.cn/Predict_PPI/index.htm


Table 1: Statistical Sequence-based PPI prediction approaches.

Approach Extracted Features Technique/Tool Datasets

Mirror Tree Similarity of Evolutionary distance, Escherichia coli protein
(Pazos and Valencia 2001) phylogenetic trees McLachlan AA homology matrix (Dandekar et al. 1998) [35]

PIPE (Pitre et al. 2006), Short AA polypeptides Similarity measure Yeast protein
PIPE2 (Pitre et al. 2008) (DIP and MIPS)

Co-evolutionary Divergence Co-evolutionary information, Pairwise alignment, Human protein
(Liu et al. 2013) ClustalW2 (Matsuya et al. 2008,

Prasad et al. 2009)

Pairwise Similarity:
Zaki et al. [4] proposed a PPI predictor based on pair-

wise similarity of protein primary structure. Each protein
sequence was represented by a vector of pairwise similarities
against large AA subsequences created by a sliding window
which passes over concatenated protein training sequences.
Each coordinate of this vector is the E-value of the Smith-
Waterman (SW) score [41]. These vectors were then used
to compute the kernel matrix which was exploited in con-
junction with a RBF-kernel SVM. Two proteins may interact
by the means of the scores similarities they produce [42],
[43]. Each sequence in the testing set was aligned against
each sequence in the training set, counted the number of
positions that have identical residues, and then divided by
the total length of the alignment.

The method was evaluated on a dataset of yeast Saccha-
romyces cerevisiae proteins created by Chen and Liu [44]
and contains 4917 interacting protein pairs and 4000 non-
interacting pairs. The method achieved an accuracy of 0.78,
a sensitivity of 0.81, a specificity of 0.744, and a ROC of
0.85.

SW alignment score provides a relevant measure of
similarity between proteins. Therefore protein sequence
similarity typically implies homology, which in turn may
imply structural and functional similarity [45]. SW scores
parameters have been optimized over the past two decades to
provide relevant measures of similarity between sequences
and they now represent core tools in computational biology
[46]. The use of SVM as a predictor is another advantage.
This work can be improved by combining knowledge about
gene ontology, inter-domain linker regions, and interacting
sites to achieve more accurate prediction.

AA Composition:
Roy et al. [47] examined the role of amino acid composi-

tion (AAC) in PPI prediction and its performance against
well-known features such as domains, tuple feature, and
signature product feature. Every protein pair was represented
by AAC and domain features. AAC was represented by
monomer and dimer features. Monomer features capture
composition of individual amino acids, whereas dimer fea-
tures capture composition of pairs of consecutive AAs. To

generate the monomer features, a 20-dimensional vector
representing the normalized proportion of the 20 AAs in
a protein was created. The real-valued composition was
then discretized into 25 bits producing a set of 500 binary
features. To generate the dimer features, a 400-dimensional
vector of all possible AA pairs were extracted from the
protein sequence and discretized into 10 bits producing a
set of 4000 binary features. The domains were represented
as binary features with each feature identified by a domain
name. To compare AAC against other non-domain sequence-
based features, tuple features [48] and signature products
[49] were obtained. The tuple features were created by
grouping AAs into six categories based on their biochemical
properties, and then creating all possible strings of length 4
using these categories. The signature products were obtained
by first extracting signatures of length 3 from the individual
protein sequences. Each signature consists of a middle letter
and two flanking AAs represented in alphabetical order.
Thus two 3-tuples with the first and third amino acid letter
permuted have the same signature. The signatures were used
to construct a signature kernel specifying the inner product
between two proteins.

The proposed approach was examined using three
machine learning classifiers (logistic regression, SVM, and
the Naive Bayes) on PPI datasets from yeast, worm and fly.
Three datasets for yeast S. cerevisiae were extracted from
the General Repository for Interaction Datasets (GRID)
database [50], TWOHYB (Yeast Two-hybrid), AFFMS
(Affinity pull down with mass spectrometry), and PCA
(protein complementation assay). In addition to that, a
dataset each for worm, C. elegans (Biogrid dataset) [51]
and fly, D. melanogaster [50] were used. The authors
reported that AAC features performed almost equivalent
contribution as domain knowledge across different datasets
and classifiers which indicated that AAC captures significant
information for identifying PPIs. AAC is a simple feature,
computationally cheep, applicable to any protein sequence,
and can be used when there is lack of domain information.
AAC can be combined with other features to enhance PPI
prediction.

AA Triad:



Yu et al. [52] proposed a probability-based approach of
estimating triad significance to alleviate the effect of AA
distribution in nature. The relaxed variable kernel density
estimator (RVKDE) [53] was employed to predict PPIs based
on AA triad information. The method is summarized as
follows. Each protein sequence was represented as AA triads
by considering every three continuous residues in the protein
sequence as a unit. To reduce feature dimensionality vector,
the 20 AA types were categorized into seven groups based
on their dipole strength and side chain volumes [23]. The
triads were then scanned one by one along the sequence,
and each scanned triad is counted in an occurrence vector,
O. Subsequently, a significance vector, S, was proposed to
represent a protein sequence by estimating the probability of
observing less occurrences of each triad than the one that is
actually observed in O. Each PPI pair was then encoded as a
feature vector by concatenating the two significance vectors
of the two individual proteins. Finally, the feature vector
was used to train a RVKDE PPI predictor. The method was
evaluated on 37,044 interacting pairs within 9,441 proteins
from the Human Protein Reference Database (HPRD) [54],
[55]. Datasets with different positive-to-negative ratios (from
1:1 to 1:15) were generated with the same positive instances
and distinct negative sets, which are obtained by randomly
sampling from the negative instances. The authors concluded
that the degree of dataset imbalance is important to PPI
predictor behavior. With 1:1 positive-to-negative ratio, the
proposed method achieves 0.81 sensitivity, 0.79 specificity,
0.79 precision, and 0.8 F-measure. These evaluation mea-
sures drop as the data gets more imbalanced to reach 0.39
sensitivity, 0.97 specificity, 0.495 precision, and 0.44 F-
measure with 1:15 positive-to-negative ratio.

RVKDE is a ML algorithm that constructs a RBF neural
network to approximate the probability density function
of each class of objects in the training dataset. One main
distinct feature of RVKDE is that it takes an average time
complexity of O(nlogn) for the model training process,
where n is the number of instances in the training set.
In order to improve the prediction efficiency, RVKDE
considers only a limited number of nearest instances within
the training dataset to compute the kernel density estimator
of each class. One important advantage of RVKDE, in
comparison with SVM, is that the learning algorithm
generally takes far less training time with an optimized
parameter setting. In addition to that, the number of training
samples remaining after a data reduction mechanism is
applied is quite close to the number of support vectors
of SVM algorithm. Unlike SVM, RVKDE is capable of
classifying data with more than two classes in one single
run [53].

UNISPPI:
Valente et al. [56] (2013) introduced UNISPPI (Uni-

versal In Silico Predictor of Protein-Protein Interactions).

The authors examined both the frequency and composition
of the physicochemical properties of the twenty protein
AAs to train a decision tree PPI classifier. The frequency
feature set includes the percentages of each of the 20 AA
in the protein sequence. The composition feature set was
obtained by grouping each AA of a protein into one of three
different groups related to seven physicochemical properties
and calculating the percentage of each group for each feature
ending up by a total of 21 composition features. The seven
physicochemical properties are hydrophobicity, normalized
van der Waals volume, polarity, polarizability, charge, sec-
ondary structure, and solvent accessibility. When tested on
a dataset of PPI pairs of twenty different eukaryotic species
including eukaryotes, prokaryotes, viruses, and parasite-host
associations, UNISPPI correctly classified 0.79 of known
PPIs and 0.73 of non-PPIs. The authors concluded that using
only the AA frequencies was sufficient to predict PPIs. They
further concluded that the AA frequencies of Asparagines
(N), Cysteine (C), and Isoleucine (I) are important features
for distinguishing between interacting and non-interacting
protein pairs.

The main advantages of UNISPPI are its simplicity and
low computational cost as small amount of features were
used to train the decision tree classifier. Decision tree
classifier is fast to build and has few parameters to tune.
Decision trees can be easily analyzed and the features can
be ranked according to their capabilities of distinguishing
PPIs from non-PPIs. However, decision tree classifiers
normally suffer from overfitting.

ETB-Viterbi:
Kern et al. [57] proposed the Early Traceback Viterbi

(ETB-Viterbi) as a decoding algorithm with an early
traceback mechanism in ipHMMs (Interaction Profile
Hidden Markov Models) [58] which was designed to
optimally incorporate long-distance correlations between
interacting AA residues in input sequences. The method was
evaluated on real data from the 3DID database [59] along
with simulated data generated from 3DID data containing
different degrees of correlation and reversed sequence
orientation. ETB-Viterbi was capable to capture the long-
distance correlations for improved prediction accuracy
and was not much affected by sequence orientation.
Hidden Markov models (HMMs) are powerful probabilistic
modeling tool for analyzing and simulating sequences
of symbols that are emitted from underlying states and
not directly observable [60]. The Viterbi algorithm is a
dynamic programming algorithm for finding the most likely
sequence of hidden states. However, the Viterbi algorithm
is expensive in terms of memory and computing time. The
HMM training involves repeated iterations of the Viterbi
algorithm which makes it quite slow. HMM Model may
not converge to a truly optimal parameter set for a given
training set as it can be trapped in local maxima, and can



Table 2: Machine Learning Sequence-based PPI prediction approaches.

Approach Extracted Features Technique/Tool Datasets

Auto Covariance AA physicochemical Auto covariance, Yeast protein
(Guo et al. 2008) properties SVM (DIP and MIPS)

Pairwise Similarity Pairwise similarity SVM Yeast protein
(Zaki et al 2009)

AA Composition AAC Logistic regression, Yeast protein (GRID),
(Roy et al. 2009) SVM, Naive Bayes worm protein (Li et al. 2004),

fly protein (Biogrid)

AA Triad AA triad information RVKDE Human protein (HPRD)
(Yu et al. 2010)

UNISPPI Frequency and composition of Decision tree Twenty different
(Valente et al. 2013) AA physiochemical properties eukaryotic species

ETB-Viterbi AA residues Hidden Markov models, 3DID database
(Kern et al. 2013) Early Traceback Viterbi

suffer from overfitting [61]–[64].

Table 2 summarizes these ML sequence-based approaches
and compared them in terms of features, techniques, tools,
and validation datasets.

4.2 Structure-Based Approaches
Structure-based PPI prediction methods use three-

dimensional structural features such as domain information,
solvent accessibility, secondary structure states, and hy-
drophobic and polar surface locations [25]. Structure-based
PPI prediction methods can be categorized into template-
based, statistical, and ML-based methods. This section
presents and evaluates some of the state-of-the-art structure-
based approaches.

4.2.1 Template Structure-Based Approaches
PRISM

Tuncbag et al. [65] developed PRISM as a template-based
PPI prediction method based on information regarding the
interaction surface of crystalline complex structures. The two
sides of a template interface are compared with the surfaces
of two target monomers by structural alignment. If regions
of the target surfaces are similar to the complementary
sides of the template interface, then these two targets are
predicted to interact with each other through the template
interface architecture. The method can be summarized as
follows. First, interacting surface residues of target chains
are extracted using Naccess [66]. Second, complementary
chains of template interfaces are separated and structurally
compared with each of the target surfaces by using MultiProt
[67]. Third, the structural alignment results are filtered
according to threshold values, and the resulting set of target
surfaces is transformed into the corresponding template
interfaces to form a complex. Finally, the Fiber-Dock [68]
algorithm is used to refine the interactions to introduce

flexibility, compute the global energy of the complex, and
rank the solutions according to their energies. When the
computed energy of a protein pair is less than a threshold
of -10 kcal/mol, the pair is determined to interact.

PRISM has been applied for predicting PPIs in a human
apoptosis pathway [69] and a p53- protein-related pathway
[70], and has contributed to the understanding of the
structural mechanisms underlying some types of signal
transduction. PRISM obtained a precision of 0.231 when
applied to a human apoptosis pathway that consisted of 57
proteins.

PrePPI
Zhang et al. [71] proposed PrePPI (Predicting Protein-

Protein Interactions) as a structural alignment PPI predic-
tor based on geometric relationships between secondary
structure information. Given a pair of query proteins A
and B, representative structures for the individual subunits
(MA,MB) are taken from the PDB (Protein Data Bank)
[72] or from the ModBase [73] and SkyBase [74] homology
model databases. Close and remote structural neighbors are
found for each subunit. A template for the interaction exists
if a PDB or PQS [75] structure contains interacting pairs
that are structural neighbors of MA and MB . A model
is constructed by superposing the individual subunits, MA

and MB , on their corresponding structural neighbors. The
likelihood for each model to represent a true interaction is
then calculated using a Bayesian Network trained on 11,851
yeast interactions and 7,409 human interactions datasets.
Finally the structure-derived score is combined with non-
structural information, including co-expression and func-
tional similarity, into a naive Bayes classifier.

Although template-based methods can achieve high pre-
diction accuracy when close templates are retrieved, the
accuracy significantly decreases when the sequence identity
of target and template is low.



4.2.2 Statistical Structure-Based Approaches
PID Matrix Score

Kim et al. [6] presented the Potentially Interacting
Domain pair (PID) matrix as a domain-based PPI prediction
algorithm. The PID matrix score was constructed as a
measure of interactability (interaction probability) between
domains. The algorithm analysis was based on the DIP
(Database of Interacting Proteins) which contains more than
ten thousand of mostly experimentally verified interacting
protein pairs. Domain information was extracted from
InterPro [76] which is an integrated database of protein
families, domains and functional sites. Cross validation was
performed with subsets of DIP data (positive datasets) and
randomly generated protein pairs from TrEMBL/SwissProt
database (negative datasets). The method achieved 0.50
sensitivity and 0.98 specificity. The authors reported that
the PID matrix can also be used in the mapping of the
genome-wide interaction networks.

PreSPI
Han et al. [77], [78] proposed a domain combination-

based method which considers all possible domain com-
binations as the basic units of protein interactions. The
domain combination interaction probability is based on the
number of interacting protein pairs containing the domain
combination pair and the number of domain combinations
in each protein. The method considers the possibility of
domain combinations appearing in both interacting and non-
interacting sets of protein pairs. The ranking of multiple
protein pairs were decided by the interacting probabilities
computed through the interacting probability equation.

The method was evaluated using an interacting set of
protein pairs in yeast acquired from DIP database [29], and
a randomly generated non-interacting set of protein pairs.
The domain information for the proteins was extracted from
the PDB (http://www.ebi.ac.uk/proteome/) [72], [76]. PreSPI
achieved a sensitivity of 0.77 and a specificity of 0.95.

PreSPI suffers from several limitations. First, this method
ignores other domain-domain interaction information
between the protein pairs. Second, it assumes that one
domain combination is independent of another. Third, the
method is computationally expensive as all possible domain
combinations are considered.

Domain Cohesion and Coupling
Jang et al. [79] proposed a domain cohesion and coupling

(DCC)-based PPI prediction method using the information
of intra-protein domain interactions and inter-protein domain
interactions. The method aims to identify which domains
are involved in a PPI by determining the probability of
the domains causing the proteins to interact irrespective of
the number of participating domains. The coupling powers
of all domain interaction pairs are stored in an interaction
significance (IS) matrix which is used to predict PPIs.

The method was evaluated on S. cerevisiae proteins and
achieved 0.82 sensitivity and 0.83 specificity. The domain
information for the proteins was extracted from Pfam
(http://pfam.sanger.ac.uk) [80], which is a protein domain
family database that contains multiple sequence alignments
of common domain families.

MEGADOCK
Ohue et al. [81] developed MEGADOCK as a protein-

protein docking software package using the real Pairwise
Shape Complementarity (rPSC) score. First, they conducted
rigid-body docking calculations based on a simplified energy
function considering shape complementarities, electrostatics,
and hydrophobic interactions for all possible binary com-
binations of proteins in the target set. Using this process,
a group of high-scoring docking complexes for each pair
of proteins were obtained. Then, ZRANK [82] was applied
for more advanced binding energy calculation and re-ranked
the docking results based on ZRANK energy scores. The
deviation of the selected docking scores from the score
distribution of high-ranked complexes was determined as
a standardized score (Z-score) and was used to assess
possible interactions. Potential complexes that had no other
high-scoring interactions nearby were rejected using struc-
tural differences. Thus binding pairs that had at least one
populated area of high-scoring structures were considered.
MEGADOCK has been applied for PPI prediction for 13
proteins of a bacterial chemotaxis pathway [83], [84] and
obtained a precision of 0.4. MEGADOCK is available at
http://www.bi.cs.titech.ac.jp/megadock.

One of the limitations of this approach is the demerit of
generating false-positives for the cases in which no similar
structures are seen in known complex structure databases.

Meta Approach
Ohue et al. [85] proposed a PPI prediction approach

based on combining template-based and docking methods.
The approach applies PRISM [65] as a template-matching
method and MEGADOCK [81] as a docking method. A
protein pair is considered to be interacting if both PRISM
and MEGADOCK predict that this protein pair interacts.
When applied to the human apoptosis signaling pathway, the
method obtained a precision of 0.333, which is higher than
that achieved using individual methods (0.231 for PRISM
and 0.145 for MEGADOCK), while maintaining an F1 of
0.285 comparable to that obtained using individual methods
(0.296 for PRISM, and 0.220 for MEGADOCK).

Meta approaches have already been used in the field
of protein tertiary structure prediction [86], and critical
experiments have demonstrated improved performance of
Meta predictors when compared with individual methods.
The Meta approach has also provided favorable results in
protein domain prediction [87] and the prediction of disor-
dered regions in proteins [88]. Although some true positives

http://www.bi.cs.titech.ac.jp/megadock


may be dropped by this method, the remaining predicted
pairs are expected to have higher reliability because of
the consensus between two prediction methods that have
different characteristics.

4.2.3 Machine Learning Structure-Based Approaches
Random Forest

Chen and Liu [44] introduced a domain-based Random
Forest PPI predictor. Protein pairs were characterized by
the domains existing in each protein. The protein domain
information were collected from Pfam database [89]. Each
protein pair was represented by a vector of features where
each feature corresponds to a Pfam domain. If a domain
exists in both proteins, then the associated feature value is
2. If the domain exists in one of the two proteins, then its
associated feature value is 1. If a domain does not exists
in both proteins, then the feature value is 0. These domain
features were used to train a Random Forest PPI classifier.
The random decision forest constructs many decision trees
and each is grown from a different subset of training samples
and random subset of feature and the final classification of
a given protein pair is determined by majority votes among
the classes decided by the forest of trees.

When evaluated on a dataset containing 9834 yeast protein
interaction pairs among 3713 proteins, and 8000 negative
randomly generated samples, the method achieved a sen-
sitivity of 0.8 and a specificity of 0.64.. Yeast PPI data
was collected from the DIP [29], [37], Deng et al. [90],
Schwikowski et al. [91]. The dataset of Deng et al. is a
combined interaction data experimentally obtained through
two hybrid assays on Saccharomyces cerevisiae by Uetz et
al. [92] and Ito et al. [93]. Schwikowski et al. gathered their
data from yeast two-hybrid, biochemical and genetic data.

Random Forest classifier has several advantages. It is
relatively fast, simple, robust to outliers and noise, easily
parallelized, avoids overfitting, and performs well in many
classification problems [94], [95]. Random Forest shows
a significant performance improvement over the single
tree classifiers. It interprets the importance of the features
using measures such as decrease mean accuracy or Gini
importance [96]. RF benefit from the randomization of
decision tress as they have low-bias and high variance.
Random Forest has few parameters to tune and less
dependent on tuning parameters [97], [98]. However, the
computational cost of Random Forest increases as the
number of generated tress increases. One of the limitations
of this approach is that PPI prediction depends on domain
knowledge so proteins without domain information cannot
provide any useful information for prediction. Therefore,
the method excluded the pairs where at least one of the
proteins has no domain information.

Struct2Net:
Singh et al. [99] introduced Struct2Net as a structure-

based PPI predictor. The method predicts interactions by
threading each pair of protein sequences into potential
structures in the Protein Data Bank (PDB) [72]. Given two
protein sequences (or one sequence against all sequences of
a species), Struct2Net threads the sequence to all the protein
complexes in the PDB and then chooses the best potential
match. Based on this match, it uses logistic regression
technique to predict whether the two proteins interact.

Later on, Singh et al. [100] introduced Struct2Net as a
web server with multiple querying options which is available
at http://struct2net.csail.mit.edu. Users can retrieve Yeast,
fly, and human PPI predictions by gene name or identifier
while they can query for proteins of other organisms by
AA sequence in FASTA format. Struct2Net returns a list
of interacting proteins if one protein sequence is provided
and an interaction prediction if two sequences are provided.
When evaluated on yeast and fly protein pairs, Struct2Net
achieves a recall of 0.80 with a precision of 0.30.

A common limitation of all structure-based PPI prediction
approaches is the low coverage as the number of known
protein structures is much smaller than the number of
known protein sequences, and therefore, such approaches
fail when there is no structural template available for the
queried protein pair. Table 3 summarizes these structure-
based approaches and compared them in terms of features,
techniques, tools, and validation datasets.

5. Conclusion
This chapter provides a review of the computational

techniques for protein-protein interaction prediction includ-
ing the open issues and main challenges in this domain.
We investigated several relevant existing approaches and
provided a categorization and comparison of them. It is
clearly noticed that PPI prediction still needs much research
effort in order to achieve reasonable prediction accuracy.
One of the issues in the PPI prediction methods is that they
do not use a uniform dataset and evaluation measure. We
recommend creating a freely available standard benchmark
dataset taking into consideration the biological properties
of proteins and examining the performance of all these
methods on this benchmark dataset using a well-defined
evaluation measures. This will allow researchers to compare
the performance of these prediction methods in a fair and
uniform fashion. This work can be extended by investigating
more recently published PPI prediction techniques, analyze
them in depth, and compare their performance on a uniform
dataset according to a uniform evaluation metrics. More
focus should be given to the techniques which incorporate
biological knowledge into the prediction process.
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