
Astronomical Data Analysis Software and Systems XV
ASP Conference Series, Vol. XXX, 2005
C. Gabriel, C. Arviset, D. Ponz and E. Solano, eds.

Accessing the EGSO Grid through a WSRF-Enabled API

André Csillaghy, Marco Soldati, Philipp Kunz

Department of Computer Science, University of Applied Sciences
Northwestern Switzerland, CH-5210 Windisch, Switzerland

Robert D. Bentley

Mullard Space Sciences Laboratory, University College London

Isabelle Scholl

International Space University, Strasbourg Campus, France

Abstract. EGSO is part of the Virtual Solar Observatory. It provides
a Grid for integrated access to distributed and heterogeneous solar data
archives. Here we describe the motivation and approach we have chosen
to implement the Grid access as a stateful web service. Using this kind
of service allows us to consider the search and retrieval of data as an
interaction between the client and the Grid. This way, the EGSO service
can be merged into interactive data analysis systems such as Python or
IDL.

1. EGSO in short

The European Grid of Solar Observations (EGSO, www.egso.org, Csillaghy et
al, 2005) just finished the production of a data grid middleware integrating the
access to solar data. EGSO provides the fabric of a virtual solar observatory.
Using EGSO, everyone can straightforwardly access many available solar ob-
servations over the Internet. EGSO is an unprecedented service for the solar
physics community. In addition, this project also provides a test bed for data
grid research. Data grids allow exploiting the large potential of combining dis-
tributed archives. In this context, the EGSO experience links the specific needs
of the solar physics community with fundamental Grid research.

EGSO allows querying in a unified manner distributed resources such as
solar event and feature catalogs, observation catalogs and eventually retrieving
the associated observations. EGSO can be accessed in two different ways. The
first way is to use a web-based GUI. This allows a straightforward use of the
system for inexperienced or occasional users. The second way is to use directly
the Application Programming Interface (API) on which the GUI is built. This
is the subject of this paper.

Using the API offers more flexibility than the GUI, and can provide com-
plete access to the system from interactive environments such as IDL or python.

1

2 Csillaghy, Soldati, Kunz, Bentley & Scholl

2. EGSO Architecture

EGSO is divided into three roles: the broker, the provider, and the consumer
(Figure 1). In this sense the system follows the principles of Service-Oriented
Architectures (SOA, Booth et al, 2003). These three roles can be replicated and
distributed, hence allowing an appropriate load balancing.

Figure 1. The EGSO architecture.

Clients get into the system either by connecting to the Web client or to
the EGSO Web service that we will discuss later. Both are linked to the core
consumer role by a unique API. Consumers can be duplicated as needed.

Consumers prepare queries and send them to a broker. The broker uses a
service registry to locate rapidly which services are most adequate to resolve a
query. The static and dynamic search registries allow some “easy” queries to be
answered at once, without having to connect to the providers at all. Assuming
that easy queries are more frequent, the broker can answer a significant number
of queries on its own.

When the broker is unable to resolve a query or part of it, it gets help from
one or several provider roles. These roles map the EGSO internal global data
model to the schemata of the individual data providers. Special providers are
used for several purposes: (1) To connect to the Unified Observing Catalog,
which is summarized in the registry, and contains a list of all observations made
by instruments registered with the system; (2) To connect to the the Solar
Feature Catalog (SEC), which allows to search data by features such as filaments
or active regions; (3) to connect to the Solar Event Catalog (SEC), which allows
to search data by events such as solar flares and coronal mass ejections.

Accessing the EGSO Grid through a WSRF-Enabled API 3

3. The EGSO API

3.1. Methods

The EGSO API features methods to discover, search and retrieve information
in the system. The discovery tools includes the two following methods:

• findAllParameters: Allows to discover which parameters are registered
in the system.

• findAllResults: Allows to discover which type of results will be returned
by the system once a query is issued.

The search and retrieval tools includes the two following methods:
• setValue: Allows to pass a value to a given parameter of the internal data

model.
• getResult: Allows to get the result associated with the parameter values

set at the time of the call.
Additional methods are necessary to establish the relation between the

parameters and the results. For this, a method affects and a method
isaffectedby allow respectively to find out which parameters will affect a given
result, or vice-versa.

EGSO supports parameter result independence: New parameters can be
added to the data model without having to change the API. The new parameters
get fully accessible through the API. Furthermore, the thin interface allows client
interfaces to be built on only the two functions setvalue and getresult (of
course at the cost of many configuration parameters).

All system messaging is done using VOTABLE (Ochsenbein, 2004).

3.2. How the API is used

The EGSO system works best in an interactive environment. Users will usually
search for data first in a broad manner, identifying the information they need,
and then will use increasingly accurate parameters. A typical session can be
sketched work as follows:

1. The query resource is generated. A client (either a person or an application
program) creates an instance of an EGSO object, with which he/she/it can
use to access the EGSO domain.

2. The client explores the parameter space with the method
findAllParameters. First, meta data information will be searched,
from catalogs such as the UOC, SFC, or SEC. For instance, one can
search information on solar flares.

3. The query parameters are set with the method setValue. Continuing
with the example of solar flares, the values set here can restrict the time
interval, the size and location of the solar flares to consider.

4. The query is sent to the system with the method getResult.
5. The query result is used as a starting point for the next selection operation.

The method setValue is used again. The new selection criteria can involve
other parameters, for instance restricting which observation instruments
should be considered.

6. The method getResult is used again to obtain the list of observations.
7. The selection go on further by selecting the relevant observations with

setvalue.

4 Csillaghy, Soldati, Kunz, Bentley & Scholl

8. Finally, URLs associated with the data files are obtained with getResult.
The associated files can be downloaded directly from the sites where they
are located.

The API is built as a stateful web service. It follows the Web Service
Resource Framework standard (WSRF, Foster et al, 2004). In particular, a
WSRF-enabled WSDL file allows to generate stubs in virtually any language.
These stubs can then be used in other applications. Furthermore, the WSRF
standard allows the system to be integrated also into Web-service work flow
orchestration tool.

4. Addressing the interactivity requirements

The work flow given above works best when used interactively. Interactivity is
a requirement for many scientists. Opposite to batch processing, in many cases
scientists want to be able to go back and forth between the different steps of
this work flow, to be able to modify selection parameters and get new results.
Furthermore, many scientists use scripting languages such as IDL or Python.
This has two implications. First, sessions are needed, i.e. we cannot rely on
stateless Web Services. Second, clients must be generated in several languages.

For these two reasons, we have followed the Web Service Resource Frame-
work specification to create a stateful web service for the EGSO system. The
service is directly attached to the consumer and can be integrated with other ap-
plication, in principle written in any arbitrary language (with automatic “stubs”
generation).

On the client side, we have built the prototype of an IDL client that binds
directly with the EGSO Web Service. The IDL client uses the IDL-Java bridge.
For example, an IDL EGSO object can be generated with
o = egso().
The parameter space can be explored with
o->which.
Parameter values can be set with
o->set, parameter = value,
and results can be obtained with
result = o->get(/parameter).

The VOTABLE-formatted results are transformed into IDL structures with
a self-written IDL VOTABLE parser.

References

D. Booth et al., 2004, www.w3.org/ws-arch/

Csillaghy, A., Bentley, R.D., & Scholl, I., 2005, in Proc. VO Conf. Sofia.

Foster, I. and 12 co-authors, 2004, white paper,
www-128.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf

Ochsenbein, F., Williams, R., Davenhall, C., Durand, D., Fernique, P., Hanisch,
R, Giaretta, D., McGlynn, T., Szalay, A., and Wicenec, A., 2004, Proc.
Toward an International Virtual Observatory.

