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Neural network modelling of creep in masonry

M. M. Reda Taha PhD, A. Noureldin PhD, N. El-Sheimy PhD and N. G. Shrive DPhil, FICE

Stresses and deformations in concrete and masonry

structures can be significantly altered due to creep.

However, accurate prediction of creep is difficult due to

its dependency on a large number of parameters (e.g.

section geometry, relative humidity, stress level, age of

loading). This paper introduces a new method based on

artificial intelligence to model creep of masonry.

Feedforward artificial neural networks (ANN) are

investigated as a modelling technique for predicting

creep. Experimental data for creep of structural

masonry are used to develop the networks. Changes in

network architecture are examined to produce

prediction models. Fifteen networks are developed and

analysed statistically. Creep models with accuracy in the

range 6 15% are attainable using ANN.

NOTATION

A experimental constant for creep prediction

models

B experimental constant for creep prediction

models

b bias vector

csp specific creep strain

d j output desired value at layer j

E mean square error

E(t0) modulus of elasticity of the materials at

time of load application t0
F(t0) experimental constant for creep prediction

models

f transfer function

g vector of gradient of the mean square

error used in learning algorithms

I transfer function net input

J Jacobian matrix including the error

gradients (@E=@ y)

J(t, t0) creep compliance between time t0 and t

m number of samples in the testing set

N number of hidden layers in the network

P neuron input

PE prediction error

R number of neurons in a specific layer

t time of creep prediction

t0 age at time of load application

W weight matrix

x j input value at layer j

yi output activity value of previous layer i

y j output activity value at layer j

y pi predicted value

yti measured value

�(t0) instantaneous strain at time t0
�cr(t, t0) creep strain between time t0 and t

�sp specific elastic strain

�k positive constants used to control the

iterative changes during learning

rxy correlation coefficient between parameters

x and y

� sustained stress

�1 experimental constant in creep prediction

models

�(t, t0) creep coefficient between time t0 and t

� predictedANN (t, t0) creep coefficient between time t0 and t

predicted using the ANN model

�measured (t, t0) creep coefficient between time t0 and t

measured experimentally

1. INTRODUCTION

Creep is the time-dependent, non-elastic strain that occurs in

quasi-brittle materials (e.g. concrete and masonry) when load is

sustained on a structure. It is well established that there is an

inherent interplay between creep and shrinkage due to their

interwoven mechanisms and their dependence on internal

moisture movement.
1–2

The consequence of creep depends on the level of restraint to

the creep strain provided by the structure. If the deformation is

not restrained, creep might result in a significant increase in

deformation over time, possibly violating a serviceability limit

state. When the creep strain is restrained, creep will induce new

stresses in the structures which can alter the stress distribution

and might result in local overstressing. Thus, the consequences

of creep in structures have been the focus of several studies in

the past few decades.
3–7

Investigation of the collapse of the Civic Tower of Pavia in

Italy in 1989 led to the conclusion that time-dependent

deformation due to creep of the brickwork façades might have

been a major reason for the collapse of this historical

building.
8

Dilger
6
and Mirmiran et al.

9
showed that restrained creep

deformations of continuous concrete bridges can result in

significant moment redistribution along the bridge elements.
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Moreover, Reda Taha and Shrive
10

showed that when two

materials (e.g. brickwork and grout) with different creep

properties are used in a composite structural element, the

effect of difference in creep of both materials can result in

stress fluctuations which might lead to overstressing,

cracking or failure of either material. On the other hand,

creep can also have beneficial effects: for example, reducing

the probability of cracking of high-performance concrete

slabs by relieving the stresses developed due to restrained

autogenous shrinkage.
11

Therefore, in many instances accurate prediction of creep is

necessary for efficient design, especially when materials with

different creep behaviours are used in the structure (e.g.

masonry, concrete, fibre reinforced polymers (FRPs) and grout).

Numerous empirical models to predict creep of concrete and

masonry using conventional functional mapping mathematics

have been developed over the past 60 years.
12– 15

The relative

accuracy of these models has typically never been better than

� 15%.
15

This is because most of these models utilise curve-

fitting techniques achieved by means of linear and non-linear

regression analysis for specific sets of experimental data. The

limited accuracy of conventional creep models is attributed to

the dependency of creep on a large number of uncertain and

interrelated parameters which makes curve-fitting techniques

an oversimplified approach.

1.1. Mathematical representation of creep

Creep strain is usually related to its corresponding elastic

strain. The specific instantaneous elastic strain, �sp, that results

from a given stress, �, is given in equation (1)

�sp ¼
�(t0)
�

1

where �(t0) is the instantaneous elastic strain. Similarly the

specific creep, csp, can be defined as in equation (2)

c sp(t , t0) ¼
�cr(t , t0)

�
2

where �cr(t, t0) is the creep strain at time t due to application of

the stress � at time t0. The ratio between the specific creep

csp(t,t0) and the specific elastic strain, �sp, is equal to the ratio

between the creep strain to the elastic strain. This ratio is

known as the creep coefficient �(t, t0).

�(t , t0) ¼
c sp(t, t0)

�sp
3

The creep coefficient � (t, t0) is used by many design codes
16, 17

to estimate long-term creep stresses and deformation. However,

the creep compliance J(t, t0) has been recommended by RILEM

Technical Committee TC 107 for comparing the accuracy of

different creep models.
18

The J(t, t0) between the time of

loading t0 and any time t is

J (t , t0) ¼
1

E(t0)
þ c sp(t , t0)4

where E(t0) is the material modulus of elasticity at time of load

application t0.
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Fig. 1. Artificial neural networks: (a) sample network
structure; (b) operation at the neuron level
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Fig. 2. Sigmoid and linear transfer functions
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Neville et al.
19

grouped creep prediction models into two

categories: the first category includes those models with a

maximum threshold using exponential and hyperbolic

expressions as in equations (5) and (6)

�(t , t0) ¼ E(t0)
t � t0

Aþ B(t � t0)

� �
exponential expressions5

�(t , t0) ¼ �1(1� e�A( t� t0)) hyperbolic expressions6

The second category includes those models that increase

indefinitely using logarithmic and power expressions as

presented in equations (7) and (8)

Group Age of loading:
days

Stress level:
MPa

RH: %

Training 1 7 2.4 40
Training 2 7 4.8 100
Training 3 14 4.8 40
Training 4 14 4.8 100
Training 5 28 1.2 40
Training 6 28 2.4 40
Training 7 28 4.8 40
Training 8 28 2.4 100
Training 9 28 3.6 100
Training 10 28 4.8 100

Table 1. Experimentally measured creep groups used in
training ANN models

Group Age of loading:
days

Stress level:
MPa

RH: %

Testing 1 7 4.8 100
Testing 2 14 2.4 40
Testing 3 28 1.2 100
Testing 4 28 3.6 40

Table 2. Experimentally measured creep groups used in testing
ANN models
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Fig. 3. Sample of experimental creep data used in training the ANN models, training groups: (a) 2; (b) 4; (c) 7; (d) 10
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No. Network
denotation

N R1 R2 Transfer function
(1)

Transfer function
(2)

1 RTN-1G 1 1 — log-sigmoid —
2 RTN-2G 1 2 — log-sigmoid —
3 RTN-3G 1 3 — log-sigmoid —
4 RTN-4G 1 4 — log-sigmoid —
5 RTN-6G 1 6 — log-sigmoid —
6 RTN-8G 1 8 — log-sigmoid —
7 RTN-10G 1 10 — log-sigmoid —
8 RTN-64GG 2 6 4 log-sigmoid log-sigmoid
9 RTN-64GL 2 6 4 log-sigmoid pure-linear

10 RTN-33GG 2 3 3 log-sigmoid log-sigmoid
11 RTN-24GL 2 2 4 log-sigmoid pure-linear
12 RTN-24GG 2 2 4 log-sigmoid log-sigmoid
13 RTN-24LL 2 2 4 pure-linear pure-linear
14 RTN-46GG 2 4 6 log-sigmoid log-sigmoid
15 RTN-46GL 2 4 6 log-sigmoid pure-linear
16 Modified Burgers — — — — —

N: number of layers
R1: number of neurons in layer 1
R2: number of neurons in layer 2

Table 3. ANN investigation parameters, including the number of hidden layers, N, the number of
neurons of each layer, R1 and R2, and the transfer function in each layer
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Fig. 4. Architecture of sample of the artificial neural networks (ANN) developed for predicting creep: (a) RTN-4G; (b) RTN-6G; (c)
RTN-24GL; (d) RTN-64GL
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�(t , t0) ¼ E(t0)F(t0)log (t � t0 þ 1)

logarithmic expressions
7

�(t , t0) ¼ E(t0)A(t � t0)
B power expressions8

The constants (A, B, F(t0), �1, etc.) in equations (5)–(8) need to

be determined experimentally using regression analysis.

Although most of these previous models can predict creep for a

few sets of experimental data, they have not proven accurate

as general models.

The inability of these models to simulate creep behaviour

under gradually increasing or decreasing loads or to predict

accurately the effect of partial unloading on the creep strains

has directed researchers to develop models that utilise

rheological analogy. Rheological models are capable of

providing comprehensive modelling of creep
20

but have rarely

been used in design.

2. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN) are an artificial intelligence

tool that were first proposed more than two decades ago for

modelling systems that have complex non-linear input–output

relationships. Neuron computing, a technology of ANN, is a

powerful tool for solving such non-linear problems that

involve mapping input data to output data without having any

prior knowledge about the mathematical process involved.

ANN consist of densely interconnected processing units that

utilise parallel computation algorithms. The basic advantage of

ANN is that they can learn from representative examples from

the data set.
21, 22

While ANN do not provide a closed form

mathematical model for the problem, they do offer accurate

models based on the learning procedure.

2.1. ANN architecture

ANN are networks of many simple processors (neurons)

operating in parallel, each possibly having a small amount of

local memory. A neural network consists of an input layer, an

output layer and number of layers between the input and the

output layers known as hidden layers. A representative sample

of ANN architecture is shown in Fig. 1(a), consisting of an

input layer with three input parameters, an output layer with
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Fig. 5. Convergence of sample networks during training (target accuracy 0.0001): (a) RTN-6G; (b) RTN-8G; (c) RTN-64GG; (d)
RTN-33GG
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two output parameters and a single hidden layer with six

neurons. The number of neurons in the input and the output

layers of any network has to be equal to the number of the

inputs and outputs of the system respectively. The number of

neurons in the hidden layers and the number of hidden layers

can be arbitrarily chosen and adjusted until the network can

map the desired output.
22, 23

However, it has been reported that

one or two hidden layers with an arbitrary number of neurons

in each layer can model virtually any non-linear input–output

relationship.
24

The smallest network unit (the neuron) receives its input

through a connection that multiplies the value of the input by

a scalar weight, W, and adds a bias, b. The sum of the weighted

inputs and their weights and biases is the argument for a

transfer function, f, that produces the neuron output. The

operation at the neuron level is shown in Fig. 1(b). The pattern

of connectivity in the network is represented by a weight

vector, W. The initial values for the weights and biases of the

network can be arbitrarily chosen. By adjusting the W and the

b the network can exhibit any desired output. The process of

adjusting the weights and the biases of the network is known

as training. In other words, an ANN learns from examples (of

known input–output sequences) and exhibits some capability

for generalisation beyond the training data.
24

2.2. Transfer functions

Transfer functions for the neurons are needed to introduce

non-linearity into the network. Bounded transfer functions

such as logistic functions are particularly useful when the

target values have a bounded range. However, if the target

values have non-bounded ranges, it is preferable to use an

unbounded transfer function. Transfer functions commonly

used in feedforward neural networks include linear, sigmoid

and log-sigmoid transfer functions.
22– 24

These transfer

functions have outputs ranging between 0 and 1 and are

suitable for backpropagation networks (explained below)

because they are differentiable.
22

A comparison between the input–output relationships of both

sigmoid and linear transfer functions which are used in the

networks described below are shown in Fig. 2. Networks of two

layers that utilise sigmoid and linear transfer functions in the
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Fig. 6: Samples of creep prediction using ANN versus measured creep coefficient �(t, t0) (measured creep for testing group 4): (a)
RTN-6G; (b) RTN-8G; (c) RTN-64GG; (d) RTN-33GG
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first and second layer respectively can be trained to model any

non-linear relation.
22, 23

2.3. Learning rules and backpropagation algorithm

The learning rule (or training algorithm) is a procedure for

modifying the weights and biases of the network. Learning

rules fall into two broad categories: supervised learning and

unsupervised learning. In supervised learning, the learning rule

is provided with a known input/output set of data and an

algorithm is then used to adjust the weights and biases of the

network in order to move the network outputs closer to the

targets. Therefore, modelling capabilities of networks trained

using supervised learning algorithms are limited to the range

of input data used in training the network. In unsupervised

learning the weights and biases of the network are modified

according to the inputs only. Unsupervised learning is usually

used in data partitioning.
23– 25

The basic learning rule in feedforward networks is the gradient

descent method which is a classic technique for minimising a

given function defined on a multidimensional input space. The

gradient descent method requires finding a gradient vector, g,

in which each element is defined as the derivative of an error

measure with respect to a network parameter. The procedure

for finding this g is known as backpropagation because the

gradient vector is calculated in a direction opposite to the flow

of data in the network.
25, 26

Therefore, the task of the backpropagation algorithm is to

minimise the overall error measure of the network so that the

network prediction matches the desired output. There is no

single universal error measure that is suitable for use in all

networks. However, the sum of the squared errors, E, presented

in equation (9) is the most commonly used error measure

E ¼
XN
i¼1

(di � yi)
29
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Fig. 7: ANN models for predicting creep compliance: ANN model 1 to 4: (a) RTN-1G; (b) RTN-2G; (c) RTN-3G; (d) RTN-4G
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where yi is the ith element in the network output vector and di
is the ith element in the desired output vector and N is the total

number of outputs predicted by the network. The error measure

E is minimised by altering the W and b so that the desired

output is achieved by the network. In-depth discussion about

the mathematical bases of the backpropagation algorithm is

beyond the scope of this work but can be found in almost all

neural network textbooks.
22– 27

3. DEVELOPMENT OF ANN FOR PREDICTING

CREEP

The aim of this paper was to investigate the potential of using

feedforward neural networks in predicting creep of quasi-brittle

materials and to examine the effect of changing the network

architectural parameters on the network performance. Creep

data extracted from experiments on structural masonry prisms

collected continuously over the past 15 years by Shrive and

Tilleman.
28

have been used for providing the training and

testing data sets needed for the development of the ANN for

predicting creep.

3.1. Experimental data

All the masonry prisms were made of 90 3 190 3 57 mm

standard bricks and standard type N mortar (1 Portland

cement : 1 lime : 6 sand). The specimens were kept under two

environmental conditions: the first group was sealed and kept

continuously wet by providing an outer source of water to the

specimen (RH ¼ 100%), while the second group was kept in the

room humidity (RH ¼ 40%). All specimens were kept in a

laboratory at a temperature of 20 � 2oC.

The creep deformations of the masonry prisms subjected to

different stress levels (1.21, 2.43, 3.61 and 4.86 MPa)

representing 12, 24, 36 and 48% of the prisms’ compressive

strength respectively and exposed to different environmental

conditions were used to develop and assess the model.
7, 28
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Fig. 8: ANN models for predicting creep compliance: ANN model 5 to 8: (a) RTN-6G; (b) RTN-8G; (c) RTN-10G; (d) RTN-64G

Structures & Buildings 157 Issue SB4 Reda Taha et al.286 Neural network modelling of creep in masonry



Delivered by ICEVirtualLibrary.com to:

IP:  136.159.125.215

On: Tue, 30 Nov 2010 00:30:43

compensate for the effects of shrinkage and temperature,

strains of unloaded prisms subjected to environmental

conditions similar to their counterpart-loaded prisms were also

recorded. Fourteen experimental testing groups were used for

training and testing the networks as presented in

Table 1 (ten training groups) and Table 2 (four testing groups).

The creep coefficient � (t, t0) and the creep compliance J(t, t0)

were determined from the data using equations (1)–(4).

Samples representing the change of the creep coefficient with

time for four training groups are shown in Fig. 3.

As all the experiments were performed on specimens of the

same size, four parameters only were considered for modelling

creep: the applied stress level, �, the relative humidity (RH), the

age of loading, t0, and the time at which creep is measured, t.

The effect of temperature on creep was not examined here.

Also, the surface area to volume ratio was not considered as a

changing parameter, being constant for all tests. Preliminary

investigations showed that the inclusion of constant values

representing the surface area and the temperature would not

have any effect on the performance of the ANN.

3.2. Training algorithm

Fifteen feedforward ANN for modelling creep deformations of

structural masonry were developed. The 15 networks consist of

an input layer with four neurons, N hidden layers of R neurons

and an output layer with one neuron. The number of hidden

layers, N, and neurons, R, for each network are given in

Table 3. The efficiencies of both the pure-linear transfer

function and the log-sigmoid transfer function were also

examined. The transfer functions used in each layer of the

networks are listed in Table 3. A schematic of sample

architecture of four of the ANN developed for modelling creep

is presented in Fig. 4.
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Fig. 9: ANN models for predicting creep compliance: ANN model 6 to 9: (a) RTN-64GL; (b) RTN-33GG; (c) RTN-24GL; (d) RTN-
24GG
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All 15 networks utilise the backpropagation training algorithm

as the learning rule for the network with the Levenberg-

Marquardt weights update criterion.
26

This criterion is based

on the gradient descent method described above but with a

small modification that speeds up the training procedure and

provides minimal mean square estimation error (MSEE).
26, 27

This training algorithm was implemented using the Neural

Network Toolbox of MATLAB
1

computer-aided design

software.
29

A learning matrix including 47 training samples

drawn from the ten training groups was used in training each

network. In order to achieve fast convergence to the target

MSEE of (1 3 10�4), the input and output data were normalised

with respect to the corresponding maximum values in the input

vectors using linear normalisation functions. All 15 networks

successfully achieved the target mean square estimation error

(MSEE) except network No. 4 10 (RTN-33GG) which achieved

an MSEE of (4.5 3 10�4) as shown in Fig. 5(d). Convergence of

the MSEE of four sample networks during training is presented

in Fig. 5. The structure of the network and its transfer

functions clearly affect the number of iterations needed during

the training procedure of the network to achieve the target

MSEE. While RTN-6G (Fig. 5(a)) was able to achieve the target

MSEE after 70 iterations, RTN-64GG (Fig. 5(c)) was able to

achieve this target MSEE after 650 iterations and RTN-33GG

(Fig. 5(d)) was not able to achieve the specified MSEE as

mentioned above. The number of iterations also represents the

time needed for network training.

4. TESTING THE ANN MODELS FOR PREDICTING

CREEP

4.1. Comparison with experimentally measured creep

Each of the 15 networks was tested using a matrix of 80

samples drawn from the four testing groups presented in Table

2. These groups were not used in training the networks. The

ANN models were used to predict the creep coefficient, �(t, t0).
A sample creep prediction for four ANN versus measured creep

coefficient �(t, t0) is presented in Fig. 6.
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Fig. 10: ANN models for predicting creep compliance: ANN model 10 to 15 and modified Burgers model: (a) RTN-2455;
(b) RTN-4499; (c) RTN-469L; (d) modified Burgers
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To examine the difference between the ANN prediction and

creep prediction models developed using curve-fitting

techniques, the experimentally measured creep was also

compared to the modified Burgers model
7
as presented in

equations (10) and (11)

�(t , t0) ¼ Rt 0
:3 þ (1� e�Rt )10

R ¼ 0:112� 3:353 10�6E(t0)11

Comparison of the creep compliance as predicted by the ANN

models against the creep compliance determined

experimentally is presented in Figs 7–10. To represent the

accuracy of prediction of the networks visually, two dashed

lines representing the � 15% deviation from the 45o line of the

predicted against measured creep compliance graph have been

drawn.

Eight of the 15 networks were able to predict creep compliance

within the � 15% (RTN-1G, RTN-4G, RTN-6G, RTN-10G, RTN-

33GG, RTN-24GL, RTN-24LL and RTN-46GG). The other seven

networks and the modified Burgers model were not able to

achieve this accuracy. Relative accuracies ranging from � 30

to � 50% are attainable using those networks and the classical

regression analysis.

4.2. Statistical analysis

The large number of parameters examined in this study and the

relatively large uncertainty in creep parameters make

comparisons between individual ANN predicted creep values

and experimentally measured creep inaccurate. Cross-

validation techniques based on statistical values rather than

absolute values are thus needed for evaluating ANN prediction.

A common cross-validation technique is to determine the

correlation coefficient between measured and predicted

parameters. The correlation coefficient between two parameters

x and y, rxy represents how closely the two parameters x and y

are related. The correlation coefficient can describe the

relationship between the trends of the prediction model and the

experimental data rather than providing a solid statistical

inference of how each model fits the experimental data.
30
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RTN-NNET for Predicting Creep of Masonry Brickwork
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Fig. 11. Predicting creep on the worldwide web (http://cfei.geomatics.ucalgary.ca/matlab/ann.html): (a) RTN_NNET interface to
predict creep; (b) creep prediction using the RTN web services
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Therefore, the correlation coefficient was not used here to

measure the efficiency of the prediction models. Rather,

statistical comparisons between predicted and measured creep

were performed by estimating the prediction error (PE) which

measures the average squared error between the predicted

creep obtained from the model and the measured creep. The PE

is described in equation (12)

PE ¼ 1

m

Xm
i¼1

(yti � y pi)
212

where y pi is the predicted value and yti is the experimentally

measured value and m represents the number of samples in

each testing group.
31

Prediction errors for the 15 networks and

the modified Burgers model are presented in Table 4. It is

obvious from Table 4 that creep prediction models using ANN

have a smaller prediction error and consequently higher

accuracy (e.g. RTN-1G, RTN-6G and RTN-33GG) than classical

creep prediction models using conventional regression analysis

(e.g. modified Burgers model).

An interesting observation was that accuracy of the ANN

model does not necessarily increase with complexity of the

network. On the contrary, simple networks with one hidden

layer including one or six neurons (RTN-1G and RTN-6G)

showed a relatively smaller prediction error (PE , 0.12) than

complex networks with two hidden layers including a large

number of neurons (e.g. RTN-64GG, PE . 0.22).

Another interesting observation is that the effect of the transfer

function is as important as the number of layers and neurons

in each layer. This can be observed when comparing the

performance of two networks with similar numbers of hidden

layers and neurons but with different transfer functions (e.g.

RTN-46GG v. RTN-46GL and RTN-24GG v. RTN-24 GL).

Networks including non-linear transfer functions do not

necessarily yield accurate prediction and required longer

training time than networks including linear transfer functions.

The choice of the most suitable combination of transfer

functions for a specific architecture of the network is therefore

necessary for accurate modelling.

5. THE USE OF ANN CREEP PREDICTION MODEL IN

STRUCTURAL DESIGN

The ANN creep prediction models presented here were

developed for use in structural design via the world wide web.

The ANN creep models are integrated using HTML computer

language and invoked over the web for structural engineers

worldwide. The networks can be accessed via the world wide

web, for example currently at (http://cfei.geomatics.

ucalgary.ca/matlab/ann.html). Fig. 11(a) shows the user

interface of the RTN_NNET web program for predicting creep

of structural masonry.

A structural engineer using the RTN_NNET on the web does not

need to have prior knowledge of neural networks and their

development but will need to know the basic design parameters

that affect creep including the characteristic strength of the

masonry, the stress level applied to the brickwork structure, the

time of loading, the average relative humidity and the time for

evaluating creep. The software output is the �(t, t0) evaluated
for the whole time interval (t–t0) as shown in Fig. 11(b). The

advantage of using the creep prediction models with neural

networks over current computer-based models is the ability to

enhance the model with time as new test data become available.

6. CONCLUSION

The conclusions of this study can be summarised as follows.

(a) While accurate prediction of creep deformation is desired

to increase the level of confidence in serviceability

analysis, it is evident that a high level of accuracy cannot

be accomplished with classical curve-fitting techniques due

to the large number of parameters needed in the model.

No. Model Prediction error (PE)*

Group 1 Group 2 Group 3 Group 4

1 RTN-1G 0.22 0.19 0.23 0.18
2 RTN-2G 0.24 0.84 0.25 0.54
3 RTN-3G 0.19 0.15 0.28 0.17
4 RTN-4G 0.11 0.10 0.12 0.09
5 RTN-6G 0.11 0.07 0.10 0.07
6 RTN-8G 0.62 1.04 0.32 0.87
7 RTN-10G 0.15 0.08 0.06 0.28
8 RTN-64GG 0.29 0.34 0.22 0.28
9 RTN-64GL 0.27 0.14 0.80 0.23

10 RTN-33GG 0.26 0.29 0.34 0.08
11 RTN-24GL 0.16 0.10 0.12 0.17
12 RTN-24GG 0.34 0.29 0.29 0.23
13 RTN-24LL 0.15 0.19 0.15 0.25
14 RTN-46GG 0.16 0.22 0.27 0.09
15 RTN-46GL 0.12 0.20 0.13 0.11
16 Modified Burgers 0.13 0.70 0.51 0.75

* PE: is dimensionless as it discribes the prediction error of the creep coefficient �(t,t0) which is
dimensionless

Table 4. Prediction error (PE) between predicted and experimentally measured creep
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(b) Fifteen ANN models were developed to investigate the

potential use of feedforward neural networks in predicting

time-dependent creep deformations in masonry structures.

Experimental data on creep of structural masonry were

used to develop the networks.

(c) Eight networks were able to predict creep with high levels

of relative accuracy in the range � 15%. Statistical analysis

of these networks showed a relatively small prediction

error compared to those associated with the other networks

as well as with the classical model based on regression

analysis.

(d) It can be observed that the change of the transfer function

in ANN is as significant as the change of the network

architecture including the number of layers and number of

neurons.

(e) The neural networks introduced here can be used for

predicting creep during structural design of a masonry

structures via the world wide web. The ANN creep

prediction model is currently available at (http://

cfei.geomatics.ucalgary.ca/matlab/ann.html). The use of the

ANN models as web application has the privilege of

allowing dynamic development and enhancement of the

model as further test data become available.
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