
  

  

Abstract—Given High Resolution Magic Angle Spinning 

(HR-MAS) signals from several glioblastoma tumor subjects, 

the goal is to differentiate between tumor tissue types by 

separating the different sources that contribute to the profile of 

each spectrum. Blind source separation techniques are applied 

for obtaining characteristic profiles for necrosis, high cellular 

tumor and border tumor tissue, and providing the contribution 

(abundance) of each tumor tissue to the profile of the spectra. 

The problem is formulated as a non-negative source separation 

problem. We illustrate the effectiveness of the proposed 

methods and we analyze to which extent the dimension of the 

input space could influence the performance by comparing the 

results on the full magnitude signals and on dimensionally 

reduced spaces. 

I. INTRODUCTION 

X-VIVO HR-MAS (high-resolution magic angle 

spinning spectroscopy) is a Nuclear Magnetic 

Resonance (NMR) spectroscopy technique. It provides 

significant biochemical information on the metabolites by 

exhibiting peaks at frequencies specific to the molecular 

composition of the tissue under investigation. Since HR-

MAS NMR allows the identification of an important number 

of metabolites, it has lately been extensively used for 

characterizing and diagnosing brain tumors.  

Previous studies have reported that alteration in the 

metabolite concentrations are correlated with the brain tissue 

type. Hence, each tissue type can be viewed as having a 

characteristic metabolic profile corresponding to the 

chemical composition of the tissue [1].  

HR-MAS signals, typically called spectra, are obtained 

from a small tissue biopsy sample, thus the spectra reflect the 

local tissue characteristics. A significant variability within 

the HR-MAS spectral profiles belonging to each of the main 

brain tissue types can be observed [2]. This is because brain 

tissues have the particularity of being very heterogeneous. In 

brain tumors, for example, the tissue under investigation 

might present contributions from various tumor tissue types. 
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The observed spectra are, therefore, a combination of 

different constituent sub-spectra, since the measured signal is 

the response to the stimulation of the entire tissue sample. 

The overall gain with which a tissue type contributes to a 

spectrum is proportional to its concentration. As a result, 

multiple metabolites and tissue types may be present in a 

single HR-MAS spectrum.  

We can summarize this concept by describing the spectra 

available from m samples, which are stacked as n-

dimensional row vectors in an m by n matrix X, as in [3]: 

 

NASX +=                    (1) 

 

where A contains the concentrations, or abundances, of the 

constituent pure tissue sources in each sample, and S is a k 

by n matrix whose rows are the unknown pure tissue spectra. 

N represents additive noise. 

At present, histopathological analysis is the standard 

procedure routinely used to reveal the microheterogeneity of 

a tumor tissue [4]. Because histopathology is time and effort 

expensive, it is interesting to obtain a similar separation 

using HR-MAS information. When classifying HR-MAS 

spectra, a common procedure is to assign each spectrum to a 

certain tissue class without taking into consideration the 

tissue microheterogeneity. In this study we propose to 

differentiate between tumor tissue types by identifying the 

pure components of the different tissues, S, and estimating 

the concentration of each component, A. This problem is 

formulated as a source separation problem where an 

important constraint is the non–negativity of the source 

signals and of the mixing coefficients. This solution is 

motivated by the nature of the HR-MAS magnitude spectra, 

where one has to deal with non-negative mixtures of non-

negative signals. Non-Negative Matrix Factorization (NMF) 

[12] and a Convex Analysis for Blind Separation of Non-

Negative Sources [13] are considered. 

II. MATERIALS AND METHODS 

A. Materials 

 Brain tumor biopsies were carried out on 27 patients with 

glioblastoma tumor (GBM). The tissue specimens were snap-

frozen in liquid nitrogen and stored at -80
0
 C until the time 

of spectroscopic analysis. 1D PRESAT HR-MAS (pulse-

and-acquire) data were acquired, following the eTUMOUR 

project protocols (http://www.etumour.net/) at 11.7 and 14T 
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(500 MHz and 600MHz for 1H) at 4 
0
C and 4000 Hz and 

5000Hz spinning rate using BRUKER Analytik GmbH 

spectrometers.  

After the HR-MAS study, tumor specimens were snap-

frozen and submitted for quantitative histopathological 

examinations. 22 out of the 27 biopsy samples were followed 

by standard histological examination performed by an expert 

neuro-pathologist on tissue samples taken from the same part 

used in the HR-MAS study. Based on the histology, the 

samples were considered with variable content of tumor, 

border and/or necrotic tissue. The percentage of the 

contribution from different tissues was calculated for each 

sample by measuring the total area of the biopsy sections and 

then delineating the necrotic, high cellular or border tissue 

regions of interest. The histopathological analysis is further 

used in the study for validating our results. 

The complex-valued HR-MAS time-domain signals were 

preprocessed as follows: signals were truncated from 8120 to 

the first 2048 points to reduce the computational load; the 

water components were removed by HLSVD-PRO [5]; 

baseline was corrected as follows. An apodization function, 

containing the broad baseline components, is computed by 

multiplying the signal in the time-domain with an 

exponentially decaying function and subsequently subtracted 

from the original spectrum. Magnitude spectra are then 

computed by taking the absolute value of the Fourier 

transformed time-domain signals. Contributions outside the 

frequency interval [0.25, 4.2] ppm were filtered out in order 

to keep only the contribution of the metabolites of interest; 

the filtered spectra were normalized (divided by the l2 norm 

of the spectrum between 0.5 and 4.2 ppm) and aligned.  

Although all the considered 27 tissue specimens are 

known to come from glioblastoma tumors, the variability in 

the contribution of tumor, border and necrotic tissue to their 

content is reflected in the profile of the HR-MAS spectra. To 

better illustrate this problem, in Fig. 1 we visualize three 

glioblastoma HR-MAS spectra, which come from tissue 

samples that are indicated by the histopathology as 

consisting only of pure necrotic, high cellular or border 

tumor tissue. In a classical classification approach, all these 

spectra would have been assigned to the same tissue class, 

respectively, to the glioblastoma tissue class.  
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Fig. 1. HR-MAS spectra profiles of GBM tissue samples containing 

predominant necrotic tissue, high cellular tumor or border tumor tissue. 

B. Methods 

Blind separation of non-negative sources (nBSS) have 

been recently successfully used in many applications where 

the sources to be separated are of a non-negative nature, e.g 

biomedical imaging [6], analytic chemistry [7] and 

hyperspectral imaging [8]. The way to exploit the non-

negative signal characteristic in nBSS is subjective to the 

data under analysis. Therefore numerous nBSS alternatives 

have been proposed. A class of nBSS methods utilizes the 

statistical property that the sources are mutually uncorrelated 

or independent; this class includes: second-order blind 

identification (SOBI) [9], non-negative independent 

component analysis (nICA)[10], Bayesian positive source 

separation (BPSS) [11].  

Another class of nBSS methods is represented by 

implementations which require no assumption on source 

independence or zero correlations. One such nBSS approach 

is the NMF. This method explicitly imposes source non-

negativity and even mixing matrix non-negativity. Taking 

into consideration the nature of HR-MAS spectra separation, 

where strong correlations in the metabolic profiles may still 

be present between spectra form different tissue types, we 

believe such a method is more suitable for our problem.  

NMF is a statistical technique that reveals hidden factors 

within a dataset of signals. Given a non-negative matrix X of 

size m x n (in our case m = 27 observations and n is the 

dimension of each observation), NMF finds two matrices A 

and S with non-negative elements that minimize the function: 

 

2

2

1
),( ASXSAf −= , with 0, ≥SA             (2) 

 

If we require S to have 3 rows, then these rows should 

ideally represent the constituent sources for necrotic, high 

cellular and border tumor tissue. A contains the coefficients 

of the linear combinations of the found sources and reflects 

the abundance of the obtained sources within each sample. 

Since NMF is not a unique decomposition, which may 

result in indeterminacy of the sources and of the mixing 

matrix, we apply for this study an alternating non-negativity 

constrained least squares (ANLS) implementation, with a 

sparsity constraint on the sources as described in [12]. We 

will further refer to the method proposed in [12] as 

NNMFSC. 

Another recently developed nBSS framework that 

accounts for sparsity is the convex analysis of mixtures of 

non-negative sources (CAMNS) [13]. CAMNS is 

deterministic, requiring no source independence assumption, 

the premise which can be found in many existing (usually 

statistical) BSS frameworks. The development is based on a 

special assumption called local dominance. Under local 

dominance, convex analysis is applied to establish a new 

BSS criterion. Thus, the source signals can be perfectly 

identified (in a blind fashion) by finding the extreme points 
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of an observation-constructed polyhedral set [13].  

Considering as input matrix X, the 27 measured HR-MAS 

spectra, or features extracted from these spectra, we further 

analyze and compare the performance obtained with the two 

proposed algorithms: CAMNS and NNMFSC in identifying 

the pure tissue profile for necrotic, high cellular and border 

tumor tissue; and in correctly describing the abundance of 

each source within a spectrum. 

C. Dimension of the input space 

The proposed nBSS techniques are applied on the 

magnitude HR-MAS spectra and on sets of features obtained 

from the spectra. 

For the spectra, we used n=716 points representing the 

HR-MAS spectra in the region of interest between 0.25 ppm 

and 4.2 ppm. For the feature case, we considered either 

n=19 features, representing the concentration of 19 most 

visible metabolites, or n=8 features representing the 

concentration of the metabolites considered as the most 

representative ones for separating between the three tissue 

classes [2].  Peak integration, a feature reduction method 

typical in NMR analysis, was used for extracting the 

concentration of the considered metabolites. Namely, the 

highest point in the area to be integrated was identified for 

each metabolite, then the area bounds were fixed for each 

metabolite individually to those ppm values at which peak 

slopes return to baseline, but keeping symmetric intervals 

with respect to the highest point. 

D. Performance measurement 

To evaluate the accuracy of the proposed nBSS methods in 

identifying the pure tumor tissue sources, a measure of the 

separation quality is performed. The nBSS results on the 

GBM group are validated by comparing them to the 

histology findings (the standard reference to which diagnosis 

is based nowadays). To this aim we compute the correlation 

coefficient between the sources obtained with NNMFSC and 

CAMNS, respectively, and the reference HR-MAS tissue 

models from Fig. 1, for all three input spaces mentioned 

above.  

III. RESULTS AND DISCUSIONS 

The correlation coefficients between nBSS sources and 

the reference spectra are presented in Table 1. The 

correlation coefficient takes a value between -1 and 1, where 

a value close to -1 indicates a negative correlation, close to 0 

indicates that sources are uncorrelated and close to 1 that the 

sources are highly correlated with the reference tissue. 

A very high correlation was obtained with both methods 

for the necrotic tissue, revealing the power of NNMFSC and 

CAMNS in accurately identifying necrotic tissue. For 

extracting the border and tumor tissue source, NNMFSC 

shows to perform overall better than CAMNS. In particular, 

for border tissue, with NNMFSC the correlation with the 

histopathology reaches more than 0.9 out of 1.  

Another aspect of the study is to analyze to which extent 

the dimension of the input space could influence the results. 

This part of the study provides a closer inside into the 

question which metabolites are most representative in 

separating between the considered classes. Since each source 

is important in our problem we looked at the overall 

performance of the considered algorithms. As can be seen in 

Table 1, the dimension of the input space influences the 

performance of the methods. The sources obtained with 

NNMFSC on the full magnitude spectra (n=716) are clearly 

separated and are conform to the conclusions drawn in the 

literature [4]. As can be seen from Fig. 2, the obtained 

necrotic tumor tissue source is characterized by elevated 

peaks of lipids (Lip1, Lip2), while the rest of the metabolites 

are present in very low concentrations. Border tissue source 

presents characteristic high peaks of N-acetyl aspartate 

(NAA) and creatine (Cr), while, for the high cellular tumor, 

the alanine (Ala) and total choline (tCho) group are more 

elevated compared to the other sources. We can clearly see 

that the obtained NNMFSC sources are very similar to the 

profile of a pure tumor tissue as plotted in Fig.1. 
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Fig. 2. Tumor tissue sources obtained with NNMFSC when applied on the 

magnitude spectra.  

 

When considering the feature vectors coming from all the 

visible metabolites (n=19), the metabolite profiles extracted 

by NNMFSC for necrosis and border tissue highly correlate 

with the reference tissue, see Fig. 3. This input space brings 

TABLE I 

THE CORRELATION BETWEEN THE OBTAINED TISSUE SOURCES AND THE 

REFERENCE TISSUE MODELS FOR THREE INPUT SPACES 

 n=716 n=19 n=8 

NNMFSC 

necrotic 0.97 0.97 0.99 

border 0.91 0.92 0.91 

tumor 0.69 0.65 0.72 

CAMNS 

necrotic 0.98 0.97 0.99 

border 0.88 0.51 0.82 

tumor 0.62 0.61 0.68 
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relative low performance with CAMNS for the border tissue, 

since the obtained source presents high contributions from 

metabolites expected in low concentrations. The overall 

performance is higher when considering only 8 features 

coming from the most representative metabolites. These 

results confirm that these metabolites are representative for 

solving this typical classification problem and adding extra 

information will affect the performance of the considered 

nBSS method. Additionally, by increasing the dimensionality 

of the matrices (case n=716), the problem becomes more ill-

conditioned and might provide a solution that is less 

meaningful for the given problem. 

When applying NNMFSC, we obtain for each spectrum 

the mixing coefficients representing the contribution 

(abundance) of each source to the spectra. Thus, we can 

assign each case, based on the highest abundance, to a 

predominant tissue class. The classification results were 

compared with the histopahological study and they show that 

NNMFSC can accurately identify the predominant tissue 

class. For 19 out of the 22 histopathologically confirmed 

cases, the same class was indicated predominant by 

NNMFSC and histopathology. 

cellular border necrosis

NNMFSC sources

cellular border necrosis

Reference

cellular bordernecrosis

cellular bordernecrosis

 
Fig. 3. Tumor tissue profiles obtained with NNMFSC and on feature 

vectors (n=19 left column, n=8 right column). The lower plots illustrate 

features extracted from pure tissue samples, as indicated by histopathology. 

IV. CONCLUSION 

The nBSS methods proposed for obtaining characteristic 

profiles for each tissue subtype and the abundance of each 

source within a spectrum can reliably answer the problem of 

source separation when analyzing HR-MAS data. This 

finding can provide relevant additional information for a 

better interpretation and classification of brain tumor tissue 

in ex vivo high resolution magnetic resonance spectroscopy. 

Furthermore, a better understanding of brain tumor tissue 

classification problems arising from in vivo magnetic 

resonance spectroscopy can benefit from the same approach. 

A reduction of the dimension of the input space could act as 

an added value to this classification problem. This will bring 

a two-fold advantage. On one side, it reduces the 

computational time, and, secondly, we avoid bringing 

irrelevant information into the problem. 
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