M. Zangeneh

M. Zangeneh
University College London | UCL · Department of Mechanical Engineering

About

98
Publications
15,257
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,903
Citations
Citations since 2016
22 Research Items
961 Citations
2016201720182019202020212022050100150
2016201720182019202020212022050100150
2016201720182019202020212022050100150
2016201720182019202020212022050100150

Publications

Publications (98)
Conference Paper
In this paper, a three-dimensional viscous inverse design method is presented. The blade geometry is parameterized by aerodynamic variables such as blade loading, which allows direct control of the aerodynamic flow field. With a specified stacking axis and thickness distribution, the algorithm solves the flow field and blade geometry iteratively un...
Article
A deep understanding of loss mechanisms inside a turbomachine is crucial for the design and analysis work. By quantifying the various losses generated from different flow mechanisms, a targeted optimization can be carried out on the blading design. In this paper an evaluation method for computational fluid dynamics simulations has been developed to...
Article
Full-text available
Renewable sources of energy are on the rise and will continue to increase the coming decades [1]. A common problem with the renewable energy sources is that they rely on effects which cannot be controlled, for instance the strength of the wind or the intensity of the sunlight. The ALPHEUS Horizon 2020 EU project has the aim to develop a low-head hy...
Conference Paper
A deep understanding of loss mechanisms inside a turbomachine is crucial for the design and analysis work. By quantifying the various losses generated from different flow mechanisms, a targeted optimization can be carried out on the blading design. In this paper an evaluation method for computational fluid dynamics simulations has been developed to...
Article
This paper presents the development of a new inverse design algorithm capable of generating blade geometries for cavitating cascade flows.With this methodology, we demonstrate the controllability of the pressure distribution in and around the cavity and thereby provide a means to regulate the aggressiveness of blade cavitation phenomena. The solver...
Conference Paper
Full-text available
The pan-European power grid is experiencing an increasing penetration of Variable Renewable Energy (VRE). The fluctuating and non-dispatchable nature of VRE hinders them in providing the Ancillary Service (AS) needed for the reliability and stability of the grid. Today’s grid is reliant on synchronous generators. In case of sudden frequency deviati...
Conference Paper
This paper presents the redesign of an electrically driven mixed flow transonic compressor by using a 3D inverse design methodology. The compressor will be used for an active high-lift system application that aims to delay the onset of stall and thus contributing to the reduction of both the aircraft noise footprint and the impact of aviation emiss...
Article
This paper presents three different multi-objective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head. The first two optimization strategies use a 3D inverse design method to parametr...
Conference Paper
Cavitation commonly manifests itself as vapour structures attached to the suction surfaces of impeller, runner or propeller blades. The numerical study carried out here seeks to correlate the changes in the behaviour of sheet cavitation to variations in blade geometry. The analysis is run for a two-dimensional stationary cascade. The streamwise loa...
Conference Paper
This paper presents three different multi-objective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head. The first two optimization strategies use a 3D inverse design method to parametr...
Conference Paper
In marine diesel engines, transonic centrifugal compressors are widely used due to their capabilities to: 1) downsize engines by increasing output power; 2) cause less fuel consumption; 3) enhance the combustion efficiency. Apart from the traditional requirements such as good choke and stall margin, high boosting pressure ratio, and high stage effi...
Conference Paper
Full-text available
In this paper the optimisation of a pump-as-turbine runner using a 3D inverse design methodology is presented. The baseline design is based on an existing runner designed with TURBOdesign1 by Zhu et al.[1, 2], that was then optimised by the genetic algorithm in Isight. In the work presented here the baseline design will be further optimised by mini...
Article
Full-text available
In this paper the optimisation of a pump-as-turbine runner using a 3D inverse design methodology is presented. The baseline design is based on an existing runner designed with TURBOdesign1 by Zhu et al.[1, 2], that was then optimised by the genetic algorithm in Isight. In the work presented here the baseline design will be further optimised by mini...
Article
Engine downsizing is a modern solution for the reduction of CO2 emissions from internal combustion engines. This technology has been gaining increasing attention from industry. In order to enable a downsized engine to operate properly at low speed conditions, it is essential to have a compressor stage with very good surge margin. The ported shroud,...
Conference Paper
To secure the highly challenging 2°C climate change limit, the automotive sector is expected to further improve the efficiency of the internal combustion engines. Over the past decade, internal combustion engine downsizing through turbocharging has become one of the major solutions that the industry has offered to fulfil its carbon commitment. Alth...
Conference Paper
Engine downsizing is a modern solution for the reduction of CO2 emissions from internal combustion engines. This technology has been gaining increasing attention from industry. In order to enable a downsized engine to operate properly at low speed conditions, it is essential to have a compressor stage with very good surge margin. The ported shroud,...
Conference Paper
It is found that the ideal gas assumption is not proper for the design of turbomachinery blades using supercritical CO2 (S-CO2) as working fluid especially near the critical point. Therefore, the inverse design method which has been successfully applied to the ideal gas is extended to applications for the real gas by using a real gas property looku...
Article
Full-text available
The 3-D T-mixer is so called because of the three-dimensional structure of the T-junction formed by locating the inlet channels at different horizontal levels [1]. It has been found to exert a strong influence on the characteristics of flow from the T-junction downstream in the mixing channel, with Reynolds number (Re) higher than 50. A comparison...
Conference Paper
In order to improve overall performance of a turbomachinery, it is important to reduce losses of stationary flow passages, such as diffusers and return channels, as well as impellers. For multi-stage pumps, to achieve high uniformity of the inlet flow of the latter impeller can prevent degradation of subsequent performance. A two stages high pressu...
Conference Paper
Engine downsizing provides the most effective means of achieving the legislative requirements for reducing CO2 emissions from vehicles. However, it is well known that downsized engines when coupled with a conventional turbocharger can suffer from low engine torque at low rpm, which is major issue for drivability of downsized engines. One option is...
Conference Paper
Engine downsizing provides the most effective means of achieving the legislative requirements for reducing CO2 emissions from vehicles. However, it is well known that downsized engines when coupled with a conventional turbocharger can suffer from low engine torque at low rpm, which is major issue for drivability of downsized engines. One option is...
Conference Paper
Most radial turbines have a peak efficiency at around U/Cis (velocity ratio or jet speed ratio) of 0.7. It is a well-known fact that it is beneficial for radial turbocharger turbines to have a higher efficiency at low U/Cis region, since the pulsating engine exhaust gas at low U/Cis region (with high pressure and temperature) carries more energy co...
Chapter
A methodology for designing radial and mixed-inflow turbines to meet multiple aerodynamic and mechanical requirements is presented in this paper. The method couples a 3D inverse design code and Design of Experiment Method (DoE) and the response surface method (RSM) to design turbines which meet various design criteria. Initially there are 17 design...
Article
A robust mixing plane method satisfying interface flux conservation, nonreflectivity and retaining interface flow variation; valid at all Mach numbers and applicable for any machine configuration is formulated and implemented in a vertex based finite volume solver for flow analysis and inverse design. The formulation is based on superposing perturb...
Article
A 3-D configuration of a T-mixer is evaluated under normal operating conditions of the called convective micromixers. The design has been called 3-D T-mixer in our previous work [1] as it adopts a three-dimensional structure at the T-junction. This design feature has been found that it exerts a strong effect on the flow characteristics in the devic...
Article
The performance of transonic compressors can be characterized aerodynamically and aeroacoustically. In this paper, the DLR SRV2 compressor without vaned diffusers and its redesigned version are studied. The redesign strategy (Zangeneh et al. 2011 [1]) utilized the 3D inverse design and CFD analysis. Both compressors were analyzed in ANSYS CFX 11, a...
Conference Paper
Design of centrifugal compressors in different applications from industrial to turbochargers to aeroengine is subject to difficult multi-disciplinary ( aerodynamics and mechanical) and multipoint/multi-objective requirements. These multi-disciplinary and multi-point requirements have to be met by iterations between aerodynamics and mechanical desig...
Conference Paper
A robust mixing plane method satisfying interface flux conservation, non-reflectivity and retaining interface flow variation; valid at all Mach numbers and applicable for any machine configuration is formulated and implemented in a vertex based finite volume solver for flow analysis and inverse design of turbomachinery stage configurations. The for...
Article
In many automotive highway/off-highway engine cooling applications the fan has to provide a fairly large pressure rise and operate with a large gap between the tip of the blade and the shroud surface (tip clearance). This can pose difficult design challenges. This paper presents a design process coupling 3D inverse design with a Multi Objective Gen...
Article
The cooling system of modern automobiles is the subject of intense reflections to maximize efficiency and reduce the energy consumption. Large fan diameters are preferred to enhance thermal exchanges over the large surface of the radiator, whereas high rotational speeds are sought to benefit from higher efficiency and low weight of the electrical m...
Article
Increasing demand for downsizing of engines to improve CO2 emissions has resulted in renewed efforts to improve the efficiency and expend the stable operating range of the centrifugal compressors used in petro-chemical equipment and turbochargers. The losses in these compressors are dominated by tip clearance flow. In this paper, the tip clearance...
Conference Paper
This paper presents a numerical study of predicting the aerodynamic noise generated by a supersonic centrifugal compressor, which can advance the understanding of noise generation mechanisms so that future optimization can be done to achieve a better design. Starting from the classical Lighthill acoustic analogy, a convective Ffowcs-Williams and Ha...
Article
This paper develops and validates the first principle based numerical method for predicting the noise radiated from the rotating Horizontal-Axis Wind Turbine (HAWT) blades. The noise radiated to the far-field was predicted by the code based on Ffowcs Williams–Hawkings (FW–H) equation, using both original non-permeable formulation and permeable form...
Conference Paper
In this work, the redesign of a centrifugal transonic compressor impeller with splitter blades by means of the three-dimensional inverse design code TURBOdesign-1 is presented. The basic design methodology for impellers with splitter blades is outlined and is applied in a systematic way to improve the aero/mechanical performance of a transonic 6.2:...
Conference Paper
Full-text available
Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal
Conference Paper
Design of axial turbines, especially LP turbines, poses difficult tradeoffs between requirements of aerodynamic design and structural limitations. In this paper, a methodology is proposed for 3D multi-objective design of axial turbine blades in which a 3D inverse design method is coupled with a multi-objective genetic algorithm. By parameterizing t...
Article
The present paper describes the parametric design of a Francis turbine runner. The runner geometry is parameterized by means of a 3D inverse design method, while CFD analyses were performed to assess the hydrodymanic and suction performance of different design configurations that were investigated. An initial runner design was first generated and u...
Article
The characteristics of a double-chamber valveless parallel micropump are analysed using a one-dimensional non-linear model. The relationships between the mean volume flux, pressure difference and (measurable) characteristics of the pump are derived in a closed-form expression which are validated against the numerical solutions. These results show t...
Conference Paper
Numerical simulations and experiments are used to evaluate the flow and mixing characteristics of a proposed convective 3-D T-type micromixer. The study presents a parametric study and performance optimization of this micromixer based on the variation of its geometry. To investigate the effect of design and operation parameters on the device perfor...
Conference Paper
Full-text available
Numerical simulations and an optimization method are used to study the design of a planar T-micromixer with curved-shaped baffles in the mixing channel. The mixing efficiency and the pressure loss in the mixing channel have been evaluated for Reynolds number (Re) in the mixing channel in the range 1 to 250. A Mixing index (Mi) has been defined to q...
Article
Computational fluids dynamics (CFDs) and numerical optimization techniques are applied in an integrated methodology to explore the effects of different geometric characteristics on fluid mixing in a staggered herringbone micromixer (SHM). To quantify the mixing intensity in the mixer a mixing index is defined on the basis of the intensity of segreg...
Article
Full-text available
Computer simulations and in particular mesoscopic simulation techniques such as the dissipative particle dynamics (DPD) technique, enable researchers to study the complexities of soft material and polymeric systems by performing in silico experimentations alongside in vivo experiments. In addition, these mesoscopic simulations allow scientists and...
Article
The present paper describes the parametric design of a mixed-flow water-jet pump. The pump impeller and diffuser geometries were parameterized by means of an inverse design method, while CFD analyses were performed to assess the hydrodynamic and suction performance of the different design configurations that were investigated. An initial pump desig...
Article
Diesel engines developed to meet future US and European emissions regulations place an unprecedented demand on compressor performance in terms of pressure ratio and flow range capability. Additionally the direct impact compressor efficiency has on engine fuel consumption means that the new generation of centrifugal compressors designed for Turbocha...
Article
Full-text available
The dissipative particle dynamics (DPD) technique is a relatively new mesoscale technique which was initially developed to simulate hydrodynamic behavior in mesoscopic complex fluids. It is essentially a particle technique in which molecules are clustered into the said particles, and this coarse graining is a very important aspect of the DPD as it...
Article
The flow driven by a valveless micropump with a single cylindrical pump chamber and two diffuser/nozzle elements is studied theoretically using a 1-D model. The pump cavity is driven at an angular frequency omega so that its volume oscillates with an amplitude V <sub>m</sub>. The presence of diffuser/nozzle elements with pressure-drop coefficients...
Conference Paper
A design method which systematically integrates Computational Fluids Dynamics (CFD) with an optimization scheme based on the use of the techniques Design of Experiments (DOE), Function Approximation technique (FA) and Multi-Objective Genetic Algorithm (MOGA), has been applied to the shape optimization of the staggered herringbone micromixer (SHM) a...
Conference Paper
A methodology for designing pumps to meet multi-objective design criteria is presented. The method combines a 3D inviscid inverse design method with a multi-objective genetic algorithm to design pumps which meet various aerodynamic and geometrical requirements. The parameterization of the blade shape through the blade loading enables 3D optimizatio...
Article
Automatic optimization techniques have been used in recent years for the aerodynamic and mechanical design of turbomachine components. Despite the many advantages, their use is usually limited to simple applications in industrial practice, because of their high computational cost. In this paper, an optimization strategy is presented, which enables...
Article
A design methodology for micromixers is presented which systematically integrates computational fluid dynamics (CFD) with an optimization methodology based on the use of design of experiments (DOE), function approximation technique (FA) and multi-objective genetic algorithm (MOGA). The methodology allows the simultaneous investigation of the effect...
Article
Full-text available
Inverse design methods directly compute geometry for specified design parameters such as surface pressure or velocity, which is related to the performance of an airfoil (or a blade) geometry. These methods replace the time consuming iterative procedure of direct methods in which a large number of different blade shapes are designed and analysed to...
Conference Paper
The development of bio-MEMS and lab-on-a-chip devices requires efficient mixing of fluids. With this aim, a variety of passive and active micromixers have been developed. Computational Fluid Dynamics (CFD) performs now an important role in the development of microfluidics components, basically for the analysis of flow fields to adjust the design pa...
Article
A methodology is presented for designing waterjet pumps to meet multi-objective design criteria. The method combines a 3D inviscid inverse design method with multi-objective genetic algorithm to design pumps which meet various aerodynamic and geometrical requirements. The parameterization of the blade shape through the blade loading enables 3D opti...
Article
Design software based on the inverse design approach offers a number of advantages for the hydrodynamic design of pump components such as impellers. M. Zangeneh, founding director of UK-based Advanced Design Technology (ADT) and professor of thermofluids at University College London, discusses and illustrates the capabilities of this inverse approa...
Conference Paper
In the present paper, the redesign of a transonic rotor was performed by means of a three-dimensional viscous inverse design method. The inverse approach used in this work is one where the pressure loading, blade thickness distribution and stacking axis are specified and the camber surface is calculated accordingly. The design of transonic and supe...
Conference Paper
Optimization strategies have been used in recent years for the aerodynamic and mechanical design of turbomachine components. One crucial aspect in the use of such methodologies is the choice of the geometrical parameterization, which determines the complexity of the objective function to be optimized. In the present paper, an optimization strategy...
Conference Paper
The application of 3D inverse design to transonic fans can offer designers many advantages in terms of reduction in design time and providing a more direct means of using the insight obtained into flow physics from CFD computations directly in the design process. A number of papers on application of inverse design method to transonic fans have alre...
Article
Full-text available
This paper presents an experimental investigation of two centrifugal compressor stage configurations. The baseline configuration has been designed using conventional design engineering tools. The second configuration was designed using advanced inverse design rules as described in Part 1. It is designed to match the choke, flow as well as the best...
Conference Paper
In this second report, a new aerodynamic design is presented for a radial turbine stage of a microturbine engine. To optimize three-dimensional (3-D) flows, an inverse design method, in which 3-D blade geometry is numerically obtained for specified blade loading distribution, has been applied together with numerical assessment using CFD (Computatio...
Article
In this paper the three-dimensional inverse design code TURBOdesign-1 is applied to the design of the blade geometry of a centrifugal compressor impeller with splitter blades. In the design of conventional impellers the splitter blades normally have the same geometry as the full blades and are placed at mid-pitch location between the two full blade...
Conference Paper
A cell centred, finite volume, pressure correction method for unstructured grids is presented that facilitates the use of high order convective modelling. This is achieved through the use of a least squares technique to calculate first and second partial derivatives of the governing equations dependent variables. These derivatives are then used to...
Conference Paper
The application of sweep in the design of transonic fans has been shown to be an effective method of controlling the strength and position of the shock wave at the tip of transonic fan rotors, and the control of corner separations in stators. In rotors sweep can extend the range significantly. However, using sweep in conventional design practice ca...
Conference Paper
Full-text available
In this paper the 3D inverse design code TURBOdesign-1 is applied to the design of the blade geometry of a centrifugal compressor impeller with splitter blades. In the design of conventional impellers the splitter blades normally have the same geometry as the full blades and are placed at mid-pitch location between the two full blades, which can us...
Conference Paper
Full-text available
This paper presents an experimental investigation of two centrifugal compressor stage configurations. The baseline configuration has been designed using conventional design engineering tools. The second configuration was designed using advanced inverse design rules as described in part 1 (Zangeneh et al. 2003). It is designed to match the choke flo...
Article
A new approach to optimizing a pump diffuser is presented, based on a three-dimensional inverse design method and a Computational Fluid Dynamics (CFD) technique. The blade shape of the diffuser was designed for a specified distribution of circulation and a given meridional geometry at a low specific speed of 0.109 (non-dimensional) or 280 (m3/min,...
Article
Full-text available
The development and application of a three-dimensional inverse methodology in which the blade geometry is computed on the basis of the specification of static pressure loading distribution is presented. The methodology is based on the intensive use of computational fluid dynamics (CFD) to account for three-dimensional subsonic and transonic viscous...
Article
Full-text available
In turbomachinery blade design, inverse methods and optimization techniques are often applied independently to produce high performance blade shapes. The idea of using an optimization algorithm to seek the optimal target distribution for an inverse design methodology has been explored. However, these efforts have been made mainly in the design of s...
Article
Full-text available
The development and application of a three-dimensional (3D) inverse methodology is presented for the design of turbomachinery blades. The design method is based on the specification of the blade loading distribution and the corresponding blade shape is systematically sought using directly the difference between the target and initial values. The de...
Conference Paper
An aerodynamics inverse design method for turbomachinery blades using fully (adaptive) unstructured meshes is presented. In this design method, the pressure loading (i.e. pressure jump across the blades) and thickness distribution are prescribed. The design method then computes the blade shape that would accomplish this loading. This inverse design...
Conference Paper
In this paper the application of 3D inverse design code TURBOdesign−1 to the design of the vane geometry of a centrifugal compressor vaned diffuser is presented. For this study the new diffuser is designed to match the flow leaving the conventional impeller, which is highly non-uniform. The inverse method designs the blade geometry for a given spec...
Article
In deriving automatic numerical optimization algorithms for aerodynamic applications, it is quite important to choose a suitable cost function and a suitable set of design parameters. The unknown airfoil/blade profiles are usually chosen to be the design parameters. However, there are certain advantages in using the pressure/velocity distribution a...
Conference Paper
The development and application of a three-dimensional inverse methodology is presented for the design of turbomachinery blades. The method is based on the mass-averaged swirl, rV~θ distribution and computes the necessary blade changes directly from the discrepancies between the target and initial distributions. The flow solution and blade modifica...
Article
In this paper the flow field in the intake duct of a model water-jet unit is studied by using a commercial 3D CFD code. In order to model the intake duct/hull interaction, the computational domain includes a large section of the hull in the vicinity of the intake duct opening. Appropriate boundary conditions are used on the far upstream and downstr...
Article
The application of a three-dimensional (3D) inverse design method in which the blade geometry is computed for a specified distribution of circulation to the design of turbomachinery blades is explored by using two examples. In the first instance the method is applied to the design of radial and mixed flow impellers to suppress secondary flows. Base...
Article
In ducted propulsor design for marine vessels, due to the strong interaction between the duct and the propeller blades, it is very important to design the duct and the blade geometry simultaneously. Here, a three-dimensional inverse design method is presented to take this into consideration. The method is based on three-dimensional potential flow;...
Article
In this paper, for the first time, a set of guidelines is presented for the systematic design of mixed flow and centrifugal compressors and pumps with suppressed secondary flows and a uniform exit flow field. The paper describes the shape of the optimum pressure distribution for the suppression of secondary flows in the impeller with reference to c...
Conference Paper
In the design of centrifugal compressor impellers with splitter blades it is quite common to use the same blade shapes on the full and splitter blades with the splitters placed at the mid-pitch location. However, recent results using conventional design methodology have indicated that by moving the pitchwise location of the leading edge of the spli...
Conference Paper
In deriving automatic numerical optimization algorithms for aerodynamic applications, the design parameters are usually chosen to be the unknown airfoil/blade profiles. However, there are certain advantages in using the pressure/velocity distribution as the design variable in some applications; the designed distribution can then be used in a 3D inv...
Conference Paper
An inverse design methodology is presented for the design of turbomachinery blades using a cell-vertex finite volume time-marching algorithm in transonic viscous flow. In this method the blade shape is designed subject to a specified distribution of pressure loading (the difference in pressure across the blade) and thickness distribution. The diffe...