M. Sajid

M. Sajid
Verified
M. verified their affiliation via an institutional email.
Verified
M. verified their affiliation via an institutional email.
  • Doctor of Philosophy
  • Ph.D. at Indian Institute of Technology Indore

About

24
Publications
1,632
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
76
Citations
Introduction
I am pursuing Doctor of Philosophy (Ph.D.) under the supervision of Dr. M. Tanveer in the Department of Mathematics at the Indian Institute of Technology Indore (IIT Indore). I am fervently committed to advancing research in machine learning and computational intelligence. My research interests include Randomized neural networks, Graph neural networks, Alzheimer’s disease diagnosis via Machine and deep learning techniques, and so on.
Current institution
Indian Institute of Technology Indore
Current position
  • Ph.D.

Publications

Publications (24)
Preprint
Restricted kernel machines (RKMs) have demonstrated a significant impact in enhancing generalization ability in the field of machine learning. Recent studies have introduced various methods within the RKM framework, combining kernel functions with the least squares support vector machine (LSSVM) in a manner similar to the energy function of restric...
Preprint
Full-text available
In the domain of machine learning, least square twin support vector machine (LSTSVM) stands out as one of the state-of-the-art models. However, LSTSVM suffers from sensitivity to noise and outliers, overlooking the SRM principle and instability in resampling. Moreover, its computational complexity and reliance on matrix inversions hinder the effici...
Preprint
Full-text available
In this paper, we propose enhanced feature based granular ball twin support vector machine (EF-GBTSVM). EF-GBTSVM employs the coarse granularity of granular balls (GBs) as input rather than individual data samples. The GBs are mapped to the feature space of the hidden layer using random projection followed by the utilization of a non-linear activat...
Preprint
Full-text available
On Efficient and Scalable Computation of the Nonparametric Maximum Likelihood Estimator in Mixture ModelsTwin support vector machine (TSVM) is an emerging machine learning model with versatile applicability in classification and regression endeavors. Nevertheless, TSVM confronts noteworthy challenges: $(i)$ the imperative demand for matrix inversio...
Article
Full-text available
Alzheimer's disease (AD) is the leading neurodegenerative disorder and primary cause of dementia. Researchers are increasingly drawn to automated diagnosis of AD using neuroimaging analyses. Conventional deep learning (DL) models excel in constructing learning classifiers in early-stage AD diagnosis. However, they often struggle with AD diagnosis d...
Preprint
The random vector functional link (RVFL) network is a prominent classification model with strong generalization ability. However, RVFL treats all samples uniformly, ignoring whether they are pure or noisy, and its scalability is limited due to the need for inverting the entire training matrix. To address these issues, we propose granular ball RVFL...
Preprint
Full-text available
The classification performance of the random vector functional link (RVFL), a randomized neural network, has been widely acknowledged. However, due to its shallow learning nature, RVFL often fails to consider all the relevant information available in a dataset. Additionally, it overlooks the geometrical properties of the dataset. To address these l...
Preprint
Full-text available
The identification of DNA-binding proteins (DBPs) is a critical task due to their significant impact on various biological activities. Understanding the mechanisms underlying protein-DNA interactions is essential for elucidating various life activities. In recent years, machine learning-based models have been prominently utilized for DBP prediction...
Preprint
Full-text available
In this paper, we propose long short term memory speech enhancement network (LSTMSE-Net), an audio-visual speech enhancement (AVSE) method. This innovative method leverages the complementary nature of visual and audio information to boost the quality of speech signals. Visual features are extracted with VisualFeatNet (VFN), and audio features are p...
Preprint
Full-text available
The random vector functional link (RVFL) network is well-regarded for its strong generalization capabilities in the field of machine learning. However, its inherent dependencies on the square loss function make it susceptible to noise and outliers. Furthermore, the calculation of RVFL's unknown parameters necessitates matrix inversion of the entire...
Article
Full-text available
In the realm of data classification, broad learning system (BLS) has proven to be a potent tool that utilizes a layer-by-layer feed-forward neural network. However, the traditional BLS treats all samples as equally significant, which makes it less robust and less effective for real-world datasets with noises and outliers. To address this issue, we...
Preprint
Full-text available
The ensemble deep random vector functional link (edRVFL) neural network has demonstrated the ability to address the limitations of conventional artificial neural networks. However, since edRVFL generates features for its hidden layers through random projection, it can potentially lose intricate features or fail to capture certain non-linear feature...
Article
Full-text available
The timely identification of significant memory concern (SMC) is crucial for proactive cognitive health management, especially in an aging population. Detecting SMC early enables timely intervention and personalized care, potentially slowing cognitive disorder progression. This study presents a state‐of‐the‐art review followed by a comprehensive ev...
Article
Full-text available
The random vector functional link (RVFL) neural network has shown the potential to overcome traditional artificial neural networks’ limitations, such as substantial time consumption and the emergence of suboptimal solutions. However, RVFL struggles to provide comprehensive insights into its decisionmaking processes. We propose the Neuro-fuzzy RVFL...
Article
The domain of machine learning is confronted with a crucial research area known as class imbalance (CI) learning, which presents considerable hurdles in the precise classification of minority classes. This issue can result in biased models where the majority class takes precedence in the training process, leading to the underrepresentation of the m...
Article
Full-text available
The ensemble deep random vector functional link (edRVFL) neural network has demonstrated the ability to address the limitations of conventional artificial neural networks. However, since edRVFL generates features for its hidden layers through random projection, it can potentially lose intricate features or fail to capture certain non-linear feature...
Article
Full-text available
Twin support vector machine (TSVM) is an emerging machine learning model with versatile applicability in classification and regression endeavors. Nevertheless, TSVM confronts noteworthy challenges: 1) the imperative demand for matrix inversions presents formidable obstacles to its efficiency and applicability on large-scale datasets; 2) the omissio...
Preprint
The domain of machine learning is confronted with a crucial research area known as class imbalance learning, which presents considerable hurdles in the precise classification of minority classes. This issue can result in biased models where the majority class takes precedence in the training process, leading to the underrepresentation of the minori...
Preprint
In the realm of data classification, broad learning system (BLS) has proven to be a potent tool that utilizes a layer-by-layer feed-forward neural network. It consists of feature learning and enhancement segments, working together to extract intricate features from input data. The traditional BLS treats all samples as equally significant, which mak...

Network

Cited By