
Studies in Computational Intelligence 908

Utku Kose
Jafar Alzubi   Editors

Deep Learning 
for Cancer 
Diagnosis



Studies in Computational Intelligence

Volume 908

Series Editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland



The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

The books of this series are submitted to indexing to Web of Science,
EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092


Utku Kose • Jafar Alzubi
Editors

Deep Learning for Cancer
Diagnosis

123



Editors
Utku Kose
Department of Computer Engineering
Süleyman Demirel University
Isparta, Turkey

Jafar Alzubi
Faculty of Engineering
Al-Balqa Applied University
Balqa, Jordan

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-981-15-6320-1 ISBN 978-981-15-6321-8 (eBook)
https://doi.org/10.1007/978-981-15-6321-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-15-6321-8


Foreword by Dr. Omer Deperlioglu

As the field of artificial intelligence is affecting all fields of the modern life, the need
for processing big amount of data has been solved effectively with deep learning
techniques. With the start of the twenty-first century, computational technologies
have started to gain a momentum to solve time complexity appeared while using
traditional techniques of machine learning/artificial intelligence. At this point, the
deep learning has become a strong actor in contributing to the unstoppable rise of
intelligent systems. As the future of artificial intelligence has many more surprises
for all of us, current using alternatives of deep learning takes researchers’ interest
too much. Among all its employments within different fields, maybe the field of
medical is one of the most vital platforms where the future of humankind is shaped
rapidly.

In this book, titled as Deep Learning for Cancer Diagnosis, you will find lots of
recent works focusing on the essentials of deep learning, its application types for
cancer diagnosis, and even general overview of how the future of deep learning will
change and improve in the next time period. As cancer is one of the most important
diseases threatening the existence of humankind, it has been a very long time
medical and many supportive fields are working hardly for developing effective
solutions. Except from medicine works, which are generally focused on the treat-
ment process of cancer, it is too important to design efficient methodologies for
early diagnosis of different cancer types. As each different type of cancer is
affecting different parts and organs of our body, it has been always too difficult to
get something like a multi-cancer diagnosis system. But in my opinion, it is now
easier—as not done like before—to run computationally effective and accurate
automated systems thanks to artificial intelligence and the subfield of deep learning.
You will see in this book that deep learning can be a single or hybrid solution (with
especially image processing) for effective detection of tumors and diagnosis of
different cancer types. As deep learning is really a deep subfield with many com-
binations of deeper neural network types, you will see that there is a great effort in
designing unique, alternative models to diagnose different cancer types such as
brain tumors/gliomas, breast cancer, lung cancer, melanoma, and fibrosarcoma. It is
remarkable that each of the chapter included in this book uses pure language to
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explain all technical details to a wide audience of beginners to advanced researchers
enrolled in the context of artificial intelligence, cancer diagnosis, and biomedical-
based topics. I suggest all readers to consider the following points: (1) Starting
sections of each chapter explain the essentials of deep learning approaches,
methods, and techniques from different perspective. So, you may read the whole
book firstly to understand the essentials of deep learning. (2) After that, you can
read further sections to get adapted to the employment of different techniques for
diagnosis processes. Except from these, it is also easy to get informed about how
specific types of cancers are diagnosed thanks to deep learning-based methods, by
reading the associated chapters separately. After finishing that book, you will be
ready to work on cancer diagnosis via deep learning and/or improve your knowl-
edge skills for further research, in which the literatures of artificial intelligence and
medical are both still needing. I suggest all the colleagues that they can use that
work in their lectures about especially artificial intelligence and its use within
medical–biomedical problems. In this context, the book opens a view window for a
great collaboration of computer science and the medical, by considering even a
specific but remarkable enough research topic.

I would like to thank all authors for their valuable contributions to create that
book as a great reference for studies on cancer diagnosis and effective use of deep
learning for all phases of that. Just turn the pages to make a start to your journey!

Dr. Omer Deperlioglu
Afyon Kocatepe University

Afyonkarahisar, Turkey
e-mail: deperlioglu@aku.edu.tr
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Foreword by Dr. Jose Antonio
Marmolejo-Saucedo

Machine learning is known as the locomotive of the artificial intelligence as it is the
key factor of building autonomous systems. After artificial intelligence started to
take an active part in especially daily life, the future view for the world in science
fiction movies has been started to be discussed widely. Here, more active role in
daily life caused machine learning solutions to be included in many devices and
software systems we are using. By the way, the capabilities of intelligent systems to
learn from samples and even learning something in an evolutionary way caused
researchers in all fields to transform their works into innovative forms including
running of intelligent solution mechanisms on the background. As the automation
has been already transforming in a technological manner, the age of Industry 4.0
has become the main title of innovations appeared over shoulders of especially
machine learning.

It is remarkable that machine learning is actually an optimization process of
artificial intelligence. In general, machine learning techniques employ optimization
processes, which are called as training or learning (Because of that, especially
intelligent optimization algorithms can be used directly for training machine
learning and designing hybrid systems in this way). Since that optimization has
been important as the mathematical background of machine learning, big data
caused researchers to think about designing something new. Called as deep
learning, more complicated versions of well-known artificial neural networks are
currently among the most effectively used techniques for solving today’s advanced
problems. In other terms, the advanced optimization, which is required by bigger
problems, is solved by deep learning nowadays.

It is a pleasure for me to write a foreword for a work of using deep learning and
explaining its active role in the field of medical. Titled as Deep Learning for Cancer
Diagnosis, this book is a timely support for the literature of medical as we are
currently experiencing a terrible pandemic by COVID-19 and that is an important
sign that we need more active use of technology and artificial intelligence for early
predictions and diagnosis of diseases treating our life. As we all know, cancer is the
enemy of the living organisms’ cells and it causes deaths at the end if it is not
treated effectively. Currently, there are different vital types of cancers, and they all
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need as early as possible diagnosis for successful treatment at the end. In this sense,
deep learning techniques have been accurately used for diagnosing cancer, and the
field of medical is highly interested in effective collaborations for automated sys-
tems for ensuring high-level solutions that can diagnose and treat better than
humans. In this book, readers will be able to read about how deep learning is
applied for the diagnosis process, as including pre-work and post-work approaches
changing according to the medical data considered. The associated literature is too
active in medical diagnosis by artificial intelligence, and it seems that the future will
be more enrolled in early diagnosing, worldwide solutions to ensure a sustainable,
disease-free life for humankind.

The chapters included in the book target especially important types of cancers,
and according to me, all these chapters have key points, which can enable the
readers to get necessary ‘know-how’ about applying deep learning in medical
diagnosis. In this way, the readers will get informed about using artificial intelli-
gence for not only cancer but also for different diseases, which are caused by
viruses, genes, and even harmful environmental factors resulting in evolutionary
changes leading to new types of diseases. Hopefully, the science has always
solutions and that book will train open minds for better solutions for the future.

Dr. Jose Antonio Marmolejo-Saucedo
Universidad Panamericana

Mexico City, Mexico
e-mail: jmarmolejo@up.edu.mx
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Preface

The field of artificial intelligence has a very wide of diversity in terms of different
computational and logical solutions for real-world problems. As long as we can
conduct the exact modeling of a real-world problem, it is always possible to run an
effective artificial intelligence algorithm technique for successful results. The need
for the artificial intelligence is generally associated with more accurate and efficient
results for problems, which humankind cannot solve with high success rates or
provide an exact solution yet. So, artificial intelligence has been a great tool for
technological developments and that has been feeling too much by the community,
especially in 2000s. As like many other technologies are evolving in time, that field
of intelligent systems has been evolving too, and as a result, we have different kinds
of solutions introduced to the literature. Recently, there is a storm of deep learning,
which is a collection—at least for now—of advanced neural network models with
specific layer types that enable us to deal with complex, big amount, and real-time
data. Because the results by deep learning are too successful, it has been employed
within all fields of modern life rapidly. The field of medical is among them.

While we are writing that preface, humankind is experiencing a fatal pandemic
caused by COVID-19 type virus, and there is a great emergency state within every
country as including breaks in educational institutions, curfews, and valuable
medical efforts to find diagnosis and treatment solutions against that virus. Here, the
role of technology is too remarkable that there is a race against time as deaths
caused by COVID-19 are increasing fast if there is no immediate action taken.
Moving from that fact, it is possible to indicate that the future of humankind will be
associated with important developments for especially well-being, ensuring a stable
health state within all over the world, and keeping sustainability oriented green
solutions to keep the balance of the life at a certain level. That includes research
efforts for the active run of technology within problems of medical and even its
associated fields such as biology, genetics, and chemistry.

In this context, we would like to introduce our edited work: Deep Learning for
Cancer Diagnosis, as the latest collections of a total of 16 valuable chapters tar-
geting different aspects of how deep learning is applied for deriving successful
solutions for another vital enemy of humankind: cancer. According to the latest
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statistics, there are more than 100 different types of cancer threatening human life,
and these different cancer types always require early diagnosis and effective
treatments for desired success. As it is important to understand how deep learning is
applied with alternative ways to diagnose different cancer types, we have also
focused on gathering the chapters explaining essentials of different deep learning
techniques and their characteristics making them to be applied further for medical
diagnosis including the cancer. In this way, valuable readers are enabled to read a
comprehensive enough work to learn and understand connections among artificial
intelligence, medical, diagnosis, algorithms, and data better. As Dr. Deperlioglu
mentions in his valuable foreword that the book can be used collaboratively within
different fields as in different courses in them, and it will give essential idea about
the current state of the science and rise insights about the future. Additionally,
Dr. Marmolejo-Saucedo indicates in his wide picture foreword that the book will be
a benefit for performing more about medical diagnosis and developing the future of
medical with artificial intelligence and its key elements.

Here is how each of the chapters contributed to that book project in terms of
cancer diagnosis via deep learning-oriented solutions:

Chapter 1 considers common use of deep learning and image processing for
cancer diagnosis with a wide-open introduction to essentials of their uses and then
evaluates a well-known deep learning technique: convolutional neural network
(CNN) for breast cancer diagnosis.

Chapter 2 evaluates the performance of popular machine/deep learning techniques
in the context of breast cancer and skin cancer diagnosis. In this context, the chapter
employs support vector machines (SVM), random forest (RF), recurrent neural
network (RNN), and convolutional neural network (CNN) for diagnosis processes.

Chapter 3 provides a great overview for the role of deep learning in processing
medical image for cancer diagnosis, by discussing challenges and future scope.
Additionally, the chapter also evaluates the diagnosis applications against CT/MR
brain and abdomen images, mammogram images, histopathological images, and
even diabetic retinopathy in this manner.

Chapter 4 focuses on diagnosis regarding canine fibroma and fibrosarcoma and
employs the convolutional neural network (CNN) for that purpose. In detail, it
evaluates the introduced model FibroNet with some other well-known models:
VGG16, ResNET50, MobileNet-V2, and the Inception-V3.

Chapter 5 recalls the recent of subject of big data and uses different models of
convolutional neural network (CNN) for performing diagnosis regarding Melanoma,
by applying it over skin lesions data.

Chapter 6 introduces a hybrid use of intelligent techniques for diagnosing a tumor
as oligodendroglioma (benign tumors) or astrocytoma (malignant tumors), by con-
sidering both radiology and pathology images. In detail, a hybrid combination of
Inception-V3 and the support vector machines (SVM) is used for the diagnosis task.

Chapter 7 provides a general discussion regarding how deep learning is applied
for a better diagnosis of cancer. In this sense, it introduces the technical background
in the scope of diagnosis with deep learning and evaluates different techniques in
terms of different evaluation metrics.
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Chapter 8 directs its scope to the lung cancer, and it explains how deep
learning-oriented research has been done in terms of diagnosing lung cancer over
especially computed tomography (CT). The chapter briefly focuses on the most
recent works for informing the readers about the current state of the literature.

Chapter 9 ensures a review of how cancer diagnosis is done effectively thanks to
a strong relation between deep learning and image processing. The chapter briefly
discusses deep learning techniques and active use of image processing against
cancer diagnosis (over medical imaging), in terms of the associated literature.

Chapter 10 proposes a lightweight deep learning model for ensuring robust
diagnosis of breast cancer over mammography images. In detail, the chapter
compares the developed model with alternative techniques from the deep learning
domain.

Chapter 11 considers the subject of brain tumor segmentation and provides an
overview for the role of deep learning in ensuring successful segmentation. In order
to achieve that, the chapter informs about the background, discusses brain tumor
visualization, and then evaluates the role of deep learning in brain tumor
segmentation.

Chapter 12 runs the model of convolutional neural network (CNN) for diag-
nosing lung cancer. For the diagnosis tasks, the chapter uses chest X-ray images
and evaluates the success of the CNN with some other competitors.

Chapter 13 introduces the mechanism of deep learning in cancer diagnosis, by
considering a view of the literature, and then provides a direct prediction for the
future. In, especially, predictions regarding the future, the chapter discusses not
only the role of deep learning but also medical imaging approaches methods.

Chapter 14 employs the 2D-UNET, which is a model of convolutional neural
network (CNN) for brain tumor segmentation and considers the gliomas on diag-
nosing detection efforts done over the MRI images.

Chapter 15 follows another review approach for evaluating how deep learning is
used for cancer diagnosis and enables readers to make a pure start from essentials
of the field of artificial intelligence to the current end state of how popular tech-
niques of deep learning are used within research works for cancer diagnosis.

Chapter 16 considers the subject of diagnosis of gliomas and gives a wide
overview of applying deep learning techniques for detecting the gliomas over MRI
image data. In detail, the chapter also discusses limitations as well as challenges of
deep learning and even potential future of the deep learning techniques in prog-
nosis, diagnosis, and eventually decision making.

As the readers, you are all welcome deep inside to read further about each
chapter, in order to be up to date about the literature of deep learning for cancer
diagnosis, and also gain knowledge about how different techniques can be applied
further for fighting with that ruthless disease. Valuable feedback and contributive
ideas from all readers about how we can make use of intelligent technologies for
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diagnosing cancers and even dealing with all medical diseases (as like the current
COVID-19 virus) are all welcome. As the editors, we would like thank you for your
attention in our work and wish to see your in our future works as well.

Editors
Dr. Utku Kose

utkukose@sdu.edu.tr
http://www.utkukose.com/

Dr. Jafar Alzubi
j.zubi@bau.edu.jo

http://www.utkukose.com/
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About This Book

As it is known, artificial intelligence has taken many steps away for effective
solutions in the field of medical. In this context, deep learning is a recent and
remarkable subfield, which can deal with huge data for more accurate results. As a
vital research topic, medical diagnosis is among research efforts in which deep
learning-oriented solutions are often employed. Considering that state, the objective
of this edited book is to provide recent advanced applications of deep learning
for diagnosing different types of cancer disease. The book consists of a total of
16 chapters, which are a collection of the recent research efforts for understanding
the current state of the literature, diagnosing cancer effectively, and giving deep
enough insights into the future. The target audience of the book covers scientists,
experts, M.Sc. and Ph.D. students, postdocs, and anyone interested in the related
subjects covered. The book is suitable to be used as a reference work in the courses
associated with artificial intelligence, medical, and biomedical.
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Chapter 1
Fusion of Deep Learning and Image
Processing Techniques for Breast Cancer
Diagnosis

V. Ajantha Devi and Anand Nayyar

Abstract Deep learning has the capacity to gain great accuracy of diagnosing of
numerous types of cancers, along with lung, cervical, colon, and breast cancer. It
builds an efficient algorithm based onmultiple processing (hidden) layers of neurons.
Manual assessment of Cancer using Medical Image (CT images) requires expen-
sive human labors and can easily cause the misdiagnose of any type of cancer. The
Researcher focus on automatically diagnosing cancer by using the deep learning tech-
nique. Breast cancer is a particularly common sickness amongwomen andmaximum
associated cause of female mortality. The survival rate of breast cancer patients can
be expanded with the aid of powerful treatment, which can initiate upon early prog-
nosis of the disease. This chapter introduces Deep Learning under medical image
processing to analysis and diagnosis of Cancer (Ehteshami Bejnordi et al., in Deep
learning-based assessment of tumor-associated stroma for diagnosing breast cancer
in histopathology images, pp. 929–932, 2017 [1]). Identification of most cancer
might facilitate in sparing a massive wide variety of lives over the globe community
and deep neural networks may be correctly used for intelligent image analysis. The
essential structure of how this deep learning takes a shot at medical image processing
(Litjens et al. inA survey on deep learning inmedical image analysis, 2017, [2]; Reza-
eilouyeh et al. in J Med Imaging 3(4):044501, 2016 [3]) is furnished in this research,
i.e., pre-processing, image segmentation and post-processing. The following piece of
this part depicts the rudiments of the field of disease conclusion, which incorporates
steps of malignant growth determination followed by the regular arrangement strate-
gies utilized by specialists, giving a verifiable thought of disease grouping methods
to the readers. Next an attempt has been made to classify the extracted features from
mammograms as benign or malignant by using Convolutional neural network (CNN)

V. Ajantha Devi
AP3 Solutions, Chennai, India
e-mail: ap3solutionsresearch@gmail.com

A. Nayyar (B)
Graduate School, Duy Tan University, Da Nang 550000, Viet Nam
e-mail: anandnayyar@duytan.edu.vn

Faculty of Information Technology, Duy Tan University, Da Nang 550000, Viet Nam

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Singapore Pte Ltd. 2021
U. Kose and J. Alzubi (eds.), Deep Learning for Cancer Diagnosis,
Studies in Computational Intelligence 908,
https://doi.org/10.1007/978-981-15-6321-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6321-8_1&domain=pdf
http://orcid.org/0000-0002-9455-4826
http://orcid.org/0000-0002-9821-6146
mailto:ap3solutionsresearch@gmail.com
mailto:anandnayyar@duytan.edu.vn
https://doi.org/10.1007/978-981-15-6321-8_1


2 V. Ajantha Devi and A. Nayyar

(Cireşan in Mitosis detection in breast cancer histology images with deep neural
networks. Springer, Berlin, pp. 411–418, 2013 [4]; LeCun et al. in International
symposium on circuits and systems, pp. 253–256, 2010 [5]; Huynh et al. in J Med
Imaging 3(3):034501, 2016 [6]) is applied to classify cancer using optimal features
obtained from cell segmented images. Performance improvised of the approaches by
varying various parameters is studied.

Keywords Deep learning ·Medical image processing · Image preprocessing ·
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1.1 Cancer

The cellular growing in living organisms can occur through ordered processes (hyper-
plasia, dysplasia and metaplasia) or disordered processes (neoplasia) [7]. Cancer
1 is a common designation for more than one hundred diseases which share the
characteristic of accelerated and disordered cellular replication.

As an abnormal cellular division process [8], the neoplasia produces an accu-
mulation of abnormal cells, a tissue mass [9, 10] ordinarily called tumor (or
neoplasm). Figure 1.1a shows a simplified cellular structural organization in normal
and cancerous cells. Disease cells, described as huge size of the core contrasted with
the absolute cell size, little cytoplasm, numerous cores, different and huge nucleoli,
and coarse chromatin,which canbe classified as benign [11] ormalignant. InFig. 1.1b
cancer cells are illustrated undergoing cell division, showing abnormal mitosis.

Other types of neoplasm are characterized by aggressive behavior, showing very
fast growth, invading adjacent tissues and organs (local destructive capacity) and,
eventually, even migrating to non-contiguous and distant sites (metastasis) [12]. This
aggressive type of tumor is namedmalignant and cancer is a synonym. In order to feed

(a) Structure of normal and cancer cells (b) Illustration of normal and cancer 
cells side-by-side.  Cell division process on 
cancerous cells are leading to nuclear 
abnormalities.

Fig. 1.1 Major cellular characteristic structures in normal and cancer cells [10]
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Fig. 1.2 Schematic presentation of tumor-induced angiogenesis

the accelerated growth of its cancerous cells, the tumor itself releases substances to
keep blood vessels opened and it also induces the formation (angiogenesis-inducing
molecules) of brand-new vessels, in a process known as neoangiogenic or tumoral
angiogenesis. Acquisition of capacity of angiogenesis by cancer cells is consid-
ered the most critical step in tumor growth and metastasis [13]. Figure 1.2 shows a
simplified schematic view of a tumor-associated angiogenesis.

1.1.1 Pathology

Congregating essential science and clinical practice, pathology is centered around the
investigation of basic and useful changes in cells, tissues and organs brought about
by ailments, being a discerning systematization to help the analysis, anticipation and
treatment of such illnesses [7, 12].

Considering sample types, pathology can be divided into two main branches:
(a) histopathology and (b) cytopathology.

Histopathology
Histopathology is the study of illness indicatives using by microscopic inspection
of tissue samples prepared and fixated onto glass slides. These samples came from
puncture biopsies or surgical excisions.

A standard procedure in histopathology is the visual analysis [14, 15] of tissue
sections under the light microscope. However, tissues are normally too thick for
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Fig. 1.3 Schematic presentation of sectioning fixed and paraffin-embedded tissue [16]

light to pass through them and they must be sliced to obtain appropriate thin translu-
cent sections for the microscopic examination. The whole procedure, from fixation
to observing a tissue in a light microscope, may take from half to two-and-half
days [16]. The principle objective is to save the first tissue structure and the sub-
atomic piece. The preparation includes the following steps: (a) fixation, (b) dehydra-
tion, (c) clearing, (d) infiltration, embedding and (f) trimming. Figure 1.3 shows the
fundamental advances utilized in tissue groundwork for light microscopy.

First (a), solutions of chemicals conserve the proteins and inhibit the action of
degradative enzymes. Then, all the tissue water is removed by the use of increasingly
concentrated alcohol (70–100% ethanol) solutions (b), the alcohol is removed (c),
the tissue is immersed in melted paraffin (d) and placed in a small mold in order to
harden (e). Finally, the resulting paraffin block is trimmed to expose the tissue (f)
and a microtome is used for sectioning the block.

Cytopathology
Cytopathology is focused on study and diagnosis of diseases at the cellular level
[10], analyzing the structure, the functionality and the chemistry of cells (Fig. 1.4).

It is possible see a pinkish red color identifying the cytoplasm [17, 18] and the
nuclei highlighted in a darker tone of blue. Cytologic exams are extremely useful in
malignant neoplasia diagnosis and their precursor lesions, as well as detecting the
presence of infectious and parasitic agents [19].

Normally, specimen to cytology tests are collected from patients usingminimally-
invasive biopsy methods, such as smears, scrapes, puncture, centrifugation of liquids
and others.

1.1.2 Breast Cancer

Like different sorts of malignant growth, breast cancer disease is the irregular, quick
and unordered multiplication of cells, right now, mammary tissue [20]. Individual
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Fig. 1.4 Detail of HE
sections of a ductal
carcinoma (at 100×
magnification)

genetic mutations—caused by several factors—are responsible for this disease that
can begin in different breast regions.

Female Breast
The female mammary gland is an organ that has a dynamic behavior: demonstrates
morphologic alteration throughout the reproductive life cycle (menstruation, preg-
nancy, lactation, menopause, etc.) and the age of women [21, 22]. Contrasting to
other glands, the breast is functional during the lactation period.

In general, in mammal animals, including the human species, the mammary gland
is constituted by lobes, lobules, milk ducts, connective tissue, fat, blood vessels and
lymphatic vessels. Figure 1.5 presents the main anatomical structures [23] of the
female breast (in cross section).

Forming the normal female breast there are between 15 and 20 independent lobes
or segments [24], separated by fibrous tissue, radially distributed from the nipple. The
lobe is a well-defined part of an organ (the brain, the breast, the kidney, the liver, the
lung, etc.), delimited by sulci, fissures, connective tissues or other anatomic structures
[23]. A lobe is visible without a microscope. Each breast lobe is composed of many
tiny lobules, at the end of which there are sacs (alveoli) where milk is produced
in response to hormonal signals. Lobules are connected to the nipple through thin
tubes (diameter of 1–2 mm) which are the milk ducts that carry milk from the alveoli
toward the dark area of the skin in the center of the breast (areola). From the areola,
the ducts join together into larger ducts (up to 4 mm) ending at the nipple.

The fibrofatty tissue, fibrous connective and adipose tissue, forming the major
components of the breast tissue, filling spaces between lobules and ducts. The generic
name stroma is given to this tissue type. Connective tissues and ligaments provide
support to the breast and give it its shape and volume. Younger women might have
denser and less fatty breast tissue, different from older women. The breast itself has
no muscle tissue, it lies underneath the breasts, separating them from the chest wall.
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Fig. 1.5 Normal anatomy of
a female mammary gland, in
a cross-section scheme

In the breast lymphatic vessels are still observed (Fig. 1.6),which transport a color-
less fluid, rich in defense cells, named lymph. Distributed thru the lymphatic system
there are small structures called lymph nodes or lymphatic nodes. These bean shaped
structures store lymphocytes A great part of the breast lymphatic vessels conduct
towards the lymph nodes located in the axilla (axillary lymph nodes), highlighted in
Fig. 1.6a. If cancer cells reach these lymph nodes (Fig. 1.6b), the probability that the
disease has spread to other organs rises considerably [12].

Male Breast Cancer
In general, testosterone hormone causes involution of male mammary organ. An
ordinary male breast cancer [27] is fundamentally made out of ductal structures
inside collagenized stroma, with no or uncommon lobular components contrasted
with the female breast [12, 19] cancer. Albeit uncommon, men can likewise be
affected with breast cancer, representing under 1% of all instances of the infection.
Hazard elements, pathology, and anticipation ofmale breast cancer growthmedicines
are very like those saw in the female populace, anyway breast cancer disease in men
[12, 28–30] is frequently analyzed at later stages.
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Lymphatic vessels of female breast and axil-
lary lymph nodes.

Breast cancer invading lymph nodes.

Fig. 1.6 Lymphatic vessels of a female breast and axillary lymph nodes [25, 26]

The medications for breast cancer disease in men are like those in ladies [11],
except for careful choices. Given the breast cancer volume and tumor area, the stan-
dard system formen is to have amastectomymedical procedure, instead of a lumpec-
tomy.Male breast cancer diseases [27, 28, 30] are typically hormone receptor positive
tumors and hormonal treatment is likewise a typical piece of the fundamental treat-
ment. Hereditary testing ought to be considered for men who create breast cancer
disease. The endurance rates and visualizations for men are not on a par with for
ladies. Men have a 25% higher death rate than ladies. As referenced already, this
is accepted to be expected partially to men getting analyzed at a later phase of the
infection.

1.2 Diagnosis of Breast Cancer

The primary tests for the underlying analysis of the breast cancer are

• imaging tests
• malignancy, grading and tumor staging, can only be established through the biopsy
• the suspected area, which is analyzed by pathologists using anatomopathological

exams.

1.2.1 Imaging Exams

The primary imaging tests [31] applied in breast cancer malignant growth recog-
nition [4, 6] include advances, for example, demonstrative mammograms (x-ray),
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Magnetic Resonance Imaging (MRI), breast cancer ultrasound (sonography), and
thermography.

Mammography [14] is the present standard test for breast cancer disease screening,
just as for analytic examination of findings at the physical (manual) assessment [14,
15, 32]. Indeed, mammographic screening has moved the range of breast cancer [33]
pathology away from for the most part enormous tumors, effortlessly envisioned and
effectively obvious, toward ever littler and every now and again noninvasive tumors
[34].

Mammography is performed by a hardware which uses low-vitality X- ray
to create high-goals radiological [35] images of the breast inward structure. The
mammographic images are a reflection of the breast life structures and its incidental
change by the neurotic procedures. The mammography image must present a high-
differentiate goal, low clamor and follow severe conventions, taking into considera-
tion legitimate differentiation between ordinary tissue and potential variations from
the norm. In Fig. 1.7 a mammogram featuring a non-substantial tumor is appeared.
By and large, the advanced mammography has significant benefits over customary
mammography, including decoupling of image procurement and capacity.

In the early 1990s, the digital mammography [14] became widely used to auto-
matically detect breast lesion [36] areas which were indicative of cancer [9, 37,
38]. Therefore, asymmetry tests between the left and right breasts, and executed
pattern recognition algorithms are performed to evaluate breast tissue texture [39]
(microcalcifications, dense structures, lesions).

MRI is a test on imaging, complementary to sonography and mammography,
which apply radio-frequency pulses (instead X-rays) and electromagnetic waves
to produce the images. Routinely for cancer detection and presurgical evaluation,

Fig. 1.7 Mammogram showing non-palpable tumor (arrow) near right border of mammary
parenchyma
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this test is done after an intravenous application in the patient of a gadolinium-
based contrast agent [35, 40]. The contrast agent allows the enhancement of the
visualization of certain structures, and highlights neovascularization in the case of
mammary tumors, as can be seen in Fig. 1.8.

In (A) breast image pre-contrast application. In (B, C) breast image post applied
contrast. Note in (B) the highlighting of the tumor and in (C) the breast tissue
neovascularization inducted by the tumor is also highlighted.

MRI test also allows detailed evaluation of nodes, because it reaches deeper
regions of the breast tissue [41]. It is extensively used to monitor the integrity of
breast implants and recommended for screening in high-risk patients, such as those
with a confirmed or suspected family history, with known genetic predisposition to
breast cancer or who have already been affected by the disease [42].

The medical thermography, in particular Infrared Thermograph (IRT), is a rapid,
passive and non-invasivemethodwhich has been successfully used to diagnose disor-
ders [1, 33] such as breast cancer, diabetes, neuropathy and peripheral vascular issues
[43]. Since 1982 thermography is approved by the FDA as a complementary exam
to mammography for breast cancer diagnosis [31]. However, the FDA itself emphat-
ically alerts that thermography is not a substitute for mammography and should not
be used by itself for breast cancer screening or diagnosis [1, 33].

Breast thermography [44] or Digital Infrared Imaging (DII) [45] is a procedure
to map the thermal emission of the skin over the area of the breasts, in order to show
thermal asymmetries that are indicative of the presence of cysts, infections, breast
cancer or other diseases. While other tests such as mammography and ultrasound
detect anatomical changes already established in breast, thermography [44] has the

Fig. 1.8 Sequence of breast MRI images [40]
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Left breast presenting thermal pattern compatible 
with normal vascularization

Right breast showing apparent tempera-
ture rise and vascularization (angiogen-
esis). The lump in the upper outer quad-
rant of the breast is highlighted.

Fig. 1.9 Typical breast thermography image [44, 46]

advantage of being a functional examination, which studies metabolic and vascular
abnormalities of the breast (Fig. 1.9).

Anatomopathological Exams
With respect to malignant growth, if the physical assessment (contact) identifies
tangible bumps or imaging tests find suspicious tissue territories, anatomopatholog-
ical tests are required. Pathological exam analyses cellular and tissue microscopic
alterations present in samples collected from biopsies or surgeries. The pathologist
responsible for pathological examination can make the correlation with clinical and
imaging tests. Generally, the pathological diagnosis is considered definitive, but it
may be inconclusive, due to limiting factors such as insufficient material collected
or even if the collected sample is unrepresentative of the suspicious lesion.

Currently, pathologists determine the tumor grading [14] by assessing the spatial
organization of the tissue (e.g., distribution of cancer cells, nuclei morphological
properties, interaction with the stroma, etc.). These parameters are evaluated in small
sample regions of the microscopic slide in order to give a score considering some
“scoring system” such as NottinghamHistologic Score System1 Complementing the
final decision, for prognosis and clinical intervention, respective hormone receptor
status by IHC is also analyzed in the IHC-stained sections.

Breast Biopsies
Once screening tests, such as mammography or breast ultrasound, have found suspi-
cious changes, it is recommended to biopsy the region. Breast biopsy is the removal
of a small amount of breast tissue for pathologic evaluation to determine whether it is
cancerous or non-cancerous (benign). Surgical biopsy techniques [47] can be done by
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Fig. 1.10 Schematic representation of different breast biopsy types [47]

incision or excision. Themore appropriate biopsymethod depends on several factors,
such as, how suspicious the lesion is; the size, shape, and location of the lesion; the
number of abnormalities present; the patient’s medical history, etc. Most often, a
needle biopsy is done first and then, if needed, a surgical biopsy is done. Figure 1.10
shows a schematic representation of the four main breast biopsy techniques. FNA,
CNB, and VABB are percutaneous methods [48], i.e., a needle is inserted through
the skin [47].

Surgical biopsy yields the largest breast tissue sample of all the breast biopsy
methods, and the accuracy of a diagnosis is better. However, the surgical biopsy
method is much more invasive than percutaneous methods, it requires stitches and
can leave a scar.

FNA was introduced in 1930 and became popular in the 70s. In this technique
a very thin needle (20–21G 11) is used. In general, the needle used during FNA is
smaller than a needle that is normally used to collect blood samples [19]. A 10 or
20ml syringe attached to the needle allows to aspirate fluids and clusters of cells from
the puncture site. It is a fast and low-cost procedure usually requiring no anesthesia.
Several needle insertions are usually needed to guarantee that an adequate tissue
sample is taken. The collected material is deposited on slides (samples are smeared
on a microscope slide) for a cytological study.

1.3 Deep Learning and CNNs

Deep learning models as a rule embrace progressive structures to interface their
layers. The yield of a lower layer can be viewed as the contribution of a higher
layer by means of straightforward direct or nonlinear computations. These models
can change low-level highlights of the information into elevated level dynamic high-
lights. Owning to this trademark, Deep learning models [49] can be more grounded
than shallow AI models in include portrayal. The exhibition of conventional AI
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Fig. 1.11 The architecture of Deep Neural network [59]

strategies for the most part depends on clients’ encounters, while Deep learning
approaches depend on the information. With the advancement of PC innovation,
PCs’ presentation is quickly improved. In the meantime, data on the Internet is like-
wise regurgitating. These elements give a solid driving force to Deep figuring out
how to create and make Deep learning become the common technique in AI. The
idea of Deep learning was advanced in 2006 from the start. Deep learning began
moderately late yet grew quickly at home.

Deep learning has had a wild development in computer vision, such as object
detection, object tracking, and image segmentation. Object detection aims to recog-
nize [4, 24] a class of objects from a large number of images. The traditional object
detection methods mainly include candidate region selection, feature extraction and
classification [3, 50]. This manual feature extraction method needs users to design
what features they should extract. And these processes are often high-cost and time-
consuming. Deep learning has the ability of unsupervised feature learning [50–53],
and it can extract the features of images without any human intervention Thus, it is
gradually attracted more and more attention by researchers.

DL has indicated extraordinary portrayal learning can find powerful highlights
just as their mapping from information for given undertakings. In other words,
with artificial neural networks of multiple nonlinear layers, referred to as deep
learning architectures, hierarchical representations of data [54–56] can be discov-
ered with increasing levels of abstraction. The deep learning architectures classify
into four groups. They are Deep Neural network [57, 58]. Convolutional neural
networks, Recurrent Neural network and emergent architectures. The deep learning
architectures [59] is shown in Fig. 1.11.

1.3.1 CNN Architecture

The simplest example of a deep learning model is the feedforward deep network or
MLP. It consists of a collection of neurons connected in an acyclic graph organized
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into a succession of neuron layers. A neuron computes a function on inputs from
the preceding layer and passes the result (neuron’s activation) on to outputs in the
succeeding layer. Within each layer, all neurons compute the same function, but
individual neurons may have distinct sets of inputs and outputs and may assign
different weights to their inputs.

The MLP receive as input a single vector in its input layer. Then, this input is
transformed thorough a sequence of intermediary layers (hidden layers). In regular
NNeachhidden layer is fully-connected.The fundamental structure ofCNNsconsists
of Convolutional layers, nonlinear layers and pooling layers shown in Fig. 1.12.

CNNs are essentially layers of convolutions followed by subsampling and
completely associated layers. Convolutional layers, pooling layers, and completely
associated layers are three head neural layers of a CNN [4, 5, 60]. Each layer has an
alternate assignment. Convolutions and subsampling layers fill in as highlight extrac-
tion layers while a completely associated layer order which class current information
has a place with utilizing separated highlights. The assignment of a pooling layer
is limiting the elements of highlight maps and system parameters. Pooling layers’
calculations think about neighboring pixels, so they are change stable. A forward
advance and a regressive advance are utilized to prepare the system. The forward
advance plans to delineate the info picture with the present parameters (loads and
inclination) in each layer.

Then again, assessment of the misfortune cost with the ground truth names is
produced using the expectation yield. At that point the regressive advance computes
the inclinations of each parameter with chain governs based on the misfortune cost.
Every parameter is recalculated by inclinations, and prepared for the following
forward assessment. A completely associated layer is a convolutional layer with
w × h channels where w and h are the spatial elements of the volume in the past
layer and no cushioning, i.e., channels spread the whole volume, bringing about
component maps with size 1 × 1. The yield layer of a convolutional arrange is in
every case completely associated with however many component maps as would
be prudent classes. It empowers us to take care of forward the neural system into a
vector with a predefined length. A case of ordinary CNN [38, 60] engineering with
two component stages is appeared in Fig. 1.12.

Convolution with an assortment of filters, similar to the educated filters (addition-
ally named highlight maps or initiation maps) in Fig. 1.12. improves the portrayal:
at the first layer of a CNN the highlights go from singular pixels to basic natives,

Fig. 1.12 A case of a run of the mill CNN design with two component stages
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similar to flat and vertical lines, circles, and fixes of shading. Rather than ordi-
nary single-channel picture handling filters, these CNN filters are processed over the
entirety of the information channels. Because of its interpretation invariant property,
convolutional filters yield a high reaction any place an element is identified.

The addition of a pooling (subsampling) layer between two progressive convolu-
tional layers is normal. The primary target of this training is to continuously lessen
the spatial size of the portrayal. Along these lines, lessening the quantity of param-
eters and calculations required by the system enables the overfitting to control. The
pooling layer down examples the volume spatially in every profundity cut of the info
volume autonomously. Accordingly, the pool administrator resizes the contribution
along the width and the stature, disposing of the initiations. Practically speaking, the
maximum pooling capacity, which applies a window capacity to the info fix, and
registers the most extreme in that area, has indicated better outcomes.

In a completely associated layer, neurons have full associations with all actuations
in the past layer and their initiations can be registered utilizing a lattice increase
followed by an inclination offset. This sort of layer is standard in an ordinary NN.
The last completely associated layer holds the net yield, for example, likelihood
circulations over classes.

1.4 Experimental Methodology

Generally, the Experimental methodology comprises of four stages as shown in
Fig. 1.13:

1. Image pre-processing [61]: It is one of the most significant strides in the method-
ology framework and decides its exactness. The objective is to diminish spot
clamor and improve image quality without devastating the significant highlights
of the images. Speckle commotion is a type of multiplicative clamor produced
by various disperses with irregular stage inside the goals cell of ultrasound pillar.
The principle past related-work with respect to dot clamor decrease procedures
classified into three gatherings: filtering systems, wavelet space methods, and
aggravating methodologies.

2. Image segmentation: Its goal is separating the image into non covering locale.
In this way, it will separate the zone of enthusiasm from the foundation. It is
viewed as one of the most difficult undertakings of picture handling and example
acknowledgment. By and large, histogram Thresholding and dynamic shape
model are two most famous methods in related research.

3. Feature extraction: It plans to find a lot of interesting highlights of breast cancer
disease sores that can recognize the sore and non-injury.

4. Classification: It chooses whether the suspicious area is amiable or harmful.
Breast Cancer (mammography) Images are acquired [54, 62]. Each image is
‘pre-processed’ as in Fig. 1.14 to prepare its ROI selection. Framework for every
ROIs is produced utilizing the pixel esteems as in Fig. 1.15.
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Fig. 1.13 Block diagram of
the experimental
methodology

Highlight esteems (tumor territory, mean pixel esteem, and so on) are removed,
which are broke down for exact evaluation as in Fig. 1.16. GPU-helped superior
registering is applied for quicker and less expensive examination/arrangement.

5. Step 1: PROBLEM STATEMENT

Predicting if the cancer diagnosis is benign or malignant based on several obser-
vations/features 30 features are used, examples such as radius (mean of distances
from center to points on the perimeter), texture (standard deviation of gray-scale
values), perimeter, area, smoothness (local variation in radius lengths), compactness
(perimeterˆ2/area − 1.0), concavity (severity of concave portions of the contour),
concave points (number of concave portions of the contour), symmetry, fractal
dimension (“coastline approximation”—1).

6. Step 2: IMPORTING DATA

Breast CancerWisconsin (Diagnostic) Database is openly accessible and is normally
used to consider the Breast Cancer growth characterization issue. This dataset
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Fig. 1.14 Preprocessing of the image

Fig. 1.15 Analysis for mammography of breast cancer: a original image; b a user-defined region-
of-interest (ROI)
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Fig. 1.16 Feature extraction

contains 569 examples each falling inside two primary classes: benign or malig-
nant. The benign subset contains 357 examples and the malignant subset contains
212 examples. The examples are gathered from 30 patients with various amplifica-
tion factors including 40×, 100×, 200×, 400×. A portion of the model pictures
with a 400× amplification factor is appeared in Fig. 1.17. Each class has four
sub class, the four sorts of kind malignancy [6] are Adenosis (A), Fibroadenoma
(F), Tubular Adenoma (TA), and Phyllodes Tumor (PT). The four subclasses of

Adenosis (A) Fibroadenoma 
(F)

Tubular adenoma
(TA)

Phyllodes tumor 
(PT)

Ductal carcinoma
(DC)

Lobular carci-
noma (LC)

Mucinous carci-
noma (MC)

Papillary carci-
noma (PC)

Fig. 1.17 The first row shows the four types of benign tumors, and the second row shows the
malignant tumors. The magnification factor of these images is 400×
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threatening malignant growth are Ductal Carcinoma (DC), Lobular Carcinoma (LC),
Mucinous Carcinoma (MC), and Papillary Carcinoma (PC).

7. STEP 3: VISUALIZING THE DATA

The correlation between the variables are Strong correlation between themean radius
and mean perimeter, mean area and mean perimeter (Fig. 1.18).

8. STEP 4: MODEL TRAINING (FINDING A PROBLEM SOLUTION)

The pre-trained model may appear to resemble a black box from the start; however,
it is effectively interpretable. So as to make the pretrained models progressively
interpretable, we have envisioned the component vectors, yields of each layer as
shown in Fig. 1.19.

The underlying layers deal with the large highlights like edges, shapes, and so on:
Now the model is fit to be retrained (with the new classifier). Number of ages,

optimizer, learning rate, energy, and the remainder of initializations are performed

Fig. 1.18 Data visualization
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Fig. 1.19 Pre-trained model

lastly model is called with its capacity signature esteems which were initialized
before.

9. STEP 5: EVALUATING THE MODEL

Confusion Matrix

ConfusionMatrix is a significant metric while dissecting misclassification. Each line
of the framework speaks to the examples in an anticipated class while every segment
speaks to the occurrences in a real class. The diagonals speak to the classes that have
been accurately characterized. This aide as we probably are aware which classes are
being misclassified as well as what they are being misclassified as in Fig. 1.20.

Fig. 1.20 Confusion matrix
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10. STEP 6: IMPROVING THE MODEL

mean radius  6.981000
mean texture 9.710000
mean perimeter  43.790000
mean area  143.500000
mean smoothness  0.052630
mean compactness  0.019380
mean concavity  0.000000
mean concave points 0.000000
mean symmetry  0.106000
mean fractal dimension 0.049960
radius error  0.111500
texture error  0.362100
perimeter error  0.757000
area error  6.802000
smoothness error  0.001713
compactness error  0.002252
concavity error  0.000000

mean radius 21.129000
mean texture  29.570000 
mean perimeter  144.710000 
mean area  2355.500000
mean smoothness  0.110770 
mean compactness  0.326020 
mean concavity 0.426800
mean concave points 0.201200
mean symmetry 0.198000 
mean fractal dimension 0.045790 
radius error 2.761500 
texture error 4.522900 
perimeter error 21.223000 
area error 518.798000
smoothness error 0.029417 
compactness error 0.133148 
concavity error 0.396000 

concave points error  0.000000
symmetry error  0.007882
fractal dimension error  0.000950
worst radius  7.930000
worst texture  12.020000
worst perimeter  50.410000
worst area  185.200000
worst smoothness  0.071170
worst compactness  0.027290
worst concavity  0.000000
worst concave points  0.000000
worst symmetry  0.156500
worst fractal dimension 0.055040

concave points error 0.052790 
symmetry error 0.071068 
fractal dimension error 0.028890 
worst radius 25.190000 
worst texture 37.520000
worst perimeter 170.390000 
worst area 3246.800000
worst smoothness 0.129430 
worst compactness 1.030710 
worst concavity 1.105000 
worst concave points 0.291000 
worst symmetry 0.420900 
worst fractal dimension 0.152460 

         Trained Model              Testing Performance 

11. STEP 7: IMPROVING THE MODEL
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train accuracy: 91.62679425837321 % 
On training set: 
True Posi ve:   148 
True Nega ve:   235 
False Nega ve:   28 
False Posi ve:   7 
True Posi ve Rate / Recall: 84.09% 
Precision: 95.48% 
False Posi ve Rate / Fallout: 2.89% 

test accuracy: 91.94630872483222 % 
On Test set: 
True Posi ve:   29 
True Nega ve:   108 
False Nega ve:   6 
False Posi ve:   6 
True Posi ve Rate / Recall: 82.86% 
Precision: 82.86% 
False Posi ve Rate / Fallout: 5.26% 

1.5 Conclusion

The acquired outcome demonstrates that determination of appropriate ways to deal
with plan a calculation for diagnosing the breast cancer growth to the precision,
affectability, and false positive recognizable pieces of proof. To evacuate foundation
commotion and pectoral muscle, district developing and thresholding techniques are
end up being acceptable. The nature of the mammography was upgraded and Mass
in mammography is removed with appropriate stamping utilization of Segmentation.
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Validation on the training is performed which gives a precision of 86%. It is
concluded in reason that it was useful to utilize a pre-prepared system for this utility
on the grounds that the loads picked up for ImageNet dataset end up being working
for the dataset we accommodated preparing. Image preprocessing is fundamental
before we feed the system with the pictures.

It is basic to take note of that in the event that we had a bigger dataset, the
model must be finetuned prior to require to be prepared. Since models requiring
picture preparing require long handling time, it is advantageous to store the model
in memory so it tends to be stacked again for use in future.
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Chapter 2
Performance Evaluation of Classification
Algorithms on Diagnosis of Breast
Cancer and Skin Disease

M. Sinan Basarslan and F. Kayaalp

Abstract Health is so important for human beings. Thanks to the technological
developments both in medicine and information technologies, the success percent-
ages of both medical diagnosing and medical treatment systems are increasing day
by day. Cancer is the most common causes of death in today’s world and is gener-
ally diagnosed at the last stages. Cancer has many types such as breast cancer, skin
cancer, leukemia and etc. Diagnosis of cancer at early stages is very important for
the success of medical treatments. The aim of this study was to evaluate the classi-
fication performances of some popular algorithms on the way to design an efficient
computer aided breast and/or skin cancer diagnosing system to support the doctors
and patients. For this purpose, same machine learning and deep learning algorithms
were applied on immunotherapy dataset and breast cancer Coimbra dataset from
UCI machine learning data repository. Feature selection by information gain and
reliefF were applied on datasets before classification in order to increase the effi-
ciency of classification processes. Support Vector Machines (SVM), Random Forest
(RF), Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN)
algorithms were used for classification experiments. Accuracy values are used for
performance metric. According to these results, RNN has shown the best perfor-
mance among the others with 92% on both datasets. This shows that deep learning
algorithms especially RNN has great potential to diagnose the cancer from dataset
with high success ratios.
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2.1 Introduction

There is nothing more important than the health of people. Especially the diseases
affect people’s family life, business life and all kinds of social life. Cancer disease
is the most common health problem affecting people in recent years.

Cancer disease is the uncontrolled or abnormal growth and reproduction of cells
as a result of DNA damage in cells [1]. According to the World Health Organization
(WHO) data, the incidence of cancer increased by 4 millions and increased to 18
millions in 2018. It is predicted that there will be 27 millions new cancer cases in
2030, and 40 millions in 2040 [2]. There are many types of cancer such as breast
cancer, skin cancer, leukemia and so on. Diagnosis of cancer in the early stages is
crucial for the success of medical treatments.

The aim of this study is to evaluate the classification performance of some popular
algorithms to design an effective computer-aided breast and/or skin cancer diagnostic
system to support doctors and patients. Classification algorithms are applied on
breast cancer Coimbra and immunotherapy datasets. Before the classifier model was
designed, the performance of the models were increased by applying the attribute
selection processes. For the attribute selection process, reliefF and information gain
are used. Classification algorithms used in the study were Support Vector Machines
(SVM),RandomForest, RecurrentNeuralNetwork (RNN) andConvolutionalNeural
Network (CNN).

In section two, information about breast and immunotherapy datasets are given.
Feature selection, classification algorithms and performance criteria are given in the
third section. In section four, results of the experiments are shown and the results are
concluded in section five.

The steps followed in the study are shown in Fig. 2.1.

2.2 Datasets

Immunotherapy [3] (Table 2.1) and Breast Cancer Coimbra data sets (Table 2.2) are
given information about the attributes [4].

Table 2.1 contains information about the attributes of the data set for the treatment
of patients with hand and foot warts in a hospital in Iran. 90 of 180 patients were
treated with immunotherapy. It was determined whether they responded positively
or not to this treatment [3].

2.3 Method

In this section, information about attribute selection, classification algorithms, and
performance evaluation criteria are given.
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Fig. 2.1 The steps of the
study

Table 2.1 Immunotherapy
dataset

Attribute number Attribute values Data type

1 Sex Numerical

2 Age (year) Numerical

3 Time elapsed before treatment
(mounth)

Numerical

4 Number of warts Numerical

5 Type of warts Numerical

6 Surface area of the warts
(mm2)

Numerical

7 Result of treatment Categorical

2.3.1 Deep Learning

Deep Neural Networks is the expanded number of layers of the artificial neural
network, which works like neurons in the human brain. Deep learning is one of
the artificial intelligence techniques often used in advanced applications in today’s
technologies. In this study, CNN and RNN algorithms were used.
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Table 2.2 Breast cancer
Coimbra dataset

Attribute number Attribute values Data type

1 Age Numerical

2 BMI Numerical

3 Glucose Numerical

4 Insulin Numerical

5 HOMA Numerical

6 Leptin Numerical

7 Adiponectin Numerical

8 Resistin Numerical

9 MCP-1 Numerical

10 Class Categorical

2.3.2 Attribute Selection

The main method used to increase the learning rate of the classification models is the
feature selection feature. With the feature selection process, more efficient results
can be obtained in terms of the performance of the classification algorithms to be
applied on the data set. For this reason, information gain and reliefF attribute selection
methods were used in the study.

Information Gain Attribute Selection The information gain (IG) algorithm tends
to choose variables with different values, despite the poor performance. To overcome
the problems in this case, the Gain Ratio is used. Equations of the calculations are
shown in Eqs. (1) and (2) [5].

Spli t I n f oA(D) =
v∑

j=1

Dj

|D| ∗ log2

(∣∣Dj

∣∣
D

)
(1)

GainRatio(A) = Gain(A)

Spli t I n f o(A)
(2)

ReliefF Attribute Selection ReliefF is an improved version of the Relief algorithm.
This algorithmselects amodel by taking a sample from thedataset and creates amodel
based on its proximity to the samples in its class and its distance fromdifferent classes
as shown in Eq. (3) [6].

Kononenko notes that ReliefF attempts to approximate the following difference
of probabilities for the weight of an attribute X [7].

WX = P(di f f erent value of X |nearest instance of di f f erent class)
− P(di f f erent value of X |nearest instance of di f f erent class). (3)
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Table 2.3 Selected attributes Dataset name Selected Attributes
with IG

Selected Attributes
with ReliefF

Breast cancer
Coimbra
(10 attributes)

6, 1, 3, 4, 7, 10
total 5 attributes

6, 3, 2, 1, 5, 7, 10
total 6 attributes

Immunotherapy (7
attributes)

3, 5, 7
total 2 attributes

2, 3, 5, 7
total 3 attributes

By removing the context sensitivity provided by the “nearest instance” condition,
attributes are treated as independent of one another; Eq. 4 then becomes [7]

Relie fX = P(di f f erent value of X |di f f erent class)
− P(di f f erent value of X |same class), (4)

which can be reformulated as

Relie fX = Gini
′
X

∑
x ∈ X P(x)2(

1 − ∑
c ∈ CP(c)2

) ∑
c ∈ CP(c)2

, (5)

where C is the class variable.
Table 2.3 shows the features selected after the two feature selection algorithms

applied on the datasets.
Target classes are marked as red in Table 2.3. As seen in Table 2.3, 5 attributes

were selected with IG and 6 with ReliefF in Breast Cancer Coimbra dataset. In the
immunotherapy dataset, 2 attributes were selected with IG and 3 with ReliefF.

2.3.3 Classification Algorithms

In the study, Support Vector Machines, Random Forest, which is one of the machine
learning algorithms, was used on the data sets, while Recurrent Neural Network, and
Convolutional Neural, one of the deep learning algorithms, were used.

Support VectorMachines SVM is a vector space-based dataminingmethod. It sets
the target boundary between two points furthest from the randomly selected point
on the training data [8]. One of the main assumptions of SVM is that all samples in
the training set are independent and similarly distributed [9].

Random Forest Developed by Leo Breiman. A single decision was developed to
combine the decisions of multivariate decision trees trained with different sets of
education instead of producing a single set of training trees. In this algorithm, random
property and boot selection are used when creating different training clusters [10].
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Table 2.4 Confusion matrix Actual/predicted as Positive Negative

Positive TP FN

Negative FP TN

Recurrent Neural Network RNN were first introduced in the 1980s, and these
networks have regained popularity thanks to new hardware innovations in the recent
period.RNN is a neural networkmodel developed to take the advantages of sequential
information and learn the patterns existing in this information [11]. This network
architecture is expected to perform the same task for all elements of a series [12].

Convolutional Neural Network CNN consists of different layers such as input,
output and hidden layers. Each layer has different functions [9]. Hidden layers are
usually related to activation functions, normalization, pooling, and complete connec-
tivity. Each convolutional layer executes a convolution function on its inputs and
transfers the result to the next layer. Each neuron is responsible for the available data
area [13].

2.3.4 Performance Criteria

Confusion matrix was used to compare the performance of classifier models in the
study. As shown in Table 2.4, the confusion matrix describes the number of correct
and incorrectly classified samples per class based on a binary classification. In the
confusion matrix, tp, fp, fn, and tn represent true positive (tp), false positive (fp),
false negative (fn) and true negative (tn) numbers, respectively [14].

Accuracy, sensitivity, precision, f-measure used in the study are given between
Eqs. (6) and (9), respectively.

Accuracy = TP + TN

TP + FN
(6)

Sensi tivi t y = TP

TP + FN
(7)

Precision = TP

TP + FP
(8)

F-measure = 2 ∗ Precision ∗ Sensi tivi t y

Precision + Sensi tivi t y
(9)



2 Performance Evaluation of Classification Algorithms … 33

2.4 Experimental Results

The performance values of classification processes on breast cancer Coimbra and
Immunotherapy datasets obtained by SVM, CNN, RNN and RF classification
algorithms are given in Tables 2.5, 2.6, 2.7 and 2.8, respectively. Performance
criteria used in the evaluation of these classifier models; accuracy, sensitivity, sensi-
tivity and F-measure. Data sets are divided into training and test data with 5-fold
cross-validation.

Table 2.5 shows the performance of SVM classifier on raw data and on datasets
obtained by IG and ReliefF attribute selection processes. The performance of SVM
on dataset obtained by reliefF has best values in all performance criteria.

Table 2.6 shows the performance of Random Forest classifier on raw data and on
datasets obtained by IG and ReliefF attribute selection processes. The performance

Table 2.5 Results with SVM

Dataset Accuracy Sensitivity Precision F-measure

Raw data 0.71 0.68 0.67 0.68

IG selection 0.76 0.76 0.783 0.72

ReliefF selection 0.79 0.77 0.79 0.78

Table 2.6 Results with RF

Dataset Accuracy Sensitivity Precision F-measure

Raw data 0.66 0.65 0.670 0.58

IG selection 0.66 0.66 0.683 0.62

ReliefF selection 0.68 0.67 0.69 0.68

Table 2.7 Results with CNN

Dataset Accuracy Sensitivity Precision F-measure

Raw data 0.724 0.830 0.842 0.834

IG selection 0.830 0.885 0.892 0.826

ReliefF selection 0.840 0.919 0.894 0.902

Table 2.8 Results with RNN

Dataset Accuracy Sensitivity Precision F-measure

Raw data 0.835 0.840 0.851 0.841

IG selection 0.89 0.886 0.910 0.856

ReliefF selection 0.92 0.948 0.935 0.926
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of Random Forest on dataset obtained by reliefF has best values in all performance
criteria.

Table 2.7 shows the performance of CNN classifier on raw data and on datasets
obtained by IG and ReliefF attribute selection processes. The performance of CNN
on dataset obtained by reliefF has best values in all performance criteria.

Table 2.8 shows the performance of RNN classifier on raw data and on datasets
obtained by IG and ReliefF attribute selection processes. The performance of RNN
on dataset obtained by reliefF has best values in all performance criteria.

When the performance criteria are examined in all the tables given above, it is
seen that:

• Classifications with all algorithms on raw data has shown the worst performance,
• Classifications with all algorithms on the dataset obtained by ReliefF attribute

selection process has shown the best performance,
• Classifications with Deep Learning algorithms (CNN and RNN) has shown better

performance then Machine Learning algorithms (SVM and Random Forest),
• AmongMachine Learning algorithms, classifications with SVM has shown better

performance then Random Forest,
• Among Deep Learning algorithms, classifications with RNN has shown better

performance then CNN.

2.5 Conclusion and Discussion

In this study, deep learning and machine learning algorithms were applied on two
human health related datasets. By applying the attribute selection process before
classification, the effect of attribute selection processes on the performance of the
created classification models was examined. SVM, Random Forest, CNN and RNN
are used for classification. Information gain and relief algorithms are used in attribute
selection processes.

As a result of the classification models, RNN has given the best performance
in all performance evaluation criteria. With this study, it was again observed that
selecting attributes positively affects the performance of classifier models. Since the
classifier models created from raw data without the feature selection process have
been applied, the feature selection process gives more inefficient results than the data
set applied, it is seen that the feature selection has a positive effect on the performance
criteria. The right decisions to be taken early for treatment are very important for
human health. The aim of this study was to help doctors make right decision about
human health and it is observed that this can be done with RNN.

In the next studies, it is aimed to work on big data especially about health. Early
decisions are very important especially on cancer to achieve patient health. The
purpose of these studies is to help doctors make the right decision about human
health.
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13. Ş. Kayıkçı, A convolutional neural network model implementation for speech recognition.

Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7(3), 1892–1898 (2019)
14. H. Gunduz, Deep learning-based Parkinson’s disease classification using vocal feature sets.

IEEE Access 7, 115540–115551 (2019)

http://archive.ics.uci.edu/ml/datasets/Breast%2bCancer%2bCoimbra


Chapter 3
Deep Learning Algorithms in Medical
Image Processing for Cancer Diagnosis:
Overview, Challenges and Future

S. N. Kumar, A. Lenin Fred, Parasuraman Padmanabhan, Balazs Gulyas,
H. Ajay Kumar, and L. R. Jonisha Miriam

Abstract Health care sector is entirely different from other industrial sector owing
to the value of human life and people gives the highest priority. Medical image
processing is a research domain where advance computer-aided algorithms are used
for disease prognosis and treatment planning. Machine learning comprises of neural
networks and fuzzy logic algorithms that have immense applications in the automa-
tion of a process. The deep learning algorithm is a machine learning technique that
does not relies on feature extraction unlike classical neural network algorithms.
Computer-aided automatic processing is in high demand in the medical field due to
the improved accuracy and precision. The coupling of machine learning algorithms
with high-performance computing gives promising results in medical image anal-
ysis like fusion, segmentation, registration and classification. This chapter proposes
the applications of deep learning algorithms in cancer diagnosis specifically in the
CT/MR brain and abdomen images, mammogram images, histopathological images
and also in the detection of diabetic retinopathy. The overview of deep learning algo-
rithms in cancer diagnosis, challenges and future scope is also highlighted in this
work. The pros and cons of various types of deep learning neural network architec-
tures are also stated in this work. The intelligent machines in future will be using the
deep learning algorithms for the disease diagnosis, treatment planning and surgery.
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3.1 Introduction

Machine learning and artificial intelligence has evolved rapidly in recent years and
has immense applications in computer vision, computer-aided diagnosis andmedical
image processing for treatment planning [1]. The classical machine learning algo-
rithms like decision tree, back propagation, SVM, KNN are widely used in many
applications [2].

The general architecture of the neural network is depicted in Fig. 3.1. The input
layer comprises of multiple neurons that accept features as input data and activation
functions are used to sum the data, feed to the hidden layer and finally output layer
generates the output. The number of hidden layers used relies on the complexity of
the application and deep learning architecture comprises of multiple hidden layers
[3]. The general architecture of ANN is depicted in Fig. 3.1.

Least square support vector machine (LSSVM) is a fully automatic approach
employed for thebreast cancer diagnosis inWisconsin breast cancer dataset (WBCD).
The dataset comprises of 683 samples. Out of these, 444 and 239 belongs to benign
and malignant class respectively. In LSSVM, the medical data was examined in
a detailed manner with less time complexity. Accuracy, sensitivity, specificity and
confusion matrix are used for validation. This method uses 10-fold cross-validation
that yields 98.53% classification accuracy [4]. For the breast cancer diagnosis, hybrid
machine learning techniquebasedon the fuzzy artificial immune systemand thek-NN
algorithm was proposed for the analysis of WBCD dataset. The classification accu-
racy is 99.14% when compared with 8 other methods this proposed system provides
better in 10-fold cross-validation [5]. The feature selection is combined with support
vectormachine in the breast cancer detection for achievingmaximumpositive predic-
tion and reducing computational complexity. In this, the features are measured with
the help of F-score and SVM parameters are optimized by the grid search algorithm.
Experiments were conducted on WBCD and the performance was evaluated with
sensitivity, specificity, positive predictive value, negative predictive value, confusion

Fig. 3.1 General architecture of neural network
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matrix and ROC curves. The 99.51% of classification accuracy was achieved for the
SVM model that comprises of five features [6]. Support vector machine-based clas-
sifier was compared with Bayesian classifier and Artificial Neural Network for the
automatic diagnosis and prognosis of breast cancer. TheWisconsin prognostic breast
cancer dataset and WBCD cancer dataset was used, then the achieved accuracy is
96.91% and 97% respectively. The comparative study reveals that SVM is superior
in terms of sensitivity, specificity and accuracy [7].

The authors explored the applicability of three well-known classifiers named
SVM, kNN and PNN in two publicly available FNAB and gene microarray bench-
mark dataset for the characterization of benign and malignant tumours of the breast.
The 692 specimens of FNAB and 295 microarrays are used for classification 98.8%
and accuracy 96.33%was achieved against both benchmark datasets [8]. For the clas-
sification of gene data, ensemble methods like bagging and boosting are compared
with single supervised learning. These algorithms are applied for 7 datasets and
the performance is estimated by specificity, sensitivity, positive predicted value and
predictive accuracy. Comparative analysis shows that bagged and boosted decision
tree outperforms better than a single decision tree [9]. In order to overcome the
drawbacks of local minima, improper learning rate and over fitting, extreme learning
machine was focussed. This approach works on GCM, Lung and Lymphoma dataset
and the performance of this approach was compared with ANN, SANN, and SVM
algorithms. The comparative analysis indicates that the proposedmethodology based
on ELM accomplish better accuracy with reduced complexity and training time [10].
Single model schemes like Neural fuzzy, K-nearest neighbour, Quadratic classifier
and their combined ensemble methods are demonstrated for the classification of
breast cancer diagnostic medical dataset. The dataset contains 699 samples. From
these 458 samples belongs to benign and 241 samples belong to malignant. The
accuracies of Neural fuzzy, K-NN, Quadratic classifier and their combined ensemble
methods are 94.28%, 96.42%, 94.50% and 97.14% respectively. It shows that the
ensemble method provides superior accuracy when compared to single models [11].
Classification and Regression Tree (CART) is a decision tree which was imple-
mented to enhance the accuracy and to remove unreliable branches from the deci-
sion tree. In this, CART is compared with ID3 and C4.5 algorithms. Accuracy,
computation time and size of the tree are used to analyze the performance of breast
cancer. If CART without feature selection is used then the achieved accuracy of
Breast Cancer are as follows; for Breast Cancer Wisconsin (Original) and Breast
Cancer Wisconsin (Diagnostic) dataset, accuracy is 69.23%, 94.84% and 92.97%
respectively. In CART with feature selection, the SVM Attribute Eval method with
73.03% accuracy is best for Breast Cancer dataset, Principal Components Attribute
Eval method with 96.99% accuracy is best for Breast Cancer Wisconsin (Original)
dataset and Symmetric Uncert Attributeset Eval method with 94.72% accuracy is
best for Breast Cancer Wisconsin (Diagnostic) dataset. As a result, CART has better
accuracy than ID3 and C4.5 algorithms [12]. Machine learning classifiers (MLC)
was applied for the breast cancer diagnosis on craniocaudal (CC) and/or mediolat-
eral oblique (MLO) mammography images. The analysis is taken out in 286 cases.
When merging feature vectors are extracted from CC and MLO views, classifiers
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achieve an area under the ROC curve of 0.996 [13]. C4.5 approach was adapted
for the classification of patients into either carcinoma in situ or malignant potential.
For training, nearly random samples of 500 records were taken from SEER dataset.
It yields ~94% and ~93% accuracy during training and testing phase respectively
[14]. Multiclassifiers like Decision tree (J48), MLP, Naive Bayes (NB), SMO, and
Instance-based for K-NN (IBK) are used for the diagnosis and prognosis of breast
cancer on three databases namely WBC, WDBC and WPBC. Experimental analysis
is carried out on aWEKA data mining tool and it uses 10-fold validation. The perfor-
mance is assessed with classification accuracy and confusion matrix. The fusion of
SMO, J48, NB and IBK provides 97.2818%, 97.7153% and 77.3196% accuracies for
WBC, WDBC and WPBC datasets respectively [15]. The authors have performed
several data mining techniques and soft computing approaches for the diagnosis and
prognosis of breast cancer on UCI machine learning and SEER dataset. From the
experimental review, it is clear that decision tree obtains 93.62% accuracy in both of
the datasets [16]. In order to predict the recurrence of breast cancer, Decision Tree
(C4.5), SVM, and ANN is developed on Iranian Center for Breast Cancer dataset
which comprises of 1189 records, 22 predictor variables and one outcome variable.
Performance of these three methods is compared with the help of sensitivity, speci-
ficity and accuracy using 10-fold cross-validation. The accuracies of C4.5, SVM and
ANN are 93.6%, 95.7% and 94.7% respectively. Results suggest that SVM classifier
is the best predictor classifier among these methods [17].

The Bayesian deep learning approach combined with active learning approach
is used for the skin cancer diagnosis form the lesion images. This approach which
performs better BALD and uniform acquisition function on ISIC 2016 melanoma
dataset with an accuracy rate of 75% [18]. For the diagnosis of the prostate cancer
diagnosis, CNN based deep learning XmasNet is used for the classification of
the lesion in the prostate. The network architecture was trained using 3D multi-
parametric data. The XmasNet performance was evaluated with PROSTATEx and
outperformed over 69 methods with an AUC of 0.84 [19]. The computer-aided diag-
nosis with deep learning framework was suggested for the detection of cancer on
the lung nodules for the Kaggle Data Science Bowl 2017 challenge. The training
of the framework for the detection of the lung nodule was done with LUNA16 and
cancer classification with KDSB17 datasets. In this Kaggle Data Science Bowl, 2017
challenge deep learning with ResNet18 architecture placed top 3% of 1972 teams
with high accuracy [20]. For the recognition of Adenocarcinoma and squamous cell
carcinoma in the histopathological slides of the lung tissues is difficult for an expert
by visual analysis hence CNN model with inception v3 was used. Using the Cancer
Genome Atlas (TCGA) histopathological datasets this model achieves an AUC of
0.97%. The network is also trained for predicting mutated genes in the lungs and it
predicts six types of genes in the pathology genes with an accuracy of 0.733–0.856
[21]. The diagnosis of lung cancer is challenging to improve the classification rate
of cancer. The deep CNN (DCNN) was used for the classification of different types
of cancer adenocarcinoma, squamous cell carcinoma, and small cell carcinoma in
the lungs. The threefold cross-validation was used for the evaluation of the classifi-
cation and estimates 71% accuracy in the lung microscopic cytology and pathology



3 Deep Learning Algorithms in Medical Image Processing … 41

images [22]. Using the deep neural network, the benign and malignant lung nodule
detection and classification in the LIDC-IDRI database was performed. The CNN,
DNN, and SAE deep neural network architecture are suggested and compared, where
CNN deep neural network outperforms in the accuracy, sensitivity and specificity
with values of 84.15%, 83.96% and 84.32% respectively with other neural network
architectures in the prediction of lung cancers [23].

A computerized lung cancer detection algorithm was proposed with automatic
feature learning from multichannel ROI and the deep neural network (CNN, DBN
and SDAE). The proposed algorithm extracts the sub patches form the multichannel
ROI for learning from the morphological and texture features. The comparison with
the multichannel and single channel with different neural networks states that CNN
performs better in accuracy andAUC inROI and nodule detection [24]. Breast cancer
detection was done in the Image Retrieval inMedical Applications (IRMA)mammo-
gram images using the deep learning convolutional neural network. A BC-DROID
framework was recommended for the automatic detection of ROI and CNN detects
and classifies the ROI with benign and malignant in the breast mammogram images
and it achieves a classification and detection accuracy of 93.5% and 90% respectively
[25]. Improving the diagnostic accuracy of Multipurpose Image Analysis Software,
the deep learning Artificial Neural Network was involved and trained using Breast
Cancer Digital Repository dataset. The deep neural network improves the perfor-
mance of the software with the ROC curve of training and testing are 0.81 and
0.79 respectively [26]. The deep learning algorithm was used for the recognition of
Lymph node metastases in Breast cancer of women in the CAMELYON16 challenge
competition. Initially, the network was trained using with and without metastases by
immune histochemical staining of total 270 datasets. The receiver operating charac-
teristic curve (AUC) was best for deep learning with GoogleNet architecture is 0.994
and compared with Pathologist diagnosis [27]. The breast cancer diagnosis using
CADx with pre-trained CNN using fused radiomic features of MRI, Mammogram
and Ultrasound were proposed. The fusion features improve the AUC curve with the
traditional CADx in the recognition of breast lesion cancer. For the classification,
the SVM classifier is used and was evaluated with fivefold cross-validation [28].

Deep learning allows computers to generate complex concepts out of simpler
concepts and it comprises ofmultiple processing layers to learn the datawithmultiple
levels of abstraction. A wide number of supervised and unsupervised learning neural
networks are there like back propagation, radial basis function, group method data
handling, self-organizing map etc. [29]. The deep learning is a supervised neural
network comprises of multiple layers and now extends to 1000 for handling the big
data. The deep learning neural network algorithms are further classified into various
types such as networks CNN, deep neural network (DNN), deep belief network
(DBN), deep autoencoder, deep Boltzmann machine (DBM), deep conventional
extreme machine learning (DC-ELM) recurrent neural network (RNN), Recursive
Neural Networks and it’s variant like BLSTM and MDLATM etc. [30].
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Table 3.1 Deep learning architectures for breast cancer diagnosis

Reference
number

Application area Medical imaging
modality

Deep learning
architecture

Validation metrics

[58] Breast Mammogram Unsupervised
deep learning

AUC—0.59
(0.56–0.62)

[59] Breast Pathology CNN F measure—0.7345

[60] Breast Mammogram CNN Accuracy—85%
Sensitivity—85%

[61] Breast Mammogram Cascade of deep
learning and
random forest
classifiers

True positive
Rate—0.96

[62] Breast Mammogram CNN AUC—0.826

[63] Breast Histology CNN (Aggnet) AUC—0.8695

[64] Breast Mammogram Ensemble
classifier

AUC—0.86

[65] Breast Pathology CNN F score—0.94
(0.92–0.94)

3.2 Stages in Cancer Diagnosis Using Medical Imaging

The medical images such as CT/MRI and Ultrasound are taken for disease analysis
as well as to study the anatomical organs healthy function. The medical imaging
modalities role is pivotal in cancer diagnosis and treatment planning. The first step in
the processing ofmedical images is preprocessing or filtering. The objective is to filter
is to remove the noise in the image incurred during the acquisition phase or to improve
the quality of the image for better analysis [31]. The segmentation refers to the
extraction of the region of interest and in the case of medical images, ROI represents
anatomical organ or its anomalies like a tumor, cyst etc. The classification stage
comprises usually a machine-learning algorithm to categorize the severity of cancer.
The compression refers to the usage of computer-aided algorithms for reducing
the file size for data storage and transfer. The machine learning algorithms can be
employed in any one of the phases of cancer diagnosis and is depicted in Table 3.1
[32].

3.3 Types of Deep Learning Neural Network Architectures

The deep learning neural network architectures are of different types based on the
learning strategy and are categorized as follows; supervised, semi-supervised, unsu-
pervised and reinforcement learning [33]. The classification of deep learning neural
networks is depicted in Fig. 3.2.
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Fig. 3.2 Classification of deep learning architectures based on learning strategy

3.3.1 Deep Supervised Learning Architectures

The supervised learning architectures use predefined data for training. The network is
taught with the possible input combinations and the target outputs. The testing phase
utilizes the trained phase information for validation. Some of the typical approaches
in supervised learning are convolution neural network, recurrent neural network,
long short term memory, deep neural networks and gated recurrent units [34, 35].

3.3.2 Deep Semi-supervised Learning Architectures

The deep supervised learning architectures use partly labelled data for the training
phase. In some scenarios, deep reinforcement learning, RNN, LSTM, GRU and
Generative Adversarial Networks (GAN) are used as semi-supervised learning
architectures [36].
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Fig. 3.3 Performance of traditional machine and deep learning architecture

3.3.3 Deep Unsupervised Learning Architectures

The deep unsupervised learning architectures do not use any labelled data and analyze
the internal representation of data using some features. The unsupervised approaches
meant for clustering and dimensionality reduction. The deep unsupervised learning
architectures are Auto-Encoders (AE), Restricted BoltzmannMachines (RBM) [37].
The performance of traditional machine learning and deep learning architecture is
depicted in Fig. 3.3.

3.4 Typical Deep Learning Architectures

3.4.1 Convolution Neural Network

The CNN was efficient for the processing of 2D and 3D images. Most of the CNN
algorithms are trained with a gradient-based algorithm. The number of parameters
to be tuned is less, when compared with the other neural network architectures.
The CNN architecture comprises of; feature extractors and classification [38]. The
feature extraction layer accepts the input from the previous layer and feeds to the next
layer. The CNN architecture comprises of three types of layers; convolution, max-
pooling and classification. The convolution layers are represented by even numbers
and max-pooling layers are represented by odd numbers. The classification layer is
a fully connected layer and it forms the last stage of architecture. Back propagation
architecture is employed in the classification stage for better accuracy.Different types
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Fig. 3.4 Convolution neural network architecture

of pooling operations are there;maxpooling,min pooling, average pooling andglobal
average pooling. In the convolution layer, feature maps are generated by convolving
the inputs with kernel comprising of the linear or nonlinear activation function. The
examples of activation functions are sigmoid, hyperbolic tangent, Softmax, rectified
linear, and identity functions. The pooling layer is also termed as subsampling layer
and here downsampling operation takes place. The number of classification layers
varies in accordance with the application and in some cases two to four layers are
observed in LeNet [39], AlexNet [40], and VGG Net [41]. The convolution neural
network architecture is depicted in Fig. 3.4.

3.4.2 Multi-scale Convolution Neural Network

The classical convolution neural network was modified to formulate multi-scale
convolution neural network [42], it comprises of 3 convolution layer, rectified linear
unit and the max-pooling layer and two fully connected layers. The downsampling
is performed on the input image and feature extraction is done and delivered to the
multi-scale convolution neural network.

3.4.2.1 LeNet-5

It is a seven-level convolution layer neural network and was used for handwritten
digits digit classification. Input images of size 32× 32 were used and for a complex
application, the number of convolution layers is used. The LeNet architecture is
depicted in Fig. 3.5, it comprises of 2 convolution layers, subsampling layers and fully
connected layers. A single output layer with Gaussian connectivity was employed
[39].
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Fig. 3.5 LeNet architecture

3.4.2.2 AlexNet

The architecture of Alexnet is similar to LeNet, but it has deeper layers with more
number of filters per layer and coupled convolution layers. The ReLU activation
function was put after each convolution and fully connected layer. It was a challenge
winning architecture in 2012with aminimized error of 15.3% from26%. It comprises
of 11 × 11, 5 × 5, and 3 × 3 convolutional kernels, max pooling, dropout, data
augmentation, and ReLU activations [40]. The AlexNet architecture is depicted in
Fig. 3.6.

3.4.2.3 ZFNet

The architecture of ZFNet was similar to AlexNet, however, the parameters are
tuned and it is a challenge winning architecture in 2013%. The error was minimized
to 14.8%. It uses 7 × 7 kernels instead of 11 × 11 kernels thereby minimizes the
number of weights. The number of parameters to be tuned is also minimized and
hence, the accuracy is improved [41].
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Fig. 3.6 AlexNet architecture

3.4.2.4 GoogleNet

The architecture of GoogleNet comprises of LeNet with an inception structure. It
comprises of 22 layers and the error rate was minimized progressively from 6.67%
to 3.6% during testing. This architecture was a winner of ILSVRC 2014 [42]. It has
low computation complexity when compared with the classical CNN architecture.
It was less used when compared with other architectures; AlexNet, VGG [43]. The
GoogleNet architecture is depicted in Fig. 3.7.

Fig. 3.7 GoogLeNet
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Fig. 3.8 VGG net architecture

3.4.2.5 VGGNet

The VGGNet was the winner of ILSVRC 2014 and comprises of 16 convolution
layers with multiple filters [44]. The feature extraction was found to be efficient with
this architecture; however, the parameter tuning is a crucial one. Three VGGmodels
were proposed; VGG-11, VGG-16 and VGG-19 and have 11, 16 and 19 layers. All
the VGG models end with 3 fully connected layers. The VGGNet architecture is
depicted in Fig. 3.8.

3.4.2.6 ResNet

The ResNet was the winner of ILSVRC 2015 and it uses skip connections and
batch normalization [45]. The computation complexity was less when comparedwith
the VGGNet and gated recurrent units are used as skip connections. It comprises
of 152 layers and the error was minimized to 3.57%. It resolves the problem of
vanishing gradient problem. It is a classical feed-forward neural network with a
residual connection [46]. It comprises of several residual blocks and based on the
architecture, its operation varies. The residual network is depicted in Fig. 3.9.

3.4.2.7 Fully Convolutional Networks (FCNs)

The architecture of fully convolution network differs from the classical CNN such
that fully convolution layerwas replaced by the upsampling layer and a deconvolution
layer, fully connected layer is depicted in Fig. 3.10.

The architecture is proposed in such a way that fully convolution layer and decon-
volution layer forms the backward versions of pooling and convolution layers. The
accuracy of the architecture was improved by the incorporation of upsampling layer
and deconvolution layer [33, 47].



3 Deep Learning Algorithms in Medical Image Processing … 49

Fig. 3.9 Residual network

Fig. 3.10 Fully
convolutional network
architecture
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3.4.2.8 U-Net Fully Convolutional Neural Network

The U-Net was developed for the medical image segmentation and it comprises of
two paths. The first path comprises encoder that captures the context in an image.
The second path comprises a decoder and it comprises of transposed convolutions
[48, 49]. The U-Net Fully Convolutional Neural Network is depicted in Fig. 3.11.

Fig. 3.11 a Encoder-Decoder, b U Net Fully Convolutional Network architecture
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Fig. 3.12 Generative
adversarial network
architecture

3.4.2.9 Generative Adversarial Networks (GANs)

Generative adversarial network (GAN) is a generative model of unsupervised
learning which consists of two neural networks namely discriminative network
(Discriminator) and generative network (Generator). The aim of the discriminator is
to distinguish real and fake samples and the objective of the generator is to generate
fake samples of image data and it fools the discriminator. This architecture is trained
in two ways. The discriminator is trained while the generator is idle. On the other
hand, the generator is trained while the discriminator is idle. There are five different
types of GAN viz Vanilla, Conditional, deep convolutional, Laplacian and super-
resolution. Face ageing, Photo blending, Photo inpainting, 3D object generation,
Video generation are the applications of GAN [50, 51]. The Generative Adversarial
Network Architecture is depicted in Fig. 3.12.

3.4.2.10 Recurrent Neural Networks

The basic structure of the RNN is depicted in Fig. 3.13. Different versions of RNN
architecture are described in [52]. The recurrent neural network comprises multiple
functional blocks depicted in Fig. 3.14. The vanishing gradient problem exists in
recurrent neural networks. In the recurrent neural network, previous states are fed as
input to the current state of the network which indicates that it requires memory. It
uses sequential information and the connection between the nodes form a directed
graph. The purpose of RNN is to map the input sequence to a fixed-sized vector.
Extension of effective pixel neighbourhood is achieved by the combination of RNN
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Fig. 3.13 Basic functional
block

Fig. 3.14 Unrolled RNN

with the convolutional layer. It finds its application in NLP, Time series prediction
andmachine translation. Long short-termmemory network (LSTM) is a type of RNN
[53]. The basic functional block of R and unrolled RNN are depicted in Figs. 3.13
and 3.14.

3.4.2.11 Autoencoders

Autoencoder is an efficient unsupervised learning architecture comprises of three
layers viz encoder, code and decoder. The purpose of encoder is the mapping of
input into smaller representation. Thus the compressed image is the distorted part of
the input. Code represents the compressed input. Also, the layer between encoder
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Fig. 3.15 Autoencoder
architecture

and decoder is termed as a bottleneck. The autoencoder architecture is depicted in
Fig. 3.15.

The decoder maps the code to a reconstruction of the original input. Data specific
and lossy are the main properties. Before training the architecture four hyperparam-
eters like code size, number of layers, number of nodes per layer and loss function
should be tuned. Dimensionality reduction, image compression, image denoising,
feature extraction are the application areas of autoencoder [54, 55].

3.4.2.12 Deep Belief Networks

It comprises of restricted Boltzmann machine (RBM) for the pretrained phase and
a feed-forward network for the fine-tuning phase. The RBM extracts the features
from the input data vectors and feeds it to the feed-forward network. The back prop-
agation architecture with lower learning rate was employed in deep belief network.
In addition, it is having multiple hidden layers. The layer-by-layer learning strate-
gies are main advantage of the deep belief network and its capability to learn from
higher-level features are from previous layers [56, 57]. The deep belief network is
depicted in Fig. 3.16. The Y represents the input layer and H1, H2 and H3 represents
the hidden layers.
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Fig. 3.16 Deep belief networks

3.5 Deep Learning Architectures for Cancer Diagnosis

The deep learning architectures are having immense applications in disease diagnosis
and some of the works related to cancer diagnosis of various anatomical organs are
listed below. In each table, the application area indicates the anatomical organ. For
the validation of deep learning architectures, different types of metrics can be used
and the metrics used in each work is also highlighted. The various Deep Learning
architectures for cancer diagnosis are depicted in Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6,
3.7, 3.8, 3.9 and 3.10.

The sparse encoder with a convolution architecture was proposed in [58] termed
as convolution sparse encoder, applicable for 3D data sets. In [59], lesion segmenta-
tion was done by coupling global fixed thresholding and local dynamic thresholding,
detection of tumour stage was performed by CNNwith handcrafted features. In [60],
three CNN architectures were evaluated; AlexeNet, VGG Net and GoogLeNet. The
GoogLeNet was found to be efficient with an accuracy of 85% when compared with
theAlexeNet andVGGNet having an accuracy of 84%and 82%. The hybridmachine
learning classifiers are employed in [61] that comprises of four modules. The first
stage comprises of multiscale deep belief network with Gaussian mixture model, the
second stage comprises of cascade connection of deep CNN with SVM classifier
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Table 3.2 Deep learning architectures for breast cancer diagnosis

Reference
number

Application area Medical imaging
modality

Deep learning
architecture

Validation metrics

[66] Breast Mammogram CNN (Alexnet
and VGG) and
SVM

Accuracy—99.38%

[67] Breast Histology Deep cascaded
networks

F score—0.788

[68] Breast Mammogram CNN AUC—79.9–86%

[69] Breast Mammogram Faster R-CNN AUC—0.72

[70] Breast Mammogram Deep CNN Sensitivity—91%

[71] Breast Mammogram CNN
(ImageNet)

Accuracy—96.7%

[72] Breast Pathology CNN AUC—above 97%,
Sensitivity—73.2%

[73] Breast Pathology CNN (Convnet) Dice Coefficient
—75.86%
Positive predictive
Value—71.62%
Negative predictive
Value—96.77%

[74] Breast Ultrasound CNN (Alexnet) TPF—0.98
Fps/image—0.16
F measure—0.91

Table 3.3 Deep learning architectures for liver cancer diagnosis

Reference
number

Application area Medical
imaging
modality

Deep learning
architecture

Validation metrics

[75] Liver CT/3D DNN Accuracy—99.38%,
Jaccard index—98.18%

[76] Liver CT BPNN Accuracy—73.23%

[77] Liver CT CNN Dice—80.06%
Precision—82.67%
Recall—84.34%

and the third stage comprises of cascade connection of two random forest classi-
fiers. The proposed CNN3 architecture [62] generates superior results in terms of
AUC (0.826) when compared with other techniques DeCAF (0.836), CNN2 (0.821),
HCfeats (0.799),HOG(0.796),HGD(0.793). TheCNNarchitecture (AggNet) gener-
ates efficient results when compared with the AM-MV, AM-GLAD and AM-GT
models for the detection of breast cancer in histology images [63].

The tumour classification by SVMwith the classical method of feature extraction,
CNN features as input to SVM and ensemble classifier, a combination of above two
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Table 3.4 Deep learning architectures for lung cancer diagnosis

Reference
number

Application
area

Medical imaging
modality

Deep learning
architecture

Validation metrics

[78] Lung CT Autoencoder
with deep
features

Accuracy—75.01%

[79] Lung CT Deep Belief
Networks

Accuracy—81.19%

[80] Lung CT/3D DNN Accuracy—82.1%
Sensitivity—78.2%
Specificity—86.13%

[81] Lung CT/3D DNN Sensitivity—78.9%

[82] Lung CT/3D DCNN True Positive—93%

[20] Lung CAT Scans/3D Modified
Resnet

Sensitivity—0.538
F1—0.33

[21] Lung Histopathology
image

DCNN AUC—0.97

[23] Lung CT/3D CNN Accuracy—84.15%,
sensitivity—83.96%,
specificity 84.32%

[83] Lung CT Unet + Resnet Accuracy—84%

[84] Lungs PET/CT images/3D CNN Sensitivity—>90%

Table 3.5 Deep learning architectures for chest cancer diagnosis

Reference
number

Application area Medical imaging
modality

Deep learning
architecture

Validation metrics

[85] Chest X-ray images CNN (Imagenet) AUC—0.87

[86] Chest X-ray images CNN (Imagenet) AUC—0.93 (Right
Pleural Effusion)
AUC—0.89
(Enlarged heart)
AUC—0.79
(classification
between healthy
and abnormal
chest x-ray)

was tested on mammogram images. The ensemble classifier yields efficient results
when compared with the other two techniques [64]. The pretrained CNN with SVM
was found to be effective for the classification of the breast tumour in mammogram
images when compared with the generic classifier based on texture feature extraction
[65].

The pretrained CNN models AlexNet and VGG-F with SVM were employed
for the breast tumour classification. The pretrained CNN VGG-F, when coupled
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Table 3.6 Deep learning architectures for skin cancer diagnosis

Reference
number

Application area Medical imaging
modality

Deep learning
architecture

Validation metrics

[87] Skin (basal cell
carcinoma)

Histopathology
image/3D

Convolutional
auto-encoder DL

F-measure—89.4%
Accuracy—91.4%

[88] Skin Dermoscopy
images

Deep belief net Accuracy—89%
Sensitivity—90%
Specificity—88.3%

[89] Skin Standard camera
image

DCNN Accuracy—98.55
Sensitivity—95%

[90] Skin Dermoscopy
images

CNN (ReLU) Accuracy—86.67%

Table 3.7 Deep learning architectures for histopathology image analysis

Reference
number

Application area Medical imaging
modality

Deep learning
architecture

Validation metrics

[91] Colon Histopathology
image

Shallow neural
network

Accuracy—84%

[92] Colon Histopathology
image

SC-CNN+NEP AUC—0.917
F1—0.784

[93] Colon TS-QPI images/3D Deep Neural
Network

AUC—95%

[94] Colon Capsule
Endoscopy (CE)

REFDL Sensitivity—94.2%
Accuracy—96.5%

Table 3.8 Deep learning architectures for bladder cancer diagnosis

Reference
number

Application area Medical imaging
modality

Deep learning
architecture

Validation metrics

[95] Bladder CT urography/3D Deep learning
CNN

Jaccard Index—76.2

[96] Bladder CT Deep learning
CNN

AUC—0.73

[97] Bladder Pathology CNN (cystonet) Sensitivity—90.9%
Specificity—98.6%

with SVM, generates superior results [66]. The CNN architecture proposed in [67]
generates robust results when compared with the models in the 2014 ICPR MITOS-
ATYPIA challenge. The CNN architecture proposed in [68] outperforms the DeCAF
CNN2 HOGHGDHCfeats models. The fast R-CNN comprises of a region proposal
network (RPN), a deep fully convolutional network that performs better than the
classical CNN architecture [69]. The DCNN based CAD system was found to be
proficient when compared with the feature-based CAD system [70]. The convo-
lution neural network with a decision mechanism outperforms the feature-based
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Table 3.9 Deep learning architectures for cervical and prostate cancer diagnosis

Reference
number

Application
area

Medical imaging
modality

Deep learning
Architecture

Validation metrics

[98] Cervical Cervigram CNN (Alexnet) Sensitivity—87.83%
Specificity—90%

[99] Prostate Multiparametric
MRI/3D

CNN (Xmasnet) AUC—0.84

[100] Prostate Multiparametric
MRI

DCNN AUC—0.897

[101] Prostate Photoacoustic (PAI) DNN (ReLU) Accuracy—95.04

Table 3.10 Deep learning architectures for brain cancer diagnosis

Reference
number

Application area Medical imaging
modality

Deep learning
architecture

Validation metrics

[102] Brain MRI Input Cascade
CNN

Dice—0.84
Specificity—0.88
Sensitivity—0.84

[103] Brain MRI Multi-layer
stacked denoising
Autoencoder
network

Average
Accuracy—98.04

[104] Brain MRI U-Net HGG—0.88
LGG—0.84

[105] Brain MRI conditional
Generative
Adversarial
Network (cGAN)

Dice—0.68
Sensitivity—0.99
Specificity—0.98

[106] Brain MRI DNN Classification
rate—96.9%
Recall 0.97
Precision—0.97
F measure—0.97
AUC—0.984

[107] Brain MRI Fully
convolutional
neural networks
(FCNNs)

Dice—0.86

[108] Brain MRI Multi-view deep
learning
framework
(MvNet)
(Mb-FCRN)

Dice—0.88
Accuracy—0.55

[109] Brain MRI Deep Wavelet
Autoencoder
(DWA)-DNN

Overall
accuracy—96%
Average
accuracy—93%
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classifiers [71]. The CNN architecture proposed in [72] detects small tumour in
gigapixel pathology slides. The CNN architecture proposed in [73] detects invasive
tumour in whole slide images and minimizes the human effort with reduced time
complexity. The different deep learning architectures Patch-based LeNet, U-Net,
Transfer Learning FCN-AlexNet are tested on the breast ultrasound lesion images;
AlexNet and Patch-based LeNet generates efficient results [74].

In [75], prior to tumour classification by DNN, ROI extraction was done by water-
shed and Gaussian mixture model (GMM) algorithm. The fully convolution neural
network architecture U net was proposed for the segmentation of liver tumour, post-
processing was performed by 3D connected component labelling to improve the
segmentation result [76]. The deep CNN was found to be superior when compared
with the other classifiers like AdaBoost, Random Forests (RF), and support vector
machine (SVM) [77].

The Autoencoder was used for the classification of lung nodules and was able
to detect minute lesions not observable by human experts [78]. Three deep learning
architectures Convolutional Neural Network (CNN), Deep Belief Networks (DBNs),
Stacked Denoising Autoencoder (SDAE) were used for cancerous nodule detection;
DBN has improved accuracy of 0.8119 [79]. The DNN was found to be efficient
for the segmentation of cancer nodules in 3D CT images; applicable for small lung
nodule segmentation. The efficiency of DNN increases with an increase in training
data [80]. The CNN proposed in [81] comprises of two stages; the first phase extracts
volumetric features and the second phase performs classification. The deep learning
architecture was coupled with SVM classifier for lung nodule detection; the false
positive was minimized by the rule-based technique [82]. The improved ResNet
architecture yields efficient results for lung nodule detection than the classical ResNet
architecture [20]. An inception v3 CNN model was proposed for the non-small cell
lung cancer prediction and classification and yields efficient results when compared
with the classical CNN architecture [21].

Decap5 baseline descriptor is employed for chest pathology detection. With the
help of CNN and GIST, the best performance was achieved in [85]. For the iden-
tification of various categories of pathologies, CNN was implemented for X-ray
images. The fusion of Decap and PiCodes provides the best performance in terms of
sensitivity, specificity and AUC [86].

For the detection of cancer in the Basal cell, the deep learning convolutional
autoencoder was used for the automatic detection of classification of Basal Cell
Carcinoma in the histopathology images [87]. The deep belief architecture with self-
supervised SVM was used in the detection of melanoma in the dermoscopic images
[88]. And also deep convolutional neural network was used for the melanoma detec-
tion using the standard camera images [89]. The convolutional CNN was suggested
for the detection of skin lesion border in the dermoscopy images [90].

The high dimensional gene data is processed using a shallow neural network for
detection of cancer in the colon of the histopathological images [91]. The Neigh-
boring Ensemble Predictor (NEP) coupled with CNN for the detection of nuclei in
the colorectal adenocarcinoma images [92]. The regularized ensemble framework
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deep learning for the detection of bowel cancer with an overall accuracy of 96.5%
[93].

Deep learning convolutional neural network uses leave-one-case-out for 3D
segmentation of bladder. The 3D information from computed tomography provides
more accurate information for calculating tumour size change in response to treat-
ment [95]. Deep learning algorithm was demonstrated for augmented cystoscopic
detection of bladder cancer. The diagnostic yield of cystoscopy is enhanced by
high sensitivity and specificity [96]. In [97], authors explore the applicability of
deep learning CNN to differentiate inside and outside of the bladder. Jaccard index
for DL-CNN-based likelihood map and level sets is better when compared to
Haar-feature-based likelihood map and level sets and CLASS with LCR) method.

The deep learning CNN framework for the diagnosis of cervical dysplasia from
multimodal clinical and image features and this model gives performance metrics of
sensitivity 87.83% [98]. The XmasNet based on CNNwas used for the classification
of prostate cancer lesions in themultiparametricMRI images [99]. The deep convolu-
tional neural network for the detection of prostate cancer in the MRI images attained
an AUC of 0.897 [100]. In the photoacoustic images, the deep learning neural net
was used for the classification of the malignant, benign and normal prostate cancer
[101].

The deep fully connected convolutional neural network is used for the segmenta-
tion of the brain tumour in the BRATS dataset and acquired high performance with
cascaded architecture [102]. For the classification of the brain tumour using the deep
learning Multi-layer stacked denoising Autoencoder network and achieved an accu-
racy of 98.4% [103]. The automatic detection and segmentation of the brain (HGG
and LGG) tumour using U-Net based deep convolutional network and combined
detection achieved dice similarity index is 0.86 [104]. The conditional Genera-
tive Adversarial Network (cGAN) used for the detection of brain tumour, with a
U-Net generative model and Markovian GAN” discriminative model [105]. The
features extracted with PCA and deep learning classifier combined with DWT classi-
fies normal, glioblastoma, sarcoma and metastatic bronchogenic carcinoma tumours
and achieves a classification ratio 96.9% [106]. For the brain tumour segmentation,
the fully convolutional neural networks (FCNNs) and Conditional Random Fields
(CRFs) are integrated for the fast image patch segmentation in the Multimodal Brain
Tumor Image Segmentation Challenge (BRATS) [107]. In [108, 109], a detailed
analysis of different types of deep learning neural network architectures have been
discussed and these works motivated to perform this study on applications of deep
learning architectures in medical image processing.

3.6 Conclusion

The machine learning algorithms play an inevitable role in disease diagnosis and
for therapeutic applications. Out of the various machine learning techniques, deep
learning architectures are gaining much prominence due to their superior features
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and is widely used in tumour segmentation and classification. This chapter initially
highlights the machine learning algorithms architectures in cancer diagnosis, and
then the different types of deep learning architectures are described. A comparative
analysis of the pros and cons of various deep learning architectures and the works
related to deep learning architectures in tumour segmentation and classification of
various anatomical organs are described in detail. The outcome of this work is bene-
ficial for researchers working in machine learning algorithms for disease diagnosis
and treatment planning.
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5. S. Şahan, K. Polat, H. Kodaz, S. Güneş, A new hybrid method based on fuzzy-artificial
immune system and k-NN algorithm for breast cancer diagnosis. Comput. Biol. Med. 37(3),
415–423 (2007)

6. M.F. Akay, Support vector machines combined with feature selection for breast cancer
diagnosis. Expert Syst. Appl. 36(2), 3240–3247 (2009)

7. I. Maglogiannis, E. Zafiropoulos, I. Anagnostopoulos, An intelligent system for automated
breast cancer diagnosis and prognosis using SVM based classifiers. Appl. Intell. 30(1), 24–36
(2009)

8. A. Osareh, B. Shadgar, Machine learning techniques to diagnose breast cancer, in 2010 5th
International Symposium on Health Informatics and Bioinformatics (IEEE, 2010), pp. 114–
120

9. A.C. Tan, D. Gilbert, Ensemble machine learning on gene expression data for cancer clas-
sification, in Proceedings of New Zealand Bioinformatics Conference, Te Papa, Wellington,
New Zealand, 13–14 Feb 2003

10. R. Zhang, G.B. Huang, N. Sundararajan, P. Saratchandran, Multicategory classification using
an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM
Trans. Comput. Biol. Bioinf. 4(3), 485–495 (2007)

11. S.L. Hsieh, S.H. Hsieh, P.H. Cheng, C.H. Chen, K.P. Hsu, I.S. Lee, Z. Wang, F. Lai, Design
ensemblemachine learningmodel for breast cancer diagnosis. J.Med. Syst. 36(5), 2841–2847
(2012)

12. D. Lavanya, D.K. Rani, Analysis of feature selection with classification: Breast cancer
datasets. Indian J. Comput. Sci. Eng. (IJCSE) 2(5), 756–763 (2011)



62 S. N. Kumar et al.

13. R. Ramos-Pollán, M.A. Guevara-López, C. Suárez-Ortega, G. Díaz-Herrero, J.M. Franco-
Valiente, M. Rubio-Del-Solar, N. González-De-Posada, M.A. Vaz, J. Loureiro, I. Ramos,
Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J.
Med. Syst. 36(4), 2259–2269 (2012)

14. K. Rajesh, S. Anand, Analysis of SEER dataset for breast cancer diagnosis using C4. 5
classification algorithm. Int. J. Adv. Res. Comput. Commun. Eng. 1(2), 2278–1021 (2012)

15. G.I. Salama, M. Abdelhalim, M.A. Zeid, Breast cancer diagnosis on three different datasets
using multi-classifiers. Breast Cancer (WDBC) 32(569), 2 (2012)

16. S. Kharya, Using datamining techniques for diagnosis and prognosis of cancer disease (2012).
arXiv preprint arXiv:1205.1923

17. L.G.Ahmad,A.T.Eshlaghy,A.Poorebrahimi,M.Ebrahimi,A.R.Razavi,Using threemachine
learning techniques for predicting breast cancer recurrence. J. Health Med. Inform. 4(124), 3
(2013)

18. Y. Gal, R. Islam, Z. Ghahramani, Deep bayesian active learning with image data, in
Proceedings of the 34th International Conference on Machine Learning, vol. 70 (2017),
pp. 1183–1192. JMLR.org

19. S. Liu, H. Zheng, Y. Feng, W. Li, Prostate cancer diagnosis using deep learning with 3D
multiparametric MRI, in Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134
(International Society for Optics and Photonics, 2017), p. 1013428

20. K. Kuan, M. Ravaut, G. Manek, H. Chen, J. Lin, B. Nazir, C. Chen, T.C. Howe, Z. Zeng,
V. Chandrasekhar, Deep learning for lung cancer detection: tackling the kaggle data science
bowl 2017 challenge (2017). arXiv preprint arXiv:1705.09435

21. N. Coudray, P.S. Ocampo, T. Sakellaropoulos, N.Narula,M. Snuderl, D. Fenyö, A.L.Moreira,
N. Razavian, A. Tsirigos, Classification and mutation prediction from non–small cell lung
cancer histopathology images using deep learning. Nat. Med. 24(10), 1559–1567 (2018)

22. A. Teramoto, T. Tsukamoto, Y. Kiriyama, H. Fujita, Automated classification of lung cancer
types from cytological images using deep convolutional neural networks. BioMed Res. Int.
2017 (2017)

23. Q. Song, L. Zhao, X. Luo, X. Dou, Using deep learning for classification of lung nodules on
computed tomography images. J. Healthc. Eng. 2017 (2017)

24. W. Sun, B. Zheng, W. Qian, Automatic feature learning using multichannel ROI based on
deep structured algorithms for computerized lung cancer diagnosis. Comput. Biol.Med. 1(89),
530–539 (2017)

25. R. Platania, S. Shams, S. Yang, J. Zhang, K. Lee, S.J. Park, Automated breast cancer diagnosis
using deep learning and region of interest detection (bc-droid), in Proceedings of the 8th ACM
International Conference on Bioinformatics, Computational Biology, and Health Informatics
(2017), pp. 536–543

26. A.S. Becker, M. Marcon, S. Ghafoor, M.C. Wurnig, T. Frauenfelder, A. Boss, Deep learning
in mammography: diagnostic accuracy of a multipurpose image analysis software in the
detection of breast cancer. Invest. Radiol. 52(7), 434–440 (2017)

27. B.E. Bejnordi, M. Veta, P.J. Van Diest, B. Van Ginneken, N. Karssemeijer, G. Litjens, J.A.
VanDer Laak,M. Hermsen, Q.F.Manson,M. Balkenhol, O. Geessink, Diagnostic assessment
of deep learning algorithms for detection of lymph node metastases in women with breast
cancer. Jama 318(22), 2199–2210 (2017)

28. N. Antropova, B.Q. Huynh, M.L. Giger, A deep feature fusion methodology for breast cancer
diagnosis demonstrated on three imaging modality datasets. Med. Phys. 44(10), 5162–5171
(2017)

29. J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 1(61), 85–117
(2015)

30. C.C.Aggarwal,NeuralNetworks andDeepLearning, vol. 10 (Springer,Berlin, 2018), pp. 978-
983

31. G.C. Pereira, M. Traughber, R.F. Muzic, The role of imaging in radiation therapy planning:
past, present, and future. BioMed Res. Int. 2014 (2014)

http://arxiv.org/abs/1205.1923
http://arxiv.org/abs/1705.09435


3 Deep Learning Algorithms in Medical Image Processing … 63

32. G. Litjens, T. Kooi, B.E. Bejnordi, A.A. Setio, F. Ciompi, M. Ghafoorian, J.A. Van Der Laak,
B. Van Ginneken, C.I. Sánchez, A survey on deep learning in medical image analysis. Med.
Image Anal. 1(42), 60–88 (2017)

33. J. Dai, Y. Li, K. He, J. Sun, R-fcn: object detection via region-based fully convolutional
networks, in Advances in Neural Information Processing Systems (2016), pp. 379–387

34. M.I. Razzak, S. Naz, A. Zaib, Deep learning for medical image processing: overview,
challenges and the future, in Classification in BioApps (Springer, Cham, 2018), pp. 323–350

35. S.K. Zhou, H. Greenspan, D. Shen (eds.), Deep Learning for Medical Image Analysis
(Academic Press, 2017)

36. A. Oliver, A. Odena, C.A. Raffel, E.D. Cubuk, I. Goodfellow, Realistic evaluation of deep
semi-supervised learning algorithms, in Advances in Neural Information Processing Systems
(2018), pp. 3235–3246

37. R. Raina, A. Madhavan, A.Y. Ng, Large-scale deep unsupervised learning using graphics
processors, inProceedings of the 26th Annual International Conference onMachine Learning
(2009), pp. 873–880

38. W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, A survey of deep neural network
architectures and their applications. Neurocomputing 19(234), 11–26 (2017)

39. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

40. M.Z. Alom, T.M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M.S. Nasrin, B.C. Van Esesn,
A.A. Awwal, V.K. Asari, The history began from alexnet: a comprehensive survey on deep
learning approaches (2018). arXiv preprint arXiv:1803.01164

41. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition (2014). arXiv preprint arXiv:1409.1556

42. H.T.Mustafa, J.Yang,M.Zareapoor,Multi-scale convolutional neural network formulti-focus
image fusion. Image Vis. Comput. 1(85), 26–35 (2019)

43. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, A.C. Berg, Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

44. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2015), pp. 1–9

45. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

46. S. Targ, D. Almeida, K. Lyman, ResNet in ResNet: generalizing residual architectures (2016).
arXiv preprint arXiv:1603.08029

47. J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015),
pp. 3431–3440

48. O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image
segmentation, in International Conference on Medical Image Computing and Computer-
Assisted Intervention (Springer, Cham, 2015), pp. 234–241

49. Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, O. Ronneberger, 3D U-Net: learning dense
volumetric segmentation from sparse annotation, in International Conference on Medical
Image Computing and Computer-Assisted Intervention (Springer, Cham, 2016), pp. 424–432

50. Z.Wang, Q. She, T.E. Ward, Generative adversarial networks: a survey and taxonomy (2019).
arXiv preprint arXiv:1906.01529

51. A. Creswell, T.White, V. Dumoulin, K. Arulkumaran, B. Sengupta, A.A. Bharath, Generative
adversarial networks: an overview. IEEE Sig. Process. Mag. 35(1), 53–65 (2018)

52. S. Hochreiter, The vanishing gradient problem during learning recurrent neural nets and
problem solutions. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 6(02), 107–116 (1998)

53. P. Liu, X. Qiu, X. Huang, Recurrent neural network for text classification with multi-task
learning (2016). arXiv preprint arXiv:1605.05101

http://arxiv.org/abs/1803.01164
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1603.08029
http://arxiv.org/abs/1906.01529
http://arxiv.org/abs/1605.05101


64 S. N. Kumar et al.

54. M. Loey, A. El-Sawy, H. El-Bakry, Deep learning autoencoder approach for handwritten
arabic digits recognition (2017). arXiv preprint arXiv:1706.06720

55. S.A. Thomas, A.M. Race, R.T. Steven, I.S. Gilmore, J. Bunch, Dimensionality reduction of
mass spectrometry imaging data using autoencoders, in 2016 IEEE Symposium Series on
Computational Intelligence (SSCI) (IEEE, 2016), pp. 1–7

56. M.A. Keyvanrad, M.M. Homayounpour, A brief survey on deep belief networks and
introducing a new object oriented toolbox (DeeBNet) (2014). arXiv preprint arXiv:1408.
3264

57. G.E. Hinton, Deep belief networks. Scholarpedia 4(5), 5947 (2009)
58. M. Kallenberg, K. Petersen, M. Nielsen, A.Y. Ng, P. Diao, C. Igel, C.M. Vachon, K. Holland,

R.R. Winkel, N. Karssemeijer, M. Lillholm, Unsupervised deep learning applied to breast
density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35(5),
1322–1331 (2016)

59. H.Wang, A.C. Roa, A.N. Basavanhally, H.L. Gilmore, N. Shih, M. Feldman, J. Tomaszewski,
F. Gonzalez, A. Madabhushi, Mitosis detection in breast cancer pathology images by
combining handcrafted and convolutional neural network features. J. Med. Imaging 1(3),
034003 (2014)

60. M.G. Ertosun, D.L. Rubin, Probabilistic visual search for masses within mammography
images using deep learning, in 2015 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM) (IEEE, 2015), pp. 1310–1315

61. N. Dhungel, G. Carneiro, A.P. Bradley, Automated mass detection in mammograms using
cascaded deep learning and random forests, in 2015 International Conference on Digital
Image Computing: Techniques and Applications (DICTA) (IEEE, 2015), pp. 1–8

62. J. Arevalo, F.A. González, R. Ramos-Pollán, J.L. Oliveira, M.A. Lopez, Representation
learning for mammography mass lesion classification with convolutional neural networks.
Comput. Methods Programs Biomed. 1(127), 248–257 (2016)

63. S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S. Demirci, N. Navab, Aggnet: deep
learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans.
Med. Imaging 35(5), 1313–1321 (2016)

64. B.Q. Huynh, H. Li, M.L. Giger, Digital mammographic tumor classification using transfer
learning from deep convolutional neural networks. J. Med. Imaging 3(3), 034501 (2016)

65. R. Turkki, N. Linder, P.E. Kovanen, T. Pellinen, J. Lundin, Antibody-supervised deep learning
for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast
cancer samples. J. Pathol. Inform. 7 (2016)

66. J. Gallego-Posada, D.A. Montoya-Zapata, O.L. Quintero-Montoya, Detection and diagnosis
of breast tumors using deep convolutional neural networks. Med. Phys. 43, 3705 (2016)

67. H. Chen, Q. Dou, X. Wang, J. Qin, P.A. Heng, Mitosis detection in breast cancer histology
images via deep cascaded networks, in Thirtieth AAAI Conference on Artificial Intelligence
(2016)

68. J. Arevalo, F.A. González, R. Ramos-Pollán, J.L. Oliveira, M.A. Lopez, Convolutional neural
networks for mammography mass lesion classification, in 2015 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2015),
pp. 797–800

69. A. Akselrod-Ballin, L. Karlinsky, S. Alpert, S. Hasoul, R. Ben-Ari, E. Barkan, A region based
convolutional network for tumor detection and classification in breast mammography, inDeep
Learning and Data Labeling for Medical Applications (2016, Springer, Cham), pp. 197–205

70. R.K. Samala, H.P. Chan, L. Hadjiiski, M.A. Helvie, J. Wei, K. Cha, Mass detection in
digital breast tomosynthesis: Deep convolutional neural network with transfer learning from
mammography. Med. Phys. 43(12), 6654–6666 (2016)

71. Z. Jiao, X. Gao, Y. Wang, J. Li, A deep feature based framework for breast masses
classification. Neurocomputing 12(197), 221–231 (2016)

72. Y. Liu, K. Gadepalli, M. Norouzi, G.E. Dahl, T. Kohlberger, A. Boyko, S. Venugopalan, A.
Timofeev, P.Q. Nelson, G.S. Corrado, J.D. Hipp, Detecting cancer metastases on gigapixel
pathology images (2017). arXiv preprint arXiv:1703.02442

http://arxiv.org/abs/1706.06720
http://arxiv.org/abs/1408.3264
http://arxiv.org/abs/1703.02442


3 Deep Learning Algorithms in Medical Image Processing … 65

73. A. Cruz-Roa, H. Gilmore, A. Basavanhally, M. Feldman, S. Ganesan, N.N. Shih, J.
Tomaszewski, F.A. González, A. Madabhushi, Accurate and reproducible invasive breast
cancer detection inwhole-slide images: a deep learning approach for quantifying tumor extent.
Sci. Rep. 18(7), 46450 (2017)

74. M.H. Yap, G. Pons, J. Martí, S. Ganau, M. Sentís, R. Zwiggelaar, A.K. Davison, R. Martí,
Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J.
Biomed. Health Inform. 22(4), 1218–1226 (2017)

75. A. Das, U.R. Acharya, S.S. Panda, S. Sabut, Deep learning-based liver cancer detection using
watershed transformandGaussianmixturemodel techniques.Cogn. Syst.Res.1(54), 165–175
(2019)

76. P. Devi, P. Dabas, Liver tumour detection using artificial neural networks for medical images.
Int. J. Innov. Res. Sci. Technol. 2(3), 34–38 (2015)

77. W. Li, Automatic segmentation of liver tumour in CT images with deep convolutional neural
networks. J. Comput. Commun. 3(11), 146 (2015)

78. D.Kumar,A.Wong,D.A.Clausi, Lung nodule classification using deep features inCT images,
in 2015 12th Conference on Computer and Robot Vision (IEEE, 2015), pp. 133–138

79. W. Sun, B. Zheng, W. Qian, Computer aided lung cancer diagnosis with deep learning algo-
rithms, inMedical Imaging2016:Computer-AidedDiagnosis, vol. 9785 (International Society
for Optics and Photonics, 2016), p. 97850Z

80. R. Gruetzemacher, A. Gupta, Using deep learning for pulmonary nodule detection &
diagnosis, in Twenty-Second Americas Conference on Information Systems, San Diego (2016)

81. R. Golan, C. Jacob, J. Denzinger, Lung nodule detection in CT images using deep convolu-
tional neural networks, in 2016 International Joint Conference on Neural Networks (IJCNN)
(IEEE, 2016), pp. 243–250

82. K. Hirayama, J.K. Tan, H. Kim, Extraction of GGO candidate regions from the LIDC database
using deep learning, in 2016 16th International Conference on Control, Automation and
Systems (ICCAS) (IEEE, 2016), pp. 724–727

83. S. Bhatia, Y. Sinha, L. Goel, Lung cancer detection: a deep learning approach, in Soft
Computing for Problem Solving (Springer, Singapore, 2019), pp. 699–705

84. A. Teramoto, H. Fujita, O. Yamamuro, T. Tamaki, Automated detection of pulmonary nodules
in PET/CT images: ensemble false-positive reduction using a convolutional neural network
technique. Med. Phys. 43(6Part1), 2821–2827 (2016)

85. Y. Bar, I. Diamant, L.Wolf, S. Lieberman, E. Konen, H. Greenspan, Chest pathology detection
using deep learning with non-medical training, in 2015 IEEE 12th International Symposium
on Biomedical Imaging (ISBI) (IEEE, 2015), pp. 294–297

86. Y. Bar, I. Diamant, L. Wolf, H. Greenspan, Deep learning with non-medical training used for
chest pathology identification, in Medical Imaging 2015: Computer-Aided Diagnosis, vol.
9414 (International Society for Optics and Photonics, 2015), p. 94140V

87. A.A. Cruz-Roa, J.E. Ovalle, A. Madabhushi, F.A. Osorio, A deep learning architecture
for image representation, visual interpretability and automated basal-cell carcinoma cancer
detection, in International Conference on Medical Image Computing and Computer-Assisted
Intervention (Springer, Berlin, 2013), pp. 403–410

88. A. Masood, A. Al-Jumaily, K. Anam, Self-supervised learning model for skin cancer diag-
nosis, in20157th International IEEE/EMBSConference onNeuralEngineering (NER) (IEEE,
2015), pp. 1012–1015

89. M.H. Jafari,N.Karimi, E.Nasr-Esfahani, S. Samavi, S.M.Soroushmehr,K.Ward,K.Najarian,
Skin lesion segmentation in clinical images using deep learning, in 2016 23rd International
Conference on Pattern Recognition (ICPR) (IEEE, 2016), pp. 337–342

90. P. Sabouri, H. Gholam Hosseini, Lesion border detection using deep learning, in 2016 IEEE
Congress on Evolutionary Computation (CEC) (IEEE, 2016), pp. 1416–1421

91. H. Chen, H. Zhao, J. Shen, R. Zhou, Q. Zhou, Supervised machine learning model for high
dimensional gene data in colon cancer detection, in 2015 IEEE International Congress on
Big Data (IEEE, 2015), pp. 134–141



66 S. N. Kumar et al.

92. K. Sirinukunwattana, S.E. Raza, Y.W. Tsang, D.R. Snead, I.A. Cree, N.M. Rajpoot, Locality
sensitive deep learning for detection and classification of nuclei in routine colon cancer
histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)

93. C.L. Chen, A.Mahjoubfar, L.C. Tai, I.K. Blaby, A. Huang, K.R. Niazi, B. Jalali, Deep learning
in label-free cell classification. Sci. Rep. 15(6), 21471 (2016)

94. X. Yuan, L. Xie, M. Abouelenien, A regularized ensemble framework of deep learning for
cancer detection from multi-class, imbalanced training data. Pattern Recogn. 1(77), 160–172
(2018)

95. K.H. Cha, L. Hadjiiski, R.K. Samala, H.P. Chan, E.M. Caoili, R.H. Cohan, Urinary bladder
segmentation in CT urography using deep-learning convolutional neural network and level
sets. Med. Phys. 43(4), 1882–1896 (2016)

96. K.H. Cha, L.M. Hadjiiski, R.K. Samala, H.P. Chan, R.H. Cohan, E.M. Caoili, C. Paramagul,
A. Alva, A.Z. Weizer, Bladder cancer segmentation in CT for treatment response assessment:
application of deep-learning convolution neural network—a pilot study. Tomography 2(4),
421 (2016)

97. E. Shkolyar, X. Jia, T.C. Chang, D. Trivedi, K.E. Mach, M.Q. Meng, L. Xing, J.C. Liao,
Augmented bladder tumor detection using deep learning. Eur. Urol. 76(6), 714–718 (2019)

98. T. Xu, H. Zhang, X. Huang, S. Zhang, D.N. Metaxas, Multimodal deep learning for cervical
dysplasia diagnosis. in InternationalConference onMedical ImageComputingandComputer-
Assisted Intervention (Springer, Cham, 2016), pp. 115–123

99. S. Liu, H. Zheng, Y. Feng, W. Li, Prostate cancer diagnosis using deep learning with 3D
multiparametric MRI, in Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134 (
International Society for Optics and Photonics, 2017), p. 1013428

100. Y.K. Tsehay, N.S. Lay, H.R. Roth, X. Wang, J.T. Kwak, B.I. Turkbey, P.A. Pinto, B.J. Wood,
R.M. Summers, Convolutional neural network based deep-learning architecture for prostate
cancer detection on multiparametric magnetic resonance images, in Medical Imaging 2017:
Computer-AidedDiagnosis, vol. 10134 (International Society forOptics andPhotonics, 2017),
p. 1013405

101. A.R. Rajanna, R. Ptucha, S. Sinha, B. Chinni, V. Dogra, N.A. Rao, Prostate cancer detection
using photoacoustic imaging and deep learning. Electron. Imaging 2016(15), 1–6 (2016)

102. M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.M. Jodoin,
H. Larochelle, Brain tumor segmentation with deep neural networks.Med. ImageAnal. 1(35),
18–31 (2017)

103. Z. Xiao, R. Huang, Y. Ding, T. Lan, R. Dong, Z. Qin, X. Zhang, W. Wang, A deep learning-
based segmentation method for brain tumor in MR images, in 2016 IEEE 6th International
Conference onComputational Advances inBio andMedical Sciences (ICCABS) (IEEE, 2016),
pp. 1–6

104. H. Dong, G. Yang, F. Liu, Y. Mo, Y. Guo, Automatic brain tumor detection and segmentation
using u-net based fully convolutional networks, in Annual Conference on Medical Image
Understanding and Analysis (Springer, Cham, 2017), pp. 506–517

105. M. Rezaei, K. Harmuth, W. Gierke, T. Kellermeier, M. Fischer, H. Yang, C. Meinel, A condi-
tional adversarial network for semantic segmentation of brain tumor, in InternationalMICCAI
Brainlesion Workshop (Springer, Cham, 2017), pp. 241–252

106. H.Mohsen, E.S. El-Dahshan, E.S. El-Horbaty, A.B. Salem, Classification using deep learning
neural networks for brain tumors. Future Comput. Inform. J. 3(1), 68–71 (2018)

107. X. Zhao, Y. Wu, G. Song, Z. Li, Y. Zhang, Y. Fan, A deep learning model integrating FCNNs
and CRFs for brain tumor segmentation. Med. Image Anal. 1(43), 98–111 (2018)

108. K. Munir, H. Elahi, A. Ayub, F. Frezza, A. Rizzi, Cancer diagnosis using deep learning: a
bibliographic review. Cancers 11(9), 1235 (2019)

109. M.Z. Alom, T.M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M.S. Nasrin, M. Hasan, B.C.
Van Essen, A.A. Awwal, V.K. Asari, A state-of-the-art survey on deep learning theory and
architectures. Electronics 8(3), 292 (2019)



Chapter 4
Classification of Canine Fibroma
and Fibrosarcoma Histopathological
Images Using Convolutional Neural
Networks

İsmail Kırbaş and Özlem Özmen

Abstract Within the scope of the study, a high-performance convolutional network
model that can classify canine fibroma and fibrosarcoma tumors based on 200 high
resolution real histopathological microscope images has been developed. In order
to determine the network performance, the well-known network models (VGG16,
ResNET50, MobileNet-V2 and Inception-V3) were subjected to training and testing
according to the same hardware and training criteria.While comparing themodels, 13
different performance criteria were used and performance calculationsweremade for
each model separately. The results obtained seem extremely satisfactory. Compared
to its counterparts, the proposed network model (FibroNet) contains fewer trainable
items, while achieving a much higher performance value and training time is shorter
than others. Thanks to low prediction error rate achieved with FibroNET network
using real data, it seems possible to develop an artificial intelligence-based reliable
decision support system that will facilitate surgeons’ decision making in practice.

Keywords Canine · Convolutional neural networks · Fibroma · Fibrosarcoma ·
FibroNET · Histopathology · Tumor classification

4.1 Introduction

Most of the canine neoplasms localized to the skin [1]. Fibromas are benign fibroid
tumours and they are composed of fibrous tissue (fibroblasts, fibrocytes and collagen
fibers) mainly fibrocytes that produced collagen is abundant in collagenous stroma
[2]. Tumours arising from mesenchymal connective tissues. While these tumours
diagnosed in all domestic species, they primarily occur in aged dogs. The larger
dogs such as Boxers, Golden Retrievers and Doberman Pinschers are predisposed

İ. Kırbaş (B) · Ö. Özmen
Burdur Mehmet Akif Ersoy University, Burdur, Turkey
e-mail: ismailkirbas@mehmetakif.edu.tr

Ö. Özmen
e-mail: ozlemoz@mehmetakif.edu.tr

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Singapore Pte Ltd. 2021
U. Kose and J. Alzubi (eds.), Deep Learning for Cancer Diagnosis,
Studies in Computational Intelligence 908,
https://doi.org/10.1007/978-981-15-6321-8_4

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6321-8_4&domain=pdf
mailto:ismailkirbas@mehmetakif.edu.tr
mailto:ozlemoz@mehmetakif.edu.tr
https://doi.org/10.1007/978-981-15-6321-8_4
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breeds for benign and malign connective tissue tumours. The main localization area
of the tumours are head and extremities of the dogs. Fibromas (benign fibrous tis-
sue tumours) are generally solid, firm, raised, often hairless masses and originating
under the skin. Themost commonly tumours are round to oval in shape and arise from
intradermal or subcutaneous tissues. Generally, these tumours have firm, rubbery and
whitish cut surface. Fibromas classified as fibroma durum (firm) and fibroma molle
(soft) types according to their consistency especially amount of collagen. They are
well-circumscribed single solid tumours without a capsule [2, 3]. Fibromas are con-
nective tissue tumours composed of fibrocytes and fibroblasts that produce different
amounts of collagen fibers. The collagen is generally look like interwoven fascicles
and seldomly like as whorls. The neoplastic fibrocytes are spindle shape, uniform,
with normochromatic big oval to round nuclei and an indistinct cytoplasm. At the
histopathological examination mitotic figures are seldomly observed. Generally, the
collagen fibers are brightly eosinophilic and easily distinguishable at the intercellular
areas. Fibromas are slow growing and benign tumours, for that reason treatment is
optional. But if the appearance or growth changes occur, they must be surgically
removed [4].

Fibrosarcomas are malignant tumours of the fibrous connective tissue that gener-
ally arise from the skin and subcutaneous connective tissues [5]. These tumours have
variable presentations depending on etiopathogenesis, species, localisation and age
of the host. Fibroblasts are the main cell type of fibrosarcomas. They are the most
commonmalignant soft-tissue tumours in pet animals especially cats and dogs. Most
of the tumours are solid and can occur everywhere on the body, but main localisation
areas are head and extremities in dogs. Predisposed breeds are Golden Retrievers,
Gordon Setters, Brittany Spaniels, Irish Wolfhounds, and Doberman Pinschers. At
the clinical examination size and appearance of the fibrosarcomasmay change case to
case. They are generally slow-growing, malignant tumours most often arising under
the skin surface may look lumpy and appear nodular. These tumours developed in
the subcutaneous soft tissues, or subjacent fat may require palpation to identify.
Fibrosarcomas generally appear as firm masses, fleshy lesions involving the dermis
and subcutaneous connective tissue and tumoral cells generally invade musculature
along fascial planes. If tumours occurred as multiple masses, they are often localised
within the same anatomic region [4].

Fibrosarcomas usually not encapsulated and often invade underlying muscles.
Generally obvious interwoven fascicular pattern is seen at the cut surface of the
tumour. These tumours can be well differentiated and consist oval to round tumoral
cells that arranged in herringbone or interwoven patterns. Cytoplasm of the cells
is scant, and nuclei are spindle shaped with inconspicuous nucleoli. In poorly dif-
ferentiated and anaplastic tumours, anisocytotic or pleomorphic cells may be seen
commonly. In aggressive tumours multinucleated giant cells with ovoid or polygonal
shaped and prominent nucleoli are characteristic. Numerous mitotic figures may be
seen in undifferentiated tumours. Lymphocytes and mononuclear inflammatory cells
infiltrations may be seen in some fibrosarcomas [2].

In dogs, fibrosarcomas are invasive tumours that spread into surrounding tissues;
only about 10% of these tumours metastasizes to the body of the effected animal.
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Generally, the tumour easily diagnosed because of the characteristic appearance.
However, in some cases differentiation from leiomyosarcomas and peripheral nerve
sheath tumours, can be problematic. At the differential diagnosis amount of the
collagenous stroma may be used and it is more abundant in fibrosarcomas than the
other tumours. For this aimMasson’s trichrome stain may be used for to make easily
visible of the collagen. In contrast to fibrosarcomas, leiomyosarcomas have more
rounded shape of nuclei at the histopathological examination, but this feature is not
very reliable [2]. For treatment, wide and deep surgically extirpation of the mass is
the best choice. Because it is hard to determine the tumour’s edges during surgery,
complete removalmay be difficult and recurrence is common.More than 70% relapse
occurs during the 1-year period from the initial surgery even if surgical removal
is successful. Although invasion is common, metastasis of the fibrosarcomas are
rare. Followup radiation therapy and chemotherapy generally essential after surgical
removal of the mass especially for invasive and inoperable tumours [6].

4.2 Data and Methodology

The original dataset used in this paper is provided by Burdur Mehmet Akif Ersoy
University, Faculty of VeterinaryMedicine, Department of Pathology in JPG format.
The dataset consists of 200 high resolution (1920× 1200) histology microscopic
images with 4× to 40× magnification. These images are labeled with two classes:
fibroma and fibrosarcoma, and each class consists of 100 images.

Totally 27 tumoral mass (13 fibroma and 9 fibrosarcoma) were examined in this
study. The materials collected from archive of the Department of Pathology between
2000 and 2019. Age of the dogs were changing 1–14 years and different breeds
with both genders. Figure4.1 shows examples of fibroma and fibrosarcoma removed
surgically.

Fig. 4.1 aCut surface of the fibroma no necrosis and hemorrhage; b cut surface of the fibrosarcoma
hemorrhagic areas (arrows)
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The relationship and the pattern between the classes are tried to be determined
without any future selection process. For this purpose, the data on hand must be
derived and reproduced without losing the information they carry. Keras library
[7] can automatically perform image augmentation by taking various parameters as
input. In our study, we performed zoom in-out, rotation, mirroring, horizontal and
vertical flipping operations on the microscope images and augmentation operation
was performed using these techniques.A balanced distributionwas achieved by using
an equal number of samples in both classes. Since the learning process takes place
as unsupervised in deep learning algorithms, many examples are needed. Table4.1
gives details of the number of pictures produced for both classes.

Images obtained from microscopes are 1920× 1200 pixels. However, they were
reduced to 224× 224 dimensions since it will take a long time to process such large
data and will require high amount of processor power. Then the scaled photographs
were augmented by techniques such as rotating, flipping, mirroring, zooming in and
out. Figure4.2 shows the scaling and picture augmentation processes of the original
histopathological images.

Accordingly, a total of 1462 images were produced for training purposes for the
fibroma class, while 368 images were produced for use in testing phase. Similarly,

Table 4.1 Augmented fibroma and fibrosarcoma classes

Classes Augmented training
images

Augmented test
images

Total images

Fibroma 1445 349 1794

Fibrosarcoma 1462 378 1840

Total 2907 727 3634

Fig. 4.2 Histopathological image preprocessing operations including scaling and augmentation
operations
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1445 pictures were produced for training in the fibrosarcoma class and 359 pictures
were used for testing purposes.

Deep neural networks are usually created by connecting ten or more layers of
artificial neural networks in succession. There are dozens of neurons in each layer,
and after the neurons in the layers perform the activation process, it transmits the
result obtained to the neurons in the next layer [8]. In other words, the output value
of each layer becomes the input value for the layer after it. If the output value of
each neuron in a layer is sent as the input value for all neurons in the next layer,
then fully connected is used for the layers. However, this increases the load of the
process and can cause excessive memorization of the data. Overfitting the data is a
situation for the goal of revealing and learning the relations or patterns among the
data. For this reason, some connections between layers are interrupted from time to
time during the training process so that the excessivememorization can be prevented.
This technique is called drop out [9].

Convolutional neural networks are often used for image classification problems
[10]. Pictures to be processed on these networks are often made much smaller than
their original size (usually 224× 224pixels). If the colour information is insignificant
for the problem that is tried to be solved, the original pictures are made black and
white even if they are coloured. This ensures that fewer neurons are used in the input
layer and the processing load is reduced. The images, which are pre-processed by
shrinking and generally black and white, are then subjected to a matrix operation
called convolution, transferring data from the first layer to a second layer of neurons
with fewer neurons.

Within the scope of the study, networks which are frequently used in the literature
such as VGG 16 [11], Resnet50 (He et al. 2016), MobileNETv2 [12] and Inception
V3 [13] were handled and used with transfer learning technique. In the transfer
learningmethod, the networks previously trained with different data and for different
classification procedures are adapted for the target dataset by adapting the output
layer number to the desired problem. The aim is to quickly adapt an existing CNN
solution with a complex layer architecture to another problem at low processing and
time cost.

In addition to the existing networks, a unique CNN, called FibroNET, was created
within the scope of the study and performance comparisons were made for five
different network structures.

4.3 Proposed Convolutional Neural Network FibroNET

The proposed neural network architecture FibroNET is shown in Fig. 4.3. While
feature extraction is carried out with convolutional layers, max pooling layers are
used for size reduction. The global average pooling means that a 3 dimensions tensor
is sliced and computed the average the slices in order to have only 1-dimension tensor
or a vector so that the dense layer deal with only a vector. Dense layer is connected
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Fig. 4.3 The proposed Convolutional Neural Network (FibroNET) architecture

Table 4.2 The FibroNET layer architecture

l Layer type Filter size (kernel size, filter,
activation)

Number of parameter

0 Input 224, 224, 3 0

1 Convolution 2D 3, 16, relu 448

2 Convolution 2D 3, 30, relu 4350

3 Max pooling 2 0

4 Convolution 2D 3, 60, relu 16,260

5 Max pooling 2 0

6 Convolution 2D 3, 90, relu 48,690

7 Max pooling 2 0

8 Convolution 2D 3, 110, relu 89,210

9 Max pooling 2 0

10 Convolution 2D 3, 130, relu 128,830

11 Convolution 2D 1, 40, relu 5240

12 Global average pooling 40 0

13 Dense 2, softmax 82

to the last layer that uses the softmax function and has two outputs fibroma and
fibrosarcoma.

The FibroNET network consists of 14 layers in total. 7 of these layers are called
convolutional layers and they make feature extracting. After convolution layers, max
pooling layers are used to reduce the size. Global average pooling layer also has been
added behind the last convolution layer so that the dense layer input can be converted
to a vector. Table4.2 shows the FibroNET network structure and its layer layouts in
detail.

Because of providing high performance for the training of deep learning networks,
Google Colab environment was used and TPU was selected for computing opera-



4 Classification of Canine Fibroma and Fibrosarcoma … 73

Table 4.3 Performance evaluation results for five different CNNs

Performance
metrics

VGG-16 ResNET50 MobileNETv2 Inception v3 Proposed
model
(FibroNET)

R2 score −1.0364 −0.0048 0.0811 0.6975 0.9595

Mean absolute
error

0.5089 0.4992 0.4764 0.2221 0.0328

Mean squared
error

0.5089 0.2511 0.2296 0.0755 0.0100

ACC score 0.4910 0.5089 0.6905 0.9367 0.9889

ROC AUC
score

0.5 0.5 0.7611 0.9684 0.9994

LOG loss 17.5781 0.6954 0.6522 0.2972 0.0435

Train accuracy 0.4991 0.5009 0.5057 0,6708 0.9856

Train loss 7.6817 0.6956 0.6940 0,6547 0.0438

Test accuracy 0.4910 0.5089 0.5158 0,6905 0.9890

Test loss 7.8057 0.6945 0.6923 0,6522 0.0436

Training time
(s)

3551 1754 926 4142 191

Epochs 21 21 21 61 136

Total params 14,764,866 25,638,714 3,540,986 23,853,786 293,110

Trainable
params

14,764,866 25,585,594 3,506,874 23,819,354 293,110

tions. Performing calculations with TPU, provides much shorter processing times
compared to CPU and GPU alternatives.

First of all, five deep learning models are trained to maximize the validation
accuracy parameter. Number of training epoch is determined by early stopping tech-
nique. When 1.10–3 advances in validation accuracy become unavailable after 20
trials between the iterations, the training iteration was terminated and the most suc-
cessful values obtained during the training period were recorded with the model
structure and weights. Afterwards, the model obtained was tested with the test data
and the performance criteria given in Table4.3 were calculated and compared.

Simonyan and Zisserman [11] proposed a convolutional neural network model
called VGG16 for ImageNet competition and it has been achieved 92.7% top-5 test
accuracy. Themodel achieves in ImageNet dataset consists of over 14million images
belonging to 1000 classes and VGG16was trained for weeks and was using NVIDIA
Titan Black GPU’s. Unlike VGG16, which is a simple network model, it uses 2 or 3
of the convolution additions. It is converted to an attribute vector with 4096 neurons
in the fully connected (FC) layer. Softmax performance of 1000 classes is calculated
at the output of two FC layers. Approximately 138 million parameters are calculated
in the network. As in other models, the height and width dimensions of the matrices
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from the input to the output decrease while the depth value (number of channels)
increases.

ResNet50 [14], which has a different logic than the previous models, where the
network model started to really deepen; residual value consists of adding the blocks
(residual block) that feed to the next layers. With this feature, ResNet50 is no longer
a classic model. Theoretically, the performance is thought to increase as the number
of layers increases in the model. However, it has been experienced that this is not
really the case. Based on this, ResNet50 model was developed within Microsoft.

MobileNet [15] network structure has been developed especially for use in image
recognition processes on mobile devices. It requires high processing power to per-
form the convolution process. Since this process power is very difficult to obtain
in mobile devices, the convolution process in MobileNET network structure is per-
formed by dividing it into two sub-processes. Unlike version 1, MobileNetV2 has
a second connection type called residual connection in the residual block and has
fewer trainable parameters than MobileNetV1.

Szegedy et al. developed [13] the GoogLeNet networkwith Google support which
is known as Inception-v1. Inception-v3 architecture also consists of batch normal-
ization and ReLU functions are used after convolution. It is 42 layers deep and its
computation cost is 2.5 times higher than GoogLeNet.

In Table4.3, there is a detailed comparison of five different CNN models with 13
different metrics in the same hardware configurations. The best values are underlined
according to the criteria in Table4.3.

4.4 Results and Discussion

In this study, evaluation of histopathological images obtained from canines with
deep artificial neural networks and determination of tumor type were studied. For
this purpose, 200 high resolution microscope images were used, and the dataset was
made up of 3634 images in total after the pre-processing and augmentation process.

Within the scope of the study, a convolutional neural network (FibroNET) was
developed. It has significant advantages compared to its counterparts. It was deter-
mined that the training time is low, the number of trainable parameters is low, and
the test accuracy is very high.

When Table4.3 is examined, the proposed model has proven itself and it has
been shown in numbers that it is far superior to other well-known models. VGG-16,
ResNet50 and MobileNetV2 models used in the study did not produce a successful
result within the specified training criteria. While the Inception-V3 model has a
higher performance than the counted models, it has the longest training period. Our
proposed model FibroNET, has fewer items than alternatives and therefore it can
be trained in a shorter time. Its test and train accuracy values are at the top when
compared to the others.
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Fig. 4.4 Model accuracy and model loss graphics for FibroNET

Figure4.4 shows the model accuracy and model loss graphs calculated during the
training and validation stages of the FibroNET network. As can be seen in Fig. 4.4,
as the number of training iterations (number of epoch) increases, the value of the
loss parameter converges to 0, while the accuracy value approaches 1. This indicates
that the proposed model is well trained and the prediction error rate will be low.

In Fig. 4.5, the confusion matrix results are obtained by testing the FibroNET
network with the test data. According to result values, while the model correctly
predicted all fibrosarcoma results, it incorrectly labelled as fibroma only 8 results
that should be detected as fibrosarcoma.
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Fig. 4.5 Confusion matrix
results for FibroNET

The tumor classification problem seems to be a very difficult problem even for
specialists. The conducted study shows that the proposed model (FibroNET) can
achieve high performance on real data. We believe that, in future studies, by devel-
oping a larger dataset, it will be possible to develop an artificial intelligence-based
reliable decision support system that will facilitate surgeons’ decision making in
practice.
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Chapter 5
Evaluation of Big Data Based CNN
Models in Classification of Skin Lesions
with Melanoma

Prasitthichai Naronglerdrit and Iosif Mporas

Abstract That chapter presents a method regarding diagnosis of pigmented skin
lesions using convolutional neural networks. The architecture ismodeled over convo-
lutional neural networks and it is evaluated using new CNN models as well as re-
trainedmodification of pre-existingCNNmodelswere used. The experimental results
showed that CNNmodels pre-trained on big datasets for general purpose image clas-
sification when re-trained in order to identify skin lesion types offer more accurate
results when compared to convolutional neural network models trained explicitly
from the dermatoscopic images. The best performance was achieved by re-training
a modified version of ResNet-50 convolutional neural network with accuracy equal
to 93.89%. Analysis on skin lesion pathology type was also performed with classi-
fication accuracy for melanoma and basal cell carcinoma being equal to 79.13 and
82.88%, respectively.

5.1 Introduction

Over the last years skin cancer cases are becoming to a greater extent common with
more than 5million people been diagnosedwith it in theUSA.Roughly three quarters
of the skin cancer cases resulting in death have been caused from melanomas thus
making it the most dangerous type of cancer of the skin [1]. The region of the spot
over the skin, which is affected, is named as the area of lesion, and the lesions of
the skin are the first clinical symptoms of diseases like melanoma, chickenpox and
others [2]. In the sense of the melanoma, the growth rate within most cases is slow
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enough to allow to be removed relatively easily and with low hazard and cost if the
melanoma lesion has been detected in an initial stage. When the pathology of the
skin is found in an early stage then the rate of patients to survive is more than 95%
[3, 4], but on the other hand if the pathology of the skin is found at a late stage
then treatment is more difficult with the survival rate being dramatically reduced to
approximately 13% [5].

Currently visual examination is considered as the standard clinical procedure for
detection and identification of skin lesions [6]. One of the most popular protocols for
medical assessment of the lesions on the skin is the ‘ABCD’ protocol, according to
which the dermatologist examines the (A)symmetry, the (B)order, the (C)olour, and
the (D)iameter of the spot on the skin. As regards asymmetry it is examined whether
segments of the skin lesion area diverge in shape or not. Regarding border, it is
examined if the edges of the corresponding area of the skin are irregular or blurred
and, in some cases, if they have notches. The colourmight be uneven andwith various
colourizations of black, brown and pink. As regards the diameter of the skin lesion,
most melanomas have diameter of at least six millimetres while any change of the
size, the shape or the diameter being essential information the correspondingmedical
staff needs to be aware of [7]. Medical examination of the skin of patients is carried
out by doctors, general practitioners or with expertise in dermatology, and typically it
is an examination requiring a lot of time.Moreover, the diagnosis of lesions of skin is
a very subjective procedure [8], as diagnosis can be imprecise or incorrect or could
outcome to quite dissimilar diagnosis even if it has been done by dermatologists
with lots of experience. In addition to subjectivity, diagnosis supported by AI-based
computational tools can result in reduced diagnostic accuracy when diagnostic tools
are utilized by doctors with no previous appropriate training or enough experience
as shown in previous study [2].

Due to the limits and the difficulty of the clinical assessment of skin lesions as
described above and also due to the number of cases related to skin diseases which
are rising every year the development of accurate computer-aided tools for auto-
mated dermatoscopic image processing and for classification of skin lesions for the
analysis of skin spots related to melanomas or different skin pathologies is neces-
sary. Furthermore, the utilization of the cutting edge technological achievements in
the areas of digital image processing, AI with emphasis in deep learning (machine
learning) and big data applied to achieve skin cancer detection can make it feasible to
allow successful diagnosis for skin lesions avoiding the need for body contact with
the skin of the patient [2] or even perform the diagnosis from distance by sending
to the dermatologist a photo of the corresponding skin area through the Internet.
Moreover, the cost of making a diagnosis and treating of other than melanoma types
of skin cancer is noteworthy as for instance only in 2010 it costed AU$ 511 million
to Australia [9] and at the same time the overall cost to the healthcare system of the
United States for the cases ofmelanoma is calculated at approximately $ seven billion
annually [10]. In countries such as Australia, and the United Kingdom (UK), there
has been a lot of attention given in general practitioners to improve their diagnostic
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performance in order to be able to precisely identify and diagnose skin pathologies
and cancers. That is especially due to the cost caused to national healthcare systems
and aiming at retaining their sustainability [11].

Dermatoscopy (which is also reported in the literature as the epiluminescence
microscopy, or dermoscopy), is a skin imaging method which is non-invasive.
Dermatoscopic images are illuminated and also magnified images of an area over
the skin which offer high resolution analysis of the lesions on the skin [8], never-
theless software-aided analysis of skin images has a number of issues making it a
difficult task, like the usually not quite high contrast between the region of the spot
and the normal skin region around it which results in automatic segmentation of the
skin lesion areas with limited accuracy. Except this, another problem is that quite
often the melanoma and the non-melanoma skin spots appear to be visually similar
between them thus increasingmaking it difficult to distinguish a lesion corresponding
to melanoma from a non-melanoma area of the skin. In addition, the variation of the
characteristics of the skin from one patient to another, e.g. the skin colour and the
presence of veins and natural hairs, result in melanoma cases with highly different
colour and texture characteristics [3].

Different approaches for automatic image-based skin lesion classification have
been published in the literature over the last decade. Rubegni et al. [12] used neural
networks to perform automated classification of pigmented skin lesions, specifically
melanoma vs nevi, and 13 image features representing the lesions were used param-
eterizing the geometry, the colourization, the textures and colour clusters of the skin
lesions. In [4] Sheha et al. presented a classification architecture of malignant and
benign skin lesions and evaluated the performance of classifiers like neural networks,
support vector machines (SVMs) and k-nearest neighbours when using geometry
based, chromatic and texture image features. In [10] Alcón et al. performed skin
lesion binary classification with two skin lesion types, malignant and benign lesions,
with the corresponding images being collected from standard digital cameras and
evaluated decision trees using theAdaBoostmetaclassifier and image features related
to the symmetry, edges/boundaries, colour and texture of the skin spot area. Refianti
et al. presented in [13] a binary classificationmethodology for melanoma skin cancer
and non-melanoma skin cancer and themethodology relied on a convolutional neural
network (CNN) structure. In [14] Prigent and colleagues proposed classification
methodology for the skin hyper-pigmentation-lesions, by employing support vector
machines for classification, and themulti-spectral analysis of skin images done in the
context of the classification. In [11], Chang et al. introduced a software diagnostic
algorithm to process malignant and benign lesions of skin which is extracting shape,
texture and colour features of the lesion area and was tested using support vector
machines as classifier on a dataset consisting of typical digital photos of skin. In [15]
Kawahara et al. classified the skin images thanks to a model of convolutional neural
networks with deep features extracted from the CNNs. Capdehourat et al. presented
an approach for classification in [16], by using decision trees, and also support vector
machines over pigmented skin lesions. They evaluated their approach over a set of
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dermatoscopic images. In [2], Sumithra et al. presented an evaluation regarding k-
nearest neighbours, and the support vector machines, in the context of skin image
segmentation and lesions classification with parameterization of the lesion area (by
using texture, colour, and the histogram-based image features). Lehman et al. in [17]
proposed an approach which is fusing three convolutional neural networks, each of
them using distinct image transformations. In [3] Li et al. presented an architecture
for classification of skin lesionmethodwhichwas utilizing parameters extracted from
deep convolutional neural networks and were combined with colour, morphological
and textural features of the skin lesion area.Mahdiraji et al. in [6] calculated boundary
features which were processed by neural networks to perform classification of skin
lesions using sets of images acquired from conventional cameras. Mishra et al. [18]
and Jafari et al. [19] presented segmentation approaches which can isolate the skin
spot (i.e. the region of interest) from the remaining non-lesion part of the skin images
with the employment of convolutional neural networks. In [20] Rehman et al. utilized
convolutional neural networks to perform image segmentation followed by classifi-
cation of the extracted image segments using artificial neural networks. Kaymak et al.
in [21] presented a two-step deep learning algorithm for hierarchical classification
of the lesions of malignant-pigmented skin with the first step being classification
of the skin images to non-melanocytic or melanocytic, and the second stage being
classification of the malignant types.

In the present paperwe examine differentmodels of convolutional neural networks
for identification of skin lesion types captured from digital skin images using
dermatoscopy. Except this we evaluate well known CNN models for image clas-
sification which have been pre-trained using big data and for the needs of skin lesion
classification have been modified and re-trained. The remaining of this chapter is
organized as follows. In Sect. 5.2 the block diagram and steps of the evaluated
methodology for the automatic classification and diagnosis of lesions of skin is
described. Section 5.3 presents the evaluation setup and in Sect. 5.4 the experimental
evaluation results are presented. Finally, in Sect. 5.5 conclusions are given.

5.2 Classification and Diagnosis of Skin Lesions Using
CNNs

For the classification and diagnosis of skin lesions convolutional neural networks
were utilized for the classification stage after using image processing algorithms for
image pre-processing and segmentation of the dermatoscopic image. The dermato-
scopic images are in a first step pre-processed,with the pre-processing step consisting
of filtering of the image using a median filter and then removing of any detected
hair. Following the pre-processing step image segmentation is performed to the skin
images in order to detect and segment the area of the skin lesion, i.e. the region
of interest (ROI) in the image. Once detecting the skin region of interest the corre-
sponding bounding box is defined and then used to crop the skin lesion image segment
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Fig. 5.1 Block diagram regarding the considered architecture for classification of skin lesions using
convolutional neural networks

which is subsequently converted to a predefined image size and sent to a convolu-
tional neural network for identification of the corresponding skin lesion type. The
block diagram of the dermatoscopic images-based skin lesion classification using
convolutional neural networks as classifier is illustrated in Fig. 5.1.

At the time of the offline training phase, a set of dermatoscopic images with
known skin pathology labels, clinically verified by dermatologists, are pre-processed,
segmented and the extracted ROIs used to train CNN models for classification of
skin lesions. In the online diagnosis phase a new/unknown dermatoscopic image is
processed following the same steps as in offline training and the CNNmodels assign
a label to the corresponding skin lesion, thus performing online diagnosis. The pre-
processing, segmentation and classification steps of the architecture are described in
more detail below.

5.2.1 Dermatoscopic Image Pre-processing

Firstly, we performed pre-processing of the dermatoscopic images for the purpose of
hair removal [16, 22]. To automatically remove hair from the images hair detection
is needed and subsequently is followed by in painting of the images. In our imple-
mentation to detect the pixels of the dermatoscopic images that contained natural
hair we utilized a median filter for smoothing and then applied bottom-hat filtering
as in [23]. The bottom-hat (also referred to as black top-hat) filter is performing an
image transformation, based on a morphological operation which is defined as

Bhat( f ) = ( f · b) − f (5.1)
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here f corresponds to the grayscale image, b means the structuring element, which
was selected to be disk-shaped in the present evaluation. As f and b are both discrete,
and · means the morphological operator of closing, defined as

f · b = ( f ⊕ b)�b (5.2)

with ⊕ is the dilation operator, and � is the erosion operator [24].

5.2.2 Dermatoscopic Image Segmentation

After pre-processing the skin images to detect and remove hair resizing to 256 ×
256 pixels was applied and subsequently Gaussian filtering for smoothing of the
pixel values of the images. As a next step, we used the active contour method as
proposed by Chan-Vese [25] in order to segment the skin images to foreground and
background. The active contour algorithm extracted the borders of the skin lesion
and it was empirically found that 300 iterations was a fair trade-off between the
achieved accuracy of segmentation vs the time needed for computations.

After the active contour segmentation, the detected skin lesions bounding boxwas
found which had variable sizes. With the purpose of using the regions of interest, i.e.
the segmented skin images, as input to a convolutional neural network all segmented
images needed to be resized to a fixed size which was empirically selected equal to
64 × 64 pixels. Except this, pixels’ values were rescaled to the range [0, 1] for each
of the three colours (RGB) to decrease big errors during subsequent processing from
the activation function (ReLU in our implementation) of the convolutional neural
network.

5.2.3 CNN-Based Image Classification

The pre-processed, segmented and value-normalized skin images corresponding to
the skin lesion areas (ROIs) were then sent as input to convolutional neural networks
to classify them. The CNN classifier will assign a skin pathology label to each
unknown dermatoscopic image so that automatic pathological diagnosis will be
performed.
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Table 5.1 Types of skin
pathology, and the number of
instances in the HAM10000
dataset [26, 27]

Type of the pathology Total images

Actinic keratosis (akiec) 327

Basal cell carcinoma (bcc) 514

Dermatofibroma (df) 115

Melanoma (mel) 1113

Nevus (nv) 6705

Pigmented benign keratosis (bkl) 1099

Vascular lesions (vasc) 142

Total 10,015

5.3 Experimental Setup

5.3.1 Data Description

To evaluate the skin lesions classification accuracy, the HAM10000 [26, 27] dataset
was used. The HAM10000 database is a big dataset of digital images with skin
lesions, which consist of 10015 skin images and all images have been labelled with
their corresponding pathology type as shown in Table 5.1. The dermatoscopic images
of the dataset was gathered through a period of 20 years from two different sites,
which are the skin cancer practice of Cliff Rosendahl in Australia-Queensland, and
the Department of Dermatology at the Medical University of Vienna, in Austria.

5.3.2 New CNN Models

As a baseline classification algorithm to classify the dermatoscopic images we
used convolutional neural networks (CNNs) trained explicitly from the HAM10000
dataset images. The new CNN models were constructed after optimizing the convo-
lutional layers number as presented in Table 5.2. As seen in the Table 5.2, the CNN
models were built by using the pipeline of convolution layers and pooling layers. In
the sense of the convolution layers, the filter size used was 3 × 3 and stride equal to
1. The pooling layers were used for reducing the size of the input regarding the next
convolution layer and have filter size 2 × 2 and stride equal to 2.

In addition, the other hyper-parameters which were used in the setup of the CNN
architecture consist of ReLU activation function, pooling layer implemented using
max pooling, the optimizer using Adam and the cross-entropy (categorical) used as
loss function. After the last pooling layer and dense layer, a dropout layer was used
to avoid any over-fitting in the neural network. The classification of pigmented skin
lesions was performed by a fully connected layer and softmax activation function.
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Table 5.2 New CNN model architectures evaluated for skin lesion classification

Layers Output Model 1 Model 2 Model 3 Model 4

Convolution 64 × 64 3 × 3 conv,
stride 1

3 × 3 conv,
stride 1

3 × 3 conv,
stride 1

3 × 3 conv,
stride 1

Pooling 32 × 32 2 × 2 max pool,
stride 2

2 × 2 max pool,
stride 2

2 × 2 max pool,
stride 2

2 × 2 max pool,
stride 2

Convolution 32 × 32 3 × 3 conv,
stride 1

3 × 3 conv,
stride 1

3 × 3 conv,
stride 1

Pooling 16 × 16 2 × 2 max pool,
stride 2

2 × 2 max pool,
stride 2

2 × 2 max pool,
stride 2

Convolution 16 × 16 3 × 3 conv,
stride 1

3 × 3 conv,
stride 1

Pooling 8 × 8 2 × 2 max pool,
stride 2

2 × 2 max pool,
stride 2

Convolution 8 × 8 3 × 3 conv,
stride 1

Pooling 4 × 4 2 × 2 max pool,
stride 2

Flatten 65536 16384 4096 1024

Dropout 0.5 dropout

Dense 128 fully connected

Dropout 0.5 dropout

Classification 7 fully-connected, softmax

The number of the model, i.e. ‘Model-N’, indicates the number of convolution layer and pooling
layer sets in the CNN model

The CNN models were constructed using Tensorflow and Keras packets, and the
training process used the CUDAGPU computing for acceleration. The CNNmodels
were trained for 50 epochs and batch normalization size equal to 16.

5.3.3 Pre-trained CNN Models and Their Modifications

Except training new CNN models we investigated the usage of pre-trained CNN
models for image classification that available with the Keras packet, in particular
the VGG [28], MobileNet [29], DenseNet [30], and ResNet [31] pre-trained CNN
models. The pre-trained CNN models, the architectures of which were modified and
used for pigmented skin lesions classification,were originally trainedusing ImageNet
[32], which is a large images dataset consisting of 1000 classes as employing a total
of 1.2 million images for the training, and 50,000 ones for the validation.

The VGG [28] network was constructed by the Visual Geometry Group, Univer-
sity of Oxford for the needs of ILSVRC-2014 competition. The VGG architecture is
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a sequential network which has 3 × 3 convolution layers with stride equal to 1 and 2
× 2max-pooling layers with stride equal to 2. The original VGGnetworkwas trained
by the ImageNet which has 1000 classes with the input image size being equal to 224
× 224. In this paper we have used the VGG network with a depth of 16 layers (noted
as VGG16) to perform as a classification model. In the modified VGG16 network,
the last max-pooling layer was truncated, and the output was connected to the fully
connected layer with softmax activation function for implementing the classification
task as presented in Table 5.3.

TheMobileNet [29] is introduced byGoogle Inc. for mobile and embedded vision
applications. The MobileNet uses the concept of depthwise separable convolutions
in its light-weight architecture and to keep the channel of the network, the 1× 1 filter
is used as a pointwise convolution. The advantage of this architecture is the reduced
number of computations needed, both during training the CNN model and during
online testing. Table 5.4 shows the modified architecture of the MobileNet in which

Table 5.3 VGG16 [28] architecture and its modifications for skin lesion classification

Layers Original VGG16 Modified VGG16

Output size Layer’s structure Output size Layer’s structure

Convolution 224 × 224 3 × 3 conv, stride 1 64 × 64 3 × 3 conv, stride 1

Convolution 224 × 224 3 × 3 conv, stride 1 64 × 64 3 × 3 conv, stride 1

Pooling 112 × 112 2 × 2 max pool, stride 2 32 × 32 2 × 2 max pool, stride 2

Convolution 112 × 112 3 × 3 conv, stride 1 32 × 32 3 × 3 conv, stride 1

Convolution 112 × 112 3 × 3 conv, stride 1 32 × 32 3 × 3 conv, stride 1

Pooling 56 × 56 2 × 2 max pool, stride 2 16 × 16 2 × 2 max pool, stride 2

Convolution 56 × 56 3 × 3 conv, stride 1 16 × 16 3 × 3 conv, stride 1

Convolution 56 × 56 3 × 3 conv, stride 1 16 × 16 3 × 3 conv, stride 1

Convolution 56 × 56 3 × 3 conv, stride 1 16 × 16 3 × 3 conv, stride 1

Pooling 28 × 28 2 × 2 max pool, stride 2 8 × 8 2 × 2 max pool, stride 2

Convolution 28 × 28 3 × 3 conv, stride 1 8 × 8 3 × 3 conv, stride 1

Convolution 28 × 28 3 × 3 conv, stride 1 8 × 8 3 × 3 conv, stride 1

Convolution 28 × 28 3 × 3 conv, stride 1 8 × 8 3 × 3 conv, stride 1

Pooling 14 × 14 2 × 2 max pool, stride 2 4 × 4 2 × 2 max pool, stride 2

Convolution 14 × 14 3 × 3 conv, stride 1 4 × 4 3 × 3 conv, stride 1

Convolution 14 × 14 3 × 3 conv, stride 1 4 × 4 3 × 3 conv, stride 1

Convolution 14 × 14 3 × 3 conv, stride 1 4 × 4 3 × 3 conv, stride 1

Pooling 7 × 7 2 × 2 max pool, stride 2 2 × 2 2 × 2 max pool, stride 2

Flatten 25,088 2048

Dense 4096

Dense 4096

Classification 1000 fully-connected, softmax 7 fully-connected, softmax
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Table 5.4 MobileNet [29] architecture and its modifications for skin lesion classification

Layers Original MobileNet Modified MobileNet

Output size Layer’s structure Output size Layer’s structure

Convolution 112 × 112 3 × 3 × 32 conv, stride
2

32 × 32 3 × 3 × 32 conv, stride
2

Convolution 112 × 112 3 × 3 depthwise conv,
stride 1

32 × 32 3 × 3 depthwise conv,
stride 1

Convolution 112 × 112 1 × 1 × 64 conv, stride
1

32 × 32 1 × 1 × 64 conv, stride
1

Convolution 56 × 56 3 × 3 depthwise conv,
stride 2

16 × 16 3 × 3 depthwise conv,
stride 2

Convolution 56 × 56 1 × 1 × 128 conv,
stride 1

16 × 16 1 × 1 × 128 conv,
stride 1

Convolution 56 × 56 3 × 3 depthwise conv,
stride 1

16 × 16 3 × 3 depthwise conv,
stride 1

Convolution 56 × 56 1 × 1 × 128 conv,
stride 1

16 × 16 1 × 1 × 128 conv,
stride 1

Convolution 28 × 28 3 × 3 depthwise conv,
stride 2

8 × 8 3 × 3 depthwise conv,
stride 2

Convolution 28 × 28 1 × 1 × 256 conv,
stride 1

8 × 8 1 × 1 × 256 conv,
stride 1

Convolution 28 × 28 3 × 3 depthwise conv,
stride 1

8 × 8 3 × 3 depthwise conv,
stride 1

Convolution 28 × 28 1 × 1 × 256 conv,
stride 1

8 × 8 1 × 1 × 256 conv,
stride 1

Convolution 14 × 14 3 × 3 depthwise conv,
stride 2

4 × 4 3 × 3 depthwise conv,
stride 2

Convolution 14 × 14 1 × 1 × 512 conv,
stride 1

4 × 4 1 × 1 × 512 conv,
stride 1

5 × Convolution 14 × 14 3 × 3 depthwise conv,
stride 1

4 × 4 3 × 3 depthwise conv,
stride 1

5 × Convolution 14 × 14 1 × 1 × 512 conv,
stride 1

4 × 4 1 × 1 × 512 conv,
stride 1

Convolution 7 × 7 3 × 3 depthwise conv,
stride 2

2 × 2 3 × 3 depthwise conv,
stride 2

Convolution 7 × 7 1 × 1 × 1024 conv,
stride 1

2 × 2 1 × 1 × 1024 conv,
stride 1

Convolution 7 × 7 3 × 3 depthwise conv,
stride 2

2 × 2 3 × 3 depthwise conv,
stride 2

Convolution 7 × 7 1 × 1 × 1024 conv,
stride 1

2 × 2 1 × 1 × 1024 conv,
stride 1

Classification 1024 7 × 7 global average
pool

4096 flatten

1000 fully-connected, softmax 7 fully-connected, softmax
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Fig. 5.2 DenseNet [30] with two dense blocks and transition layer between the dense blocks
consisting of a convolution and pooling layer

the input size has changed from 224 × 224 to 64 × 64. All convolutional layers are
then supported by batch normalization, and the ReLU for activation function.

The Dense Convolutional Network (DenseNet) [30] connects every layer to all
next layers, while a conventional network connects only between previous layer to
next layer. The block of the connections which connects each layer to other layers
in feed-forward architecture noted as “dense block” as shown in Fig. 5.2.

The DenseNet has a 3 × 3 filter size at the convolution layer, and between dense
blocks a 1× 1 convolution layer supported by a 2× 2 average-pooling layer are used
as transition layer. Finally, softmax classifier is attached at the end of the last convo-
lution layer. DenseNet has four dense blocks, but different number of convolution
layers inside each block. In this paper, we used the DenseNet-121, DenseNet-169,
and DenseNet-201 CNNs where the number after DenseNet name is indicating the
total number of convolution layers, and also the fully-connected layers (as seen in
Tables 5.5, 5.6 and 5.7, respectively).

ResNet [31] was introduced by Microsoft Research team based on the residual
learning framework. In residual networks shortcut connections between stacks of
convolution layers are inserted, as illustrated in Fig. 5.3. The ResNet has different
number of convolution layers as shown in Tables 5.8, 5.9 and 5.10, respectively. For
this evaluation we consider the ResNet-50, ResNet-101, and ResNet-152.

All pre-trained CNN models of Keras packet were originally trained using
ImageNet dataset, and modified for the needs of the present evaluation by changing
the input size from 224 × 224 to 64 × 64 and connecting the last convolution layer
with a flatten layer supported by a fully-connected softmax layer. Afterwards, the
modified pre-trained models were re-trained using the HAM10000 dataset for skin
lesions classification. The re-training phase-stage of the pre-trained CNN models
was done using 50 epochs and batch normalization size equal to 16 by using Adam
optimizer and the cross-entropy (categorical) as loss function.

5.4 Evaluation Results

The related architecture-model over convolutional neural networks for classifying
skin lesions (as presented in Sect. 5.2) was evaluated according to the experimental
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Table 5.5 DenseNet-121 [30] architecture and its modifications for skin lesion classification

Layers Original DenseNet-121 Modified DenseNet-121

Output size Layer’s structure Output size Layer’s structure

Convolution 112 × 112 7 × 7 conv, stride 2 32 × 32 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool,
stride 2

16 × 16 3 × 3 max pool,
stride 2

Dense Block (1) 56 × 56
[
1 × 1 conv

3 × 3 conv

]
× 6

16 × 16
[
1 × 1 conv

3 × 3 conv

]
× 6

Transition (1) 56 × 56 1 × 1 conv 16 × 16 1 × 1 conv

Transition (1) 28 × 28 2 × 2 average pool,
stride 2

8 × 8 2 × 2 average pool,
stride 2

Dense Block (2) 28 × 28
[
1 × 1 conv

3 × 3 conv

]
× 12

8 × 8
[
1 × 1 conv

3 × 3 conv

]
× 12

Transition (2) 28 × 28 1 × 1 conv 8 × 8 1 × 1 conv

Transition (2) 14 × 14 2 × 2 average pool,
stride 2

4 × 4 2 × 2 average pool,
stride 2

Dense Block (3) 14 × 14
[
1 × 1 conv

3 × 3 conv

]
× 24

4 × 4
[
1 × 1 conv

3 × 3 conv

]
× 24

Transition (3) 14 × 14 1 × 1 conv 4 × 4 1 × 1 conv

Transition (3) 7 × 7 2 × 2 average pool,
stride 2

2 × 2 2 × 2 average pool,
stride 2

Dense Block (4) 7 × 7
[
1 × 1 conv

3 × 3 conv

]
× 16

2 × 2
[
1 × 1 conv

3 × 3 conv

]
× 16

Classification 1024 7 × 7 global average
pool

4096 flatten

1000 fully-connected, softmax 7 fully-connected, softmax

protocol described in Sect. 5.3. At this point, general performance of the evaluated
CNN models was measured in terms of classification accuracy, i.e.

cAccuracy = Tr P + TrN

Tr P + TrN + FaP + FaN
(5.3)

where Tr P corresponds to the number of true positives, TrN means the number of
true negatives, FaP is the number of false positives, andfinally, FaN is the number of
false negatives of the classified dermatoscopic images. For avoiding overlap between
the training and testing subsets of evaluated data a cross validation evaluation setup
using 10 folds was employed.

The evaluation results of identification of skin lesion types from dermatoscopic
images usingnewCNNmodels and re-trainedmodels ofmodifications of pre-existing
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Table 5.6 DenseNet-169 [30] architecture and its modifications for skin lesion classification

Layers Original DenseNet-169 Modified DenseNet-169

Output size Layer’s structure Output size Layer’s structure

Convolution 112 × 112 7 × 7 conv, stride 2 32 × 32 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool,
stride 2

16 × 16 3 × 3 max pool,
stride 2

Dense Block (1) 56 × 56
[
1 × 1 conv

3 × 3 conv

]
× 6

16 × 16
[
1 × 1 conv

3 × 3 conv

]
× 6

Transition (1) 56 × 56 1 × 1 conv 16 × 16 1 × 1 conv

Transition (1) 28 × 28 2 × 2 average pool,
stride 2

8 × 8 2 × 2 average pool,
stride 2

Dense Block (2) 28 × 28
[
1 × 1 conv

3 × 3 conv

]
× 12

8 × 8
[
1 × 1 conv

3 × 3 conv

]
× 12

Transition (2) 28 × 28 1 × 1 conv 8 × 8 1 × 1 conv

Transition (2) 14 × 14 2 × 2 average pool,
stride 2

4 × 4 2 × 2 average pool,
stride 2

Dense Block (3) 14 × 14
[
1 × 1 conv

3 × 3 conv

]
× 32

4 × 4
[
1 × 1 conv

3 × 3 conv

]
× 32

Transition (3) 14 × 14 1 × 1 conv 4 × 4 1 × 1 conv

Transition (3) 7 × 7 2 × 2 average pool,
stride 2

2 × 2 2 × 2 average pool,
stride 2

Dense Block (4) 7 × 7
[
1 × 1 conv

3 × 3 conv

]
× 32

2 × 2
[
1 × 1 conv

3 × 3 conv

]
× 32

Classification 1664 7 × 7 global average
pool

6656 flatten

1000 fully-connected, softmax 7 fully-connected, softmax

CNN models initially trained from big data are presented in Table 5.11. The best
classification accuracy of the new CNN models and the best classification accuracy
of the modified pre-existing CNN models are shown in bold-text.

As seen in Table 5.11 the top performing CNN model trained only with
HAM10000 data (‘New’ CNN models) was CNN model three with classification
accuracy equal to 76.83%. Among the evaluated pre-existing and modified CNN
models the best classification accuracywas observed by the ResNet-50with the accu-
racy equal to 93.89%, followed by theResNet-152, theMobileNet, theDenseNet-169
and the DenseNet-121 CNN models with classification accuracies equal to 93.52%,
91.32%, 91.30% and 91.21%, respectively. The remaining big data-based CNN
models achieved classification accuracy lower than90%.AllCNNmodels pre-trained
from big datasets for general purpose image classification outperformed the four
evaluated CNN models trained explicitly from the evaluation dataset for skin lesion
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Table 5.7 DenseNet-201 [30] architecture and its modifications for skin lesion classification

Layers Original DenseNet-201 Modified DenseNet-201

Output size Layer’s structure Output size Layer’s structure

Convolution 112 × 112 7 × 7 conv, stride 2 32 × 32 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool,
stride 2

16 × 16 3 × 3 max pool,
stride 2

Dense Block (1) 56 × 56
[
1 × 1 conv

3 × 3 conv

]
× 6

16 × 16
[
1 × 1 conv

3 × 3 conv

]
× 6

Transition (1) 56 × 56 1 × 1 conv 16 × 16 1 × 1 conv

Transition (1) 28 × 28 2 × 2 average pool,
stride 2

8 × 8 2 × 2 average pool,
stride 2

Dense Block (2) 28 × 28
[
1 × 1 conv

3 × 3 conv

]
× 12

8 × 8
[
1 × 1 conv

3 × 3 conv

]
× 12

Transition (2) 28 × 28 1 × 1 conv 8 × 8 1 × 1 conv

Transition (2) 14 × 14 2 × 2 average pool,
stride 2

4 × 4 2 × 2 average pool,
stride 2

Dense Block (3) 14 × 14
[
1 × 1 conv

3 × 3 conv

]
× 48

4 × 4
[
1 × 1 conv

3 × 3 conv

]
× 48

Transition (3) 14 × 14 1 × 1 conv 4 × 4 1 × 1 conv

Transition (3) 7 × 7 2 × 2 average pool,
stride 2

2 × 2 2 × 2 average pool,
stride 2

Dense Block (4) 7 × 7
[
1 × 1 conv

3 × 3 conv

]
× 32

2 × 2
[
1 × 1 conv

3 × 3 conv

]
× 32

Classification 1920 7 × 7 global average
pool

7680 Flatten

1000 fully-connected, softmax 7 fully-connected, softmax

classification, thus indicating that the availability of large data collections is essential
in training robust skin lesion classification models as well as that within the appli-
cation of skin lesion classification CNN transferability is possible, i.e. pre-trained
convolutional neural networks can successfully bemodified and re-trained on smaller
datasets of dematoscopic images and offer competitive classification accuracy.

As the second step, we analyzed the classification accuracy on skin pathology
category level for the best performing CNN classification model, i.e. ResNet-50.
The confusion matrix of the skin lesion classification (using ResNet-50) is shown in
Table 5.12.

As it can be observed within Table 5.12, the highest classification accuracy was
achieved for the actinic keratosis (akiec) skin pathology with accuracy equal to
97.90%, followed by nevus (nv) pathology with accuracy 90.14% and pigmented



5 Evaluation of Big Data Based CNN Models in Classification … 93

Fig. 5.3 Shortcut
connection between a stack
of three convolution layers of
a residual network

benign keratosis (bkl) skin pathology with the accuracy 87.33%. The skin patholo-
gies which were found the most difficult among the evaluated ones to be correctly
classified were melanoma (mel) and basal cell carcinoma (bcc) with classification
accuracies equal to 79.13 and 82.88%, respectively. The experimental results indicate
the potential of computer-aided diagnosis regarding the skin lesions, by employing
image processing and machine learning technology. Moving from the achieved clas-
sification accuracy, both in average (93.89%) and for the case ofmelanoma (79.13%),
we deem that with the development of larger dermatoscopic image datasets and the
progress in designing new CNN architectures, new and more accurate classification
models are feasible in support of the diagnosis of dermatologists.
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Table 5.8 ResNet-50 [31] architectures and their modifications for skin lesion classification

Layers Original ResNet-50 Modified ResNet-50

Output size Layer’s structure Output size Layer’s structure

Convolution 112 × 112 7 × 7 conv, stride 2 32 × 32 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool, stride 2 16 × 16 3 × 3 max pool, stride 2

Convolution 56 × 56
⎡
⎢⎢⎣

1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤
⎥⎥⎦ × 3

16 × 16
⎡
⎢⎢⎣

1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤
⎥⎥⎦ × 3

Convolution 28 × 28
⎡
⎢⎢⎣
1 × 1, 128

3 × 3, 128

1 × 1, 512

⎤
⎥⎥⎦ × 4

8 × 8
⎡
⎢⎢⎣
1 × 1, 128

3 × 3, 128

1 × 1, 512

⎤
⎥⎥⎦ × 4

Convolution 14 × 14
⎡
⎢⎢⎣

1 × 1, 256

3 × 3, 256

1 × 1, 1024

⎤
⎥⎥⎦ × 6

4 × 4
⎡
⎢⎢⎣

1 × 1, 256

3 × 3, 256

1 × 1, 1024

⎤
⎥⎥⎦ × 6

Convolution 7 × 7
⎡
⎢⎢⎣

1 × 1, 512

3 × 3, 215

1 × 1, 2048

⎤
⎥⎥⎦ × 3

2 × 2
⎡
⎢⎢⎣

1 × 1, 512

3 × 3, 215

1 × 1, 2048

⎤
⎥⎥⎦ × 3

Classification 2048 7 × 7 global average pool 8192 flatten

1000 fully-connected, softmax 7 fully-connected, softmax

5.5 Conclusion

In this chapter, an architecture-model over convolutional neural networks, for clas-
sifying skin lesions was presented. The CNN-based architecture is based on pre-
processing of dermatoscopic images followed by segmentation to extract the lesion
area and subsequently processing of the corresponding segment of the image by a
convolutional neural network for classification and labeling to a set of skin pathology
types. In the evaluation new convolutional neural networks were trained via python
packets of Keras and also TensorFlow (CUDA supported). In addition, we modified
and re-trained well known publicly available CNN models for image classification
which have been pre-trained using big data collections. The experimental results
showed that all evaluated modified and re-trained pre-existing CNN models outper-
formed the CNN models trained explicitly from the dermatoscopic image dataset
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Table 5.9 ResNet-101 [31] architectures and their modifications for skin lesion classification

Layers Original ResNet-101 Modified ResNet-101

Output size Layer’s structure Output size Layer’s structure

Convolution 112 × 112 7 × 7 conv, stride 2 32 × 32 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool, stride 2 16 × 16 3 × 3 max pool, stride 2

Convolution 56 × 56
⎡
⎢⎢⎣

1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤
⎥⎥⎦ × 3

16 × 16
⎡
⎢⎢⎣

1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤
⎥⎥⎦ × 3

Convolution 28 × 28
⎡
⎢⎢⎣
1 × 1, 128

3 × 3, 128

1 × 1, 512

⎤
⎥⎥⎦ × 4

8 × 8
⎡
⎢⎢⎣
1 × 1, 128

3 × 3, 128

1 × 1, 512

⎤
⎥⎥⎦ × 4

Convolution 14 × 14
⎡
⎢⎢⎣

1 × 1, 256

3 × 3, 256

1 × 1, 1024

⎤
⎥⎥⎦ × 23

4 × 4
⎡
⎢⎢⎣

1 × 1, 256

3 × 3, 256

1 × 1, 1024

⎤
⎥⎥⎦ × 23

Convolution 7 × 7
⎡
⎢⎢⎣

1 × 1, 512

3 × 3, 215

1 × 1, 2048

⎤
⎥⎥⎦ × 3

2 × 2
⎡
⎢⎢⎣

1 × 1, 512

3 × 3, 215

1 × 1, 2048

⎤
⎥⎥⎦ × 3

Classification 2048 7 × 7 global average pool 8192 flatten

1000 fully-connected, soft-max 7 fully-connected, softmax

used in the evaluation, with the best performing classification model being ResNet-
50with the accuracy equal to 93.89%.Analysis on skin lesion pathology type showed
that melanoma and basal cell carcinoma were able to be correctly classified 79.13
and 82.88% of the times, respectively, while other types of pathologies like actinic
keratosis and nevus were more easily correctly classified with accuracies 97.90 and
90.14%, respectively. The evaluation results show the potential of developing soft-
ware tools for accurate computer-aided diagnosing the skin diseases, which can be
used as objective supportive tools for dermatologists.
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Table 5.10 ResNet-152 [31] architectures and their modifications for skin lesion classification

Layers Original ResNet-152 Modified ResNet-152

Output size Layer’s structure Output size Layer’s structure

Convolution 112 × 112 7 × 7 conv, stride 2 32 × 32 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool, stride 2 16 × 16 3 × 3 max pool, stride 2

Convolution 56 × 56
⎡
⎢⎢⎣

1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤
⎥⎥⎦ × 3

16 × 16
⎡
⎢⎢⎣

1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤
⎥⎥⎦ × 3

Convolution 28 × 28
⎡
⎢⎢⎣
1 × 1, 128

3 × 3, 128

1 × 1, 512

⎤
⎥⎥⎦ × 8

8 × 8
⎡
⎢⎢⎣
1 × 1, 128

3 × 3, 128

1 × 1, 512

⎤
⎥⎥⎦ × 8

Convolution 14 × 14
⎡
⎢⎢⎣

1 × 1, 256

3 × 3, 256

1 × 1, 1024

⎤
⎥⎥⎦ × 36

4 × 4
⎡
⎢⎢⎣

1 × 1, 256

3 × 3, 256

1 × 1, 1024

⎤
⎥⎥⎦ × 36

Convolution 7 × 7
⎡
⎢⎢⎣

1 × 1, 512

3 × 3, 215

1 × 1, 2048

⎤
⎥⎥⎦ × 3

2 × 2
⎡
⎢⎢⎣

1 × 1, 512

3 × 3, 215

1 × 1, 2048

⎤
⎥⎥⎦ × 3

Classification 2048 7 × 7 global average pool 8192 flatten

1000 fully-connected, soft-max 7 fully-connected, softmax

Table 5.11 Accuracy
regarding the dermatoscopic
image classification (in
percentages), as for different
CNN model architectures

CNN Model Accuracy (%)

New CNN Model 1 72.68

New CNN Model 2 76.38

New CNN Model 3 76.83

New CNN Model 4 75.29

Re-trained VGG16 (modified) 85.19

Re-trained MobileNet (modified) 91.32

Re-trained DenseNet-121 (modified) 91.21

Re-trained DenseNet-169 (modified) 91.30

Re-trained DenseNet-201 (modified) 89.56

Re-trained ResNet-50 (modified) 93.89

Re-trained ResNet-101 (modified) 90.93

Re-trained ResNet-152 (modified) 93.52
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Table 5.12 Confusionmatrix for skin lesion classification using ResNet-50 (modified) CNNmodel

akiec bcc bkl df mel nv vasc

akiec 97.90 0.24 0.97 0.63 0.03 0.07 0.16

bcc 8.17 82.88 1.36 2.53 1.17 0.97 2.92

bkl 7.82 0.45 87.33 3.05 0.27 0.27 0.81

df 8.92 1.00 1.91 86.17 0.09 0.27 1.64

mel 5.22 8.70 2.61 2.61 79.13 0.00 1.74

nv 4.93 1.41 1.41 0.70 0.70 90.14 0.70

vasc 5.50 3.06 2.45 3.67 0.92 0.31 84.10
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Chapter 6
Combined Radiology and Pathology
Based Classification of Tumor Types

N. Ravitha Rajalakshmi , B. Sangeetha, R. Vidhyapriya,
and Nikhil Ramesh

Abstract Computer Aided Detection plays a crucial role in the early detection of
deadly diseases such as cancer (or) tumor. Pathology and radiology images form the
core of tumor diagnosis. Pathology images provide clinical information about the
tissues whereas the radiology images can be used for locating the lesions. This work
aims at proposing a classification model which categorizes the tumor as oligoden-
droglioma (benign tumors) (or) astrocytoma (Malignant tumors) using features of
both the radiology and pathology images. Dataset from MICCAI Computational
Precision Medicine Challenge is used for model building. The proposed model uses
dedicated workflows for processing the pathology and radiology images. The feature
descriptors of the images are obtained using pre-trained Inception v3 model. The
resulting vectors are then used as input to the linear SVM (Support Vector Machine)
classification model. The SVM model provided an accuracy of 75% on the blind
folded test dataset provided in the competition.

6.1 Introduction

Brain tumor is a collection ofmass or abnormal tissues in the brain. Early detection of
tumor [10] can result in better treatment and speedy recovery of the patients.With the
increased availability of digitized images, computer aided detection systems (CAD)
are performing better at tasks like locating the tumor regions and also categorizing the
grade of tumor. Amongst the various tumor grades, detection of lower grade tumors
is still found to be a challenging task for CAD systems as the tumor cell structure
is similar to the normal cells. Radiology Images are used at primary screening level
wherein doctors look out for any suspicious regions (or) accumulation of white
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mass. Then based on the report of radiologist, pathology of the suspicious regions is
studied to identify the grade andmalignancy of tumor. Further in the prognosis stage,
information fromboth pathology and radiology images are correlated to decide on the
further course of action. Sometimes, the pathology may reveal the abnormal region
to be normal. In particular, sensitivity of models in identifying low-grade tumors at
initial screening level is so less. Hence, the challenge was an initiative to integrate
various levels of information from both the radiology and pathology images.

6.2 Methodology

In this work, an independent image processing pipeline is used for processing
pathology and radiology images. The images are gleaned and necessary structures
suitable for the task are extracted. It is then provided as input to pretrained Inception
v3 for extraction of distinct high-level complex feature descriptors. The descriptors
of pathology and radiology images are then concatenated. In linear SVM hypothesis
space, the model for segregating the descriptors of the two classes are then identi-
fied. Figure 6.1 illustrates the overall workflow of the proposed system for tumor
classification.

6.2.1 Dataset Description

The dataset for the work is obtained from 2018 Computational Precision Medicine
Challenge Organized by MICCAI. The dataset contains both the Radiology and
Pathology images obtained from the same patients. Each case corresponds to a single
patient. For each case, the following set of images are provided.

• One whole slide tissue image.
• A set of Magnetic Resonance (MR) images which comprises of T1 (pre and post

contrast), FLAIR and T2.

Fig. 6.1 Workflow for tumor classification
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Table 6.1 Distribution of
cases across two different
classes in training set

Class Number of cases

Oligodendroglioma 16

Astrocytoma 16

The Radiology data are provided in NIFTI format. The pathology images are
Hematoxylin and Eosin (H&E) stained whole slide tissue images in SVS format.
SVS files are used by a number of medical/microscope scanners such as Aperio,
scanscope (AxioVision), and others. It actually contains the images acquired at
different resolution. Table 6.1 shows the distribution of cases corresponding to each
class in Training set.

6.2.2 Processing Pathology Images

Whole slide images will contain diagnostic images of varying resolution which are
arranged as pyramidal structure starting from an image with lowest resolution to
highest resolution. These microscopic images contain large number of pixels in the
order of 100,000 * 100,000 which is difficult to analyze because of the constrained
memory. Hence, it is usually divided into smaller tiled images of specific size [3, 14].
In this work, only the baseline image (i.e.) image with highest resolution is used for
further processing. Image is divided into patches of size 256 * 256. Only the patches
that contained tissue occupying 90% of the patch are considered.

Usually, histopathology images are stained using dyes and then it is captured. Due
to the differences in the application of dyes, preparation of the tissue specimen and
the time spent in the staining process before capturing the image, color variations are
introduced in the resulting images [15]. To address the problem, color normaliza-
tion of histopathological images is generally carried out before conducting further
analysis. In this work, histogram based Color Normalization [8] known as stretch is
applied to balance the number of white pixels. The resultant image after applying
stretch to a patch image (Fig. 6.2(a)) is shown in Fig. 6.2(b).

6.2.2.1 Color Deconvolution

Nuclei of benign tumor’s (oligodendroglioma) appear round shaped and exhibit
smooth texture whereas the nuclei of malignant tumor’s (astrocytoma) appear elon-
gated with irregular texture [7, 14]. Hence, to differentiate between the different
types of tumor, morphology of cell nuclei is considered as an important attribute. To
facilitate segmentation of nuclei, Color Deconvolution is performed. This separates
the stain components from the image.

H&E images are stained using two components Hematoxylin and eosin respec-
tively. Hematoxylin stains the nuclei blue and Eosin stains the cellular structures
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pink. Separation of the components will enable the separation of nuclei. Stain sepa-
ration is carried out in the optical density space. Beer-lambert law defines the optical
density space as

OD = − log10(I )

where I denote input RGB image wherein pixels are normalized to a value between
[0, 1]. The Saturation of stains can be extracted from the optical density image using
the simple color deconvolution scheme given below.

OD = v · S; S = v−1(OD)

where v and S denote stainmatrix and the saturation of stains onto pixels respectively.
In the work, we have utilized a standard v matrix for H&E as provided in [9].

v =
⎡
⎣
0.65 0.70 0.29
0.07 0.99 0.11
0.27 0.57 0.78

⎤
⎦

Rows in the stain matrix corresponds to haematoxylin, eosin and DAB space
respectively. Multiplying the inverse of v with optical density image results in the
saturation imagewhose channels correspond to the concentrationof eachof the stains.
Only the channel corresponding to haematoxylin is used. The resulting channel is
subjected to segmentation to recover darker objects (nuclei) from the rest of the
image as shown in Fig. 6.2(c).

6.2.2.2 Nuclei Segmentation

Many techniques are available to segment nuclei from histopathology image [1, 5].
In this work, Local Maximum Clustering is used for segmentation of the nuclei. It
utilizes the response of LoG filter which smoothens the image using Gaussian filter
and identifies the pixel corresponding to abrupt intensity changes using second order
derivative Laplacian operator. The LoG records maximum response for the pixels
corresponding to the centre of the nuclei. Clustering algorithm then uses pixels with
maximum value in a defined neighbourhood of the filter response as seed points and
identifies regions corresponding to the nuclei through region growing strategy. The
pixels are then labelled using the labels corresponding to its nearest local maxima
whereby the size of the local neighbourhood is set to a value of 10. The nuclei
detected for sample image is shown in Fig. 6.2(d). Using the mask generated by the
algorithm, the pixel intensity of nuclear regions is preserved in the original image
characterizing the nuclei texture [7]. Figure 6.2(e) shows the image whereby texture
of the segmented nuclei is recovered.
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(a) (b)                                       (c)

(d) (e)

Fig. 6.2 a Sample patch extracted from Hematoxylin and Eosin stained whole slide image (WSI).
bResultant Image after applying stretch algorithm. cHematoxylin constituent in the image extracted
using color deconvolution. d Detected nucleus in the image using local maximum clustering.
e Retaining the intensity of the nuclei from the original image

6.2.2.3 Feature Extraction

Deep Convolutional Neural Networks are considered as rich feature extractors char-
acterizing both shape and texture of objects in an image. InH&E stainedWSI images,
processing is carried out using patches. Hence, multiple feature descriptors will be
extracted from a single WSI each corresponding to single patch of WSI slide [3].
Pooling is then used as an aggregator to find the global descriptor for the entire WSI
slide. In this work, inception v3 [11] model pretrained on ImageNet dataset is used
as feature extractor. Inception v3 was selected as it has the ability to extract features
of varying scale by applying convolutions in parallel to an input feature map and
concatenating its output responses. The resulting feature maps has rich information
about the input data. The patches were fed as input to Inception v3 and the vector
generated after the average pooling layer is used as the feature vectors. Figure 6.3
illustrates the computation of global descriptor. It is computed as themaximum value
recorded for each feature across the feature descriptors of individual patches.
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Fig. 6.3 Global feature descriptor extraction for whole slide image (WSI) using pretrained deep
convolutional network

6.2.3 Processing Radiology Images

The two major non-invasive imaging modalities involved in the diagnosis of tumor
in brain include: Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI) [12]. The most common sequences of MRI images of high spatial resolution
with good contrast in the tissues are provided in the dataset. Table 6.2 summarizes
the various MRI sequence images provided, the intensity of various tissue types in
these images and their TE and TR times. The MRI images are generally captured by
introducing amagnetic field using an external varying levels of RF energy. Repetition
Time (TR) denotes the time lapse between the successive pulses of RF signals to the
same slice and Time to Echo (TE) indicates the time difference between the delivery
of the RF signal and the echo signal. They capture images from a different anatomical
plane and represents the prominent tissue types: Gray Matter (GM), White Matter
(WM), Cerebrospinal Fluid (CSF) using varying intensities.

Table 6.2 Characteristics of MRI Images with varying weights

Weighting Anatomical
plane

Tissue types Repetition
time (TR)

Time to
echo (TE)

Gray
matter
(GM)

White
matter
(WM)

Cerebra
spinal fluid
(CSF)

T1-weighted Sagittal, axial,
coronal

Dark Light Dark 500 14

T2-Weighted Axial Light
gray

Dark
gray

Bright 4000 90

T1-weighted
Contrast

Sagittal Gray Light Dark 500 14

Flair Axial Light
gray

Dark
gray

Bright 9000 114
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Anatomical plane is primarily classified into three: axial plane; slice perpendicular
to the z-axis, sagittal or median plane; the plane that divides the brain into left and
right parts is known as sagittal or median plane and Coronal or Frontal plane; plane
that divides the brain into posterior and anterior parts. Not all the four images were
available for every case. In this work T1C and T2 weighted images are used as these
images were available for every case and T2weighted image enables clear separation
of tumor cells.

TheT2-weighted image are co-registeredwith T1weighted contrast image and are
pre-processed to improve the visibility of tumor. Preprocessing includes bias field
correction, skull striping and partial volume estimation which can be done using
popular open source tools FSL, SPM, FreeSurfer etc [4]. In this work, FSL Library
[6] is used.

6.2.3.1 Image Registration

Aligning the multiple volume images into the same geometric space is called Co-
registration. T2 weighted image is co-registered using T1C as reference image as
suggested by physicians. FLIRT command of FSL is used for this purpose.

6.2.3.2 Bias Field Correction

It is used to ensure piecewise constant property across all the images. Piecewise
constant property states that the intensities of different tissue classes should be the
same across the entire image. In other words, the intensity of graymatter appearing in
any part of the image should be the same. Moreover, the intensity of the gray matter
should not be larger than the intensity of the white matter tissue class. These bias
in the intensities are otherwise called as intensity inhomogeneity or shading which
is caused during the image acquisition process. The inhomogeneity in the images
can be handled by retrospective methods or prospective methods. The retrospective
approach focuses on removing the shading after the image is captured by applying
appropriate mask. In this work, the bias correction is done with the help of FMRIB
Software Library (FSL). The FSL package uses segmentation-based methods for
performing dual task of segmenting different tissue classes from the image and
also handling inhomogeneity. The bias corrected T2 weighted image is shown in
Fig. 6.4(a).

6.2.3.3 Skull Stripping

The MRI images acquired may contain extra-cranial or non-brain tissues like skin,
fat, muscles, scalp, eyes etc. The Skull striping [2] is a pre-processing technique
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(a) (b)                                     (c)

Fig. 6.4 Processing of radiology images: slice of T2-weightedMRI image. a Bias corrected image.
bSkull Stripping usingBET. c Partial volumemap of the fourth class obtained using FASTalgorithm

applied to segregate the non-brain tissues from the brain tissues in an MRI image.
The non-brain tissues have to be stripped off because of its overlapping intensities
with other tissue classes. Various approaches available for skull scripting include
morphology-based approaches, intensity-based methods, deformable-surface based
method and hybrid-based method.

In this work, Brain Extraction Tool (BET) of the FSL library which employs the
deformable-surface based approach for skull stripping. Deformable-surface method
uses an active contour region for identifying the boundary of the objects in a given
image. Active contour region starts with a closed curve and either expands or shrinks
based on the gradient value. The contour defines the region of interest in the images
(in this case the skull boundary of the image) as a boundary of points. These boundary
points are interpolated using the linear, polynomial or spline function to define the
contour of the image in identifying the shape. The skull stripped image of Fig. 6.4(a)
is shown in Fig. 6.4(b).

6.2.3.4 Partial Volume Estimation

FAST tool of FSL is used for Partial Volume Estimation. It extracts tissues of varying
types specified in Table 6.2 using Hidden Markov Random Field with Expectation
Maximization. It generates partial volume maps for four classes gray matter, white
matter, Cerebra Spinal Fluid and other tissues (tumor). The partial volume map of
tumor corresponding to T2weighted image (Fig. 6.4(c)) is used for feature extraction.

6.2.3.5 Feature Extraction

As in the case of pathology images, global descriptor for entire voxel is obtained.
It utilizes 10 slices in the middle region of the brain which is provided as input for
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Inception v3. The feature descriptors for every slice is extracted and then max pooled
to generate a global descriptor.

6.2.4 Support Vector Machine

Support Vector Machine (Cortes C, 1995) is a statistical machine learning algorithm
which finds an optimal hyperplane to segregate the data points belonging to two
different classes. The algorithm formulates the hyperplane detection as a constrained
optimization problem whereby It selects the hyperplane that maximizes the margin
(i.e.) the distance from the hyperplane to the nearest data points of both the classes. In
thiswork, feature descriptors of radiology and pathology images are used to construct
a linear SVM to find the optimal set of parameters {W, b} for the hyperplane in the
input space which can provide better generalization accuracy.

6.3 Results

Since the number of samples in the input dataset is 32, reliable accuracy estimate
can be obtained either by using the technique of cross validation or bootstrapping.
In this work, model is evaluated using cross validation. The dataset is divided into
three folds and model is trained on two of three folds and the remaining one-fold is
used for evaluation [13]. Receiver Operating Characteristic curve which measures
the goodness of the model is shown in Fig. 6.5. ROC is a plot of false positive rate
vs true positive rate at varying score levels. The graph indicate that Radiology data
is not highly discriminative as it records only an average AUC of 0.51 (Fig. 6.5(a))
whereas pathology data provides an AUC of 0.62 (Fig. 6.5(b)). Using Combined
model (i.e.) concatenating the vectors of Radiology and Pathology offered a better
average AUC of 0.72 as shown in Fig. 6.5(c). Non-linear SVM when tried as an
option resulted in poor accuracy even with hyperparameter tuning with Grid Search
CV. The top performing model for combined pathology with AUC of 0.95 is used
for the blind folded test set provided in the competition and it recorded an accuracy
of 75% as per the competition scoreboard. Table 6.3 summarizes the performance
of the proposed model on Training and Test dataset. The code for the work can be
found at https://github.com/Ravitha/Combined-Pathology-and-Radiology.

6.4 Conclusions

Aunified framework for combining radiology andpathology images is explored in the
work. To facilitate extraction of distinct features, region of interest in both pathology
images and radiology images are segregated and then processed using pretrained

https://github.com/Ravitha/Combined-Pathology-and-Radiology
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Fig. 6.5 ROC curve of the SVM classifier trained using the cross validation, false positive rate is
plotted on the x-axis, and the true positive rate is plotted on the y-axis a Radiology data. b Pathology
data. c Combining radiology and pathology data

Table 6.3 Accuracy of the
model evaluated for train and
test set using 3-fold cross
validation

Dataset Input data AUC Accuracy (%)

Train (32) Radiology 0.51 50

Pathology 0.62 61

Combined 0.72 70

Test (10) Combined – 75

deep convolutional network. The resulting descriptors are found to be effective
in segregating the classes. The model can be enhanced by eliminating correlated
features using dimensionality reduction techniques or by utilizing a neural network
as meta learner to combine the decisions of individual SVM classifiers trained on
the pathology and radiology images separately.
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Chapter 7
Improved Deep Learning Techniques
for Better Cancer Diagnosis

K. R. Sekar, R. Parameshwaran, Rizwan Patan, R. Manikandan,
and Ambeshwar Kumar

Abstract Over the past several decades, Computer-Aided Diagnosis (CAD) for
diagnosis of medical images has prospered due to the advancements in the digital
world, advancements in software, hardware and precise and fine-tune images
acquired from sensors.With the advancement in the field of medical and applications
of Artificial Intelligence scaling to the height of improvement, modern state-of-the-
art applications of Deep Learning for better cancer diagnosis have been incepted in
recent years. CAD and computerized algorithms and solutions in diagnosing cancer
obtained from different modalities, i.e., MRI, CT scans, OCT and so on plays an
immense impact on disease diagnosis. Learning model based on transfer mecha-
nisms that stored knowledge for one aspect and using it for another aspect with Deep
Convolutional Neural Network paved the way for automatic diagnosis. Recently,
improved deep learning algorithm has resulted in great success resulting in robust
image characteristics, involving higher dimensions. Analysis of bi-cubic interpola-
tion preprocessing technique paves way for robust obtaining of a region of interest.
For an inflexible object with a higher amount of dissimilarity, a comprehensive form
for detecting the region of interest and determination of actual positioning may
not be robust. Robust perception and localization schemes are analyzed. By inte-
grating Deep Learning with Neighborhood Position Search unseen cases are said
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to be identified and segmented accordingly via Maximum Likelihood decision rule,
forming robust segmentation. The favorable result of an a better cancer diagnosis is
indeed contingent on the cancer diagnosis however, an anticipating prediction should
consider certain factors more than a straight forward diagnostic decision. Besides
the application of different medical data analyses and image processing techniques
used in the study of cancer diagnosis deeper insights of the relevant solutions in the
light of higher collections of deep learning techniques are found to be vital. Hence,
certain factors to be analyzed are the forecasting of risk involved, forecasting of
cancer frequency and the forecasting of cancer survival. These factors are analyzed
according to the diagnosis criterion, sensitivity, specificity, and accuracy.

Keywords Computer-Aided diagnosis · Artificial intelligence · Deep
convolutional neural network · Supervised deep learning · Recurrent neural
network

7.1 Computer Analysis Interpretation for Medical Visual
Representation

Computer Analysis Interpretation refers to the system that aids the doctors while
interpreting images pertaining tomedical data.With the assistance of certain imaging
process like, high energy electromagnetic radiation, and diagnosing ultrasound
images, on the other hand, requires voluminous amount of information to be handled
from the side of doctor involving comprehensive analysis in a minimum interval.
Digital images processed by computer aided systems are potentially utilized to
identify the presence or absence of disease at an early stage.

One of the prominent causes of extinction of life globally is cancer. Both eminent
research personalities and physicians are facing threats of fighting cancer. Based on
the research conducted by the American cancer society in 2019, the occurrence of
death rate due to skin cancer is 96,480, death rate due to lung cancer is 142,670,
mortality due to breast cancer is 42,260, mortality rate due to prostate cancer is
31,620 and death rate due to brain cancer is 17,760 [1].

Therefore, the topmost priority for saving lives lies in the cancer discovery at the
preliminary stage. Different visual examination and manual procedures are carried
out to discover and diagnosis cancer at the preliminary stage. However, this human
intervention ofmedical images necessitates a higher amount of time consumption and
results in different types of faults. For this reason, diagnosis of disease using computer
systems were brought to helps the medical experts and specialists to enhance the
effectiveness of medical image interpretation.
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7.1.1 Medical Imaging Types and Modalities

In recent years, disease diagnosis and patient treatment are said to be performed
with minimal side effects. Medical imaging involves the materials and methods of
producing representations of interior visual images for clinical medicine analysis and
interposition accordingly. In other words, it is defined as the visual representation
of the function of certain organs or tissues. With the aid of medical imaging helps
in disclosing the concealed by the skin and also utilized in the diagnosing and treat-
ment of the corresponding disease. Using medical imaging, abnormalities arising are
compared with the normal anatomy and physiology.

With the visual representation, this objective is said to be attained where the
functioning of organs inside the body is said to be perceived without the requirement
for surgery or supplementary measures. Medical imaging refers to the utilization
of imaging modalities to acquire pictures of the human body, track ongoing issues
and finally assist in treatment. Hence, medical imaging is said to be of use for both
disease diagnosis and healing purposes.

Different types of medical imaging techniques are said to exist, each possessing
its own advantages and disadvantages. The following section gives an introduction
to the most common imaging techniques, their working, advantages, and limitations
that will pave the way for accurate imaging. Some of the common medical imaging
types for better cancer diagnosis are shown in Fig. 7.1.

As depicted in the above figure, different medical imaging types along with their
working, advantages, and disadvantages are given below.

7.1.1.1 Ultrasound

One of the safest forms of medical imaging is ultrasound. This is because of the
reason that there arises no harmful hazard while utilizing the ultrasound due to the
sound waves and Doppler used instead of the ionizing radiation. As in the case of
sound waves, a conducting gel is utilized as a probe, with the aid of those waves, an

Fig. 7.1 Block diagram of medical imaging types
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image is crated for the purpose of diagnosis. On the other hand, in case of Doppler,
sound waves are utilized as diagnosis tool where the blood flow is performed via
arteries and veins.

Working and Uses

• The device includes a probe that continuously emits high-frequency sound waves.
• The device correspondingly bounces off of several body fragments, resulting in

echoes.
• Contrarily, when these bounce back to the probe, it can also detect them.
• This, in turn, results in the live image on another scanner, lasting from 15 to

45 min, performed either externally internally or endoscopic ally.

Advantages

• Minimal risk involved
• Cost-effective medical imaging.
• The safest form of medical imaging.

Limitations

• Found to be highly allergic.
• Causes sore throat or bloating.
• Extreme cases result in internal bleeding.

7.1.1.2 X-Ray Imaging

The second formof imaging used for cancer diagnosis is themost customarily utilized
imaging types and this is called theX-Ray imaging.Here, anX-raymachine is utilized
to obtain anatomy images most common bone cancer diagnosis. The working of X-
ray is based on the wavelength and frequency that are found to be unable to be
seen with the naked human eye but pierce into the skin to produce an impression of
what’s going on underneath. This type of imaging is specifically utilized for cancer
diagnosis via mammography.

Working and Uses

• One of the types of electromagnetic radiation is x-rays, found to be invisible to
humans, easily penetrate through the body.

• The patient possessing a detector on the other end will see the absorbent rate, with
which an image is said to be generated.
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• In certain cases, even a contrast agent is said to be injected to the patient with the
purpose of seeing the soft tissues more easily on the image.

• As the process is said to be very fast, the entire procedure is said to take place
within a few minutes.

Advantages

• Low cost incurred
• Quick and relatively ease of patient.

Limitations

• Risk due to radiation injection.
• Radiation-induced cancer.

7.1.1.3 CT Scan

CT scan also referred to as Computer Tomography or Computed Axial Tomography
(CAT) utilizes X-rays to generate a cross-sectional body image. It consists of a large
circular opening provided with a source, a detector that rotates automatically around
the patient resulting in a snapshot. These snapshots are then merged into one or any
number of images which are then further used for cancer diagnosis.

Working and Uses

• During the performing of a CT scan, a table is used where the patient lies down.
• The table here moves via a doughnut-like ring called a gantry.
• The gantry on the other end possesses an X-ray tube.
• Rotating of this X-ray tube is conducted on all sides of the patient. At this juncture,

narrow beams of X-rays are shoot via the body.
• Finally, the digital detectors pick up the X-rays that are found to be directly

opposite the source.

Advantages

• Find tumors and detail picturesque after a conventional scan.
• Monitoring is also said to be an important advantage of CT scan allow progress

to be kept of any developing conditions, i.e., cancer.
• Greater clarity than conventional X-rays.
• Prevents the requirement for exploratory surgery.
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Limitations

• Risk of cancer.
• Harm to the unborn child.
• Possibility of an allergic reaction.

7.1.1.4 MRI (Magnetic Resonance Imaging)

Avibrant magnetic field is utilized by the so calledMRI that in turn generates images
of body portions usually invisible through x radiation or cross sectional images. Even
structures of tissue found to be very tender in nature are also measured via MRI, or
identify tumors within the body. With this, even a joint or ligament are said to be
observed accurately rather than just outside the view. Customarily, MRI is utilized
in diagnosing strokes, tumors and brain functionalities.

Working and Uses

• Powerful magnets are employed in MRIs.
• The magnets seen powerful in nature tend to push the protons in the body and

accordingly align with that field.
• On the other hand, upon turning off of the radio frequency, the energy released at

this juncture are seen to be detected by the MRI sensors during realignment of a
proton with the magnetic field.

Advantages

• No side effects.
• MRI is painless and found to be highly safe.
• They do not possess any radiation exposure as found in the case of X-ray.

Limitations

• With the involvement of a strong magnet, can result in a hazard.
• Loud noise requires ear protection.

7.2 Review of Cancer Diagnosis via Novel Deep Learning

Feature extraction is considered to be the preliminary steps in machine learning.
Several feature extraction methods and mechanisms for discrete cancer types are
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Fig. 7.2 A depiction of ANN

explored in recent years. Despite the effectiveness and efficiency explored, these
feature extraction materials and methods possess certain deficiencies. To control and
enhance the performance, several mechanisms in learning have been presented and
investigated in the recent past.

High-level feature depiction is being developed by learning the deep features
involved in it [2]. For example, cancer detectionwith favorable performance has been
detected using convolutional neural networks. Due to nonlinear nature of processing
involved in neurons, neural networks or improved deep learning possess the poten-
tiality of performing complicated computation.With the higher amount of prediction
being said to be attained using an artificial neural network, it is said to be higher in
use as far as the medical images are concerned.

To be more specific, in an artificial neural network or improved deep learning,
test images considered for experimentation are provided as input to the neurons
for training. Followed by which the backpropagation algorithm is utilized to train
neurons. Then, the resultant output images are said to be compared to those of the
input images, where the error signal is said to be obtained if a proper match is not
said to occur. Figure 7.2 given below shows the sample depiction of ANN.

As illustrated in the above figure, three layers are present in the ANN structure.
They are:

• Input layer.
• Hidden layer.
• Output layer.

To start with, in the input layer, the elementary component of computation inANN
is the neuron or the node present in the input layer. It also received input from certain
other nodes also and with the aid of the hidden layer where the actual processing is
performed measures an output.

Each input possesses the corresponding weight factor that is said to be allocated
based on the relative significance to other input nodes or neurons. Corresponding,
the node or the neuron is said to be applied with a certain task to the corresponding
weighted input sum, resulting in the disease diagnosis in case of medical imaging.
In other words, the input layer provides information from the outside to the network
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and hence, in this layer no computation is said to be performed in any of the input
nodes, where only passing of the information to the hidden nodes is said to exist.

In the hidden layer where the hidden nodes are present does not communicate
with each other due to the absence of direct communication hence it is referred to
as the hidden layer. However, arithmetical calculations and information transfer are
said to be performed between input and output layer. Therefore, the hidden layer
comprises of group of hidden nodes.

Finally, the actual computation and transformation of information are said to be
conducted in the output layer where the output nodes are present and here only the
contact with the output world is said to take place here. In the activation function, the
output from the neuron is measured. Here, the non-linearity is said to be established
into the neuron output. This is because of the reason that most medical imaging is
said to be non-linear in nature and neurons have to be learned for these corresponding
non-linear representations. Every non-linear representation obtains a single number
and conducts a definite mathematical operation. Some of the activation functions
included is:

• Sigmoid.
• Tanh.
• ReLU (Rectified Linear Unit).

Tominimize the error, different types ofweights are prevalent and according to the
type of cancer to be diagnosed, weights are adjusted accordingly. This processing is
said to proceed until the error is said to be nullified. In the design of a neural network,
a layered structure is present with different numbers of nodes found to be connected
with each other and an activation function.

Some of the non-linear transformation model used for better cancer diagnosis
is threshold function, tangent hyperbolic function sigmoid function and so on.
Depending upon the type of cancer diagnosis, the usage of the activation function
also differs. Input patterns (i.e. image structure) are provided as input to the network
in input layer, which is then connected to the hidden layer and this hidden layer is in
turn association with the output layer.

7.2.1 Deep Convolutional Transfer Learning-Based Neural
Network

In recent years, convolutional neural networks (CNNs) have beenproven to efficiently
differentiate between benign and malignant lesions. Compared with conventional
methods, CNNs minimizes the process involved in the design of the image feature
extraction. To be more specific, they provide image or feature characteristics directly
into the network that in turn identifies the selective features in an automatic manner.

The convolutional neural network (CNN) being specialized feed-forward neural
network processes multi-dimensional data. The architecture includes layers to be
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convoluted, layers to be pooled and finally, forming a completed set of layers in
connected form. Figure 7.3 illustrates the architecture of CNN used in diagnosis
of cancer. When compared to layers associated in a fully connected form, a single
element of layer to be convoluted is specifically associated with a trivial open field
of its input.

On the other hand, the filter bank is associated with the connection weight and
the functions to be convolved are used to slide the filter across the input. This is turn
forms activations at the corresponding receptive field that combines simultaneously
resulting in a feature map.

A CNN is a type of Deep Learning algorithm that acquires an input image, allo-
cates weights and bases to several images features so that efficient differentiation is
said to take place between them. As far as pre-processing is concerned, the convo-
lution network is said to be performed in a negligible pattern upon comparison with
the other classification types. While in elementary models, filters are said to be
performed manually with enough form of training, CNN has the potentiality to learn
these filters.

With the aboveCNNarchitecture, the classification of tumors of a cancer diagnosis
is performed. The convolution operation as depicted in the above figure comprises
passing a kernel over an input volume representing an image. During this pass, the
image value that matches kernel size is performed with a matrix multiplication to
provide the value of single-cell on the output volume. The kernel here then slides
in the correct direction. This is performed in an iterative manner until the iteration
reaches the final position. If the sliding is performed by 1, it is called stride of one
with the total positions being 4.

On the other hand, if the stride is increased by 2, it is called stride of two with
the total positions being 2. The next element included in deep CNN is padding.
Padding is a technique that includes zeros to the image margin to enhance the size.
The padding required to achieve a similar volume on both the convolution side is
called the Same Padding. Figure 7.4 show the tumor classification with the resultant
values to be either ofmalignant or not. The dashed images represent misclassification
of tumor type via CNN.

As far as transfer learning-based neural networks with deep convolution is
concerned, it transfers the knowledge according to the input pattern being considered

Fig. 7.3 CNN architecture
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Fig. 7.4 Cancer diagnosis using CNN

and is customarily advantageous with confined annotated data, to name a few are
image cytometry. In these cases, manual annotations are found to be time-consuming
to be acquired, necessitating a higher level of expertise tomake. Besides, the biomed-
ical images for cancer diagnosis said to be trained using CNNs that are extracted with
specific experimental settings also results in substandard detection or suggestions.

To eliminate the above-said disadvantages, large annotated datasets are said to be
first pre-trained using the new CNNs. Followed by which the transferred parameter
values generating better initial values are said to be regulated to the pertinent chosen
data. In addition, transfer learning also permits the attachment of intense networks
according to hardly any task distinct annotated images. Besides speedy concurrence
is also said to be attained contributing to a higher level of classification performance
and findings. Therefore, by integrating both transfer learning and deep CNNs, results
in a higher and accurate classification rate.

7.2.2 Data Augmented Convolved Neural Network

Data augmentation [3] in machine learning refers to the methods that artificially
enhance a dataset by administering a modification on the existing samples, hence
augmenting the quantity of accessible training data. Despite the presence of new data
points that are not self-sufficient and uniformly dispersed, absolutely establish the
models and enhance findings, as confirmed by statistical learning. For the past few
years, data augmentation has been in the long utilized in machine learning and it has
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Fig. 7.5 Schematic generalization views

been recognized as an analytical element of several models. Framing a high-level
context of data augmentation for CNN includes the following.

Figure 7.5 given below shows the schematic view of generalization performance
with data augmented CNN.

As depicted in the above figure, the three generalization view for data augmenta-
tion address over fitting from the root problem, where the design is preceded with the
assumption that more information is said to be extracted via augmentation, therefore
contributing efficient disease diagnosis, specifically, a cancer diagnosis.

7.2.2.1 Dropout Regularization Technique

Dropout involves a regularization technique that proceeds with the assumption of
zeroing out all the activation values. This is performed by selecting the neurons in a
random manner during simulation. With the aid of this threshold value, the network
in turn is said to obtain features that are said to bemore robust in nature. Besides, with
the assistance of new type of dropout called, Spatial Dropout, instead of dropping
individual neurons, the entire features were dropped.

7.2.2.2 Batch Normalization Regularization Technique

One of the sought out regularization technique that is designed based on the normal-
ization of activation sets is the batch normalization. Here, the normalization is said
to be performed in batch as it includes both subtraction and division. Here, two oper-
ations are performed. First, the subtraction operation is performed with the batch
mean and activation. Followed by which, a division is performed via standard devi-
ation. This batch normalization technique, in addition to the standardization tech-
nique, remains to be a standard technique while performing preprocessing during the
image processing, followed by a better cancer diagnosis is said to be ensured with
the elimination of irrelevant features or pixels.
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7.2.2.3 Transfer Learning Regularization Technique

Transfer learning regularization technique helps in preventing over-fitting. Network
training is said to be performed via Transfer Learning. Then, these weights are then
used as initial weights during image categorization. In this transfer learning process,
specifically, the weights in convolutional layers are obtained. This transfer learning
regularization are very efficient as severalmedical databases possess low-level spatial
features that are comparative learned in a finer manner with big data.

7.2.3 Unbalanced and Skew Supervised Deep Learning

As far as supervised learning models are concerned, labeling of training data is
highly required and in case of the classification each image specimen pertains to a
familiar group. Consider two different types of groups, called the majority group and
minority group. While considering a dual categorization issue pertaining to image
specimens from dual different classes, the group disparity is said to occur when
single classification, the minority group, consists of an extensively lesser amount of
specimens in comparative to the second classification, the majority group.

In several image classification and diagnosis issues, the minority group remains
to be the categorization of significance, i.e., the positive class or simply the malicious
cases correctly identified asmalicious. On the other hand, themajority group remains
to be to other classes of interest, i.e., the negative class or simply the normal cases
incorrectly identified as malicious.

To name a few, a prominent class disparity [4] machine learning framework is the
job of a cancer diagnosis. Here, detecting the disease remains to be the main factor
to be analyzed with maximum number of patients found to be in the healthy stature.
With the maximum number of patients to be found in the healthy condition are
classified as in negative class section. With these disparity datasets, learning is said
to be a highly cumbersome process, specifically when dealing with big data. Hence
in these cases, certain non conventional model of learning techniques is applied to
arrive at the expected results.

An in-depth investigation of the class disparity issue and the algorithms acces-
sible for addressing the above-said class imbalance problem is indispensable, due
to the reason that skewed data are said to prevail in several real-world applications.
Therefore, whenever class imbalance is said to exist within training data, the over-
classification of the majority group is said to occur due to its escalated antecedent
likelihood. As a result, the specimens pertaining to the group in the minority section
is said to be misclassified customarily than when compared to the major section.
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7.2.4 Spatio Temporal Pattern-Based Recurrent Neural
Network

One of the classifications of ANN is the Recurrent Neural Network that associates
the nodes in such a manner resulting in a graph of directed nature both stretching
in a temporal and spatial sequence. This, in turn, ensures both temporal dynamic
behavior and exhibit spatial information. When compared to a feed-forward neural
network, RNNs are said to be utilized with their internal memory with the purpose of
processing sequences of inputs. This makes RNN to be applied to certain tasks such
as object recognition, medical imaging or speed recognition and so on. The basic
structure of RNN is given below (Fig. 7.6).

As depicted in the above figure, the basic RNN consists of three different layers.
They are input, hidden and output layer. An RNN is able to successfully encapsulate
the spatial and temporal factors present in medical images via the incorporation of
relevant filters. The spatial-temporal factors with RNN conduct a better fitting to the
medical images due to the reduction in the size of parameters involved and weight
reusability. In other words, the RNN with the involvement of spatial and temporal
factors perceives the image in a sophisticated manner.

The term spatiotemporal RNN refers to dual network classes. They are spatiotem-
poral finite impulse and spatiotemporal infinite impulse. The spatiotemporal finite
and infinite networks exhibit temporal and spatial dynamic behavior.When compared
to the spatiotemporal infinite impulse, being a directed cyclic graph in nature are said
to be uncovered and restored with a feed-forward neural network.

The spatiotemporal infinite impulse RNN cannot be uncovered. Both spatiotem-
poral finite and infinite RNN possess an additional stored state. The storage is not
performed with the neural network. Upon spatial or temporal constraints the storage
is said to be restored via onemore network if that causes delay in timing, also referred
to as the Feedback Neural Network.

Fig. 7.6 Structure of basic RNN
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7.3 Image Processing Techniques

The Image process is a method that is customarily utilized to enhance raw input
images that are acquired from different resources. The Image processing technique
transforms an image into a digital form and executes certain actions on it, with the
purpose of obtaining an enhanced image. The purpose of image processing is split
into different groups that are listed below (Fig. 7.7).

An in-depth investigation of image processing techniques is elaborated in the
following sections.

7.3.1 Visualization or Image Acquisition

The first part of every visualization scheme is image acquisition or visualization.
Image processing is utilized to recognize those objects that are not observable. When
the image is obtained then several processes are applied to the image and the most
prevalent method for image acquisition is real-time acquisition.

7.3.2 Image Edge Sharpening and Image Restoration

Medical image enhancement techniques have received many advantages in recent
years and hence found to be invariably applied in the medical field. This is due to
the reason that enhanced images are required by the doctors to assists in disease
diagnosis that are affected by noise and other devices with which the images are
acquired. In image processing, several materials and methods are applied to the raw
picture with the purpose of obtaining a refined image.

Fig. 7.7 Schematic views of image processing techniques
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Image restoration involves a method with which a noisy image is processed in
such a manner that a fine-tune image is obtained. Image restoration concentrates on
the processing of medical images suitable for a specific application. This is due to
the reason that image enhancement that works well for X-Ray does not fit for CT
scans and so on. Hence, restoration reconstructs those images whose quality of an
image is spoiled due to several aspects like, noise, contrast, error and so on.

7.3.3 Image Retrieval

With the extensive utilization of digital imaging data in hospitals, the medical image
size repository where the large or huge image dataset is kept is progressing swiftly.
This results in cumbersome management and querying resulting in the requirement
of Content-BasedMedical Image Retrieval (CBMIR) systems.With the aid of image
processing, the user detects only those parts of the picture that is of high relevance to
the user. Specifically, two distinct representations are used for image representation.
They are

• Boundary representation.
• Region representation.

On one hand, boundary depiction exhibit central appearance of the picture that
refers to the object shape, i.e., sharp edge, curve edge or rounded edge or any other
shape. On the other hand, region representation refers to the internal characteristics.

7.3.4 Pattern Measurement

Various constituents in an image are investigated. The major aspects of pattern
measurement rely on the capturing of pictures from several resources. While
capturing the images, image quality is said to be compromised. Pattern measure-
ment adjusts the elements of the pictures so that image clarity is said to be improved.
Two different types of patterns are said to be measured. They are

• Local pattern measurement.
• Global pattern measurement.

Global patterns are said to be homogenous in nature and on the other hand, the
local patterns are said to be droplets, black dots, vascular in appearance or blue-
white surrounding. The rationale of these measurements remains in the evaluation
of qualitative factors separately.
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7.3.5 Image Recognition

Finally, with the above-mentioned steps, the actual image is said to be recognized
or in other words, features in an image are identified. With the above-said image
processing techniques, the process involved in the design for better cancer diagnosis
is depicted in the figure given in 7.8.

The elaborate description of the four different processes is described below in the
following sections.

7.3.6 Bi-cubic Interpolated Pre-processing

Raw medical images comprise of a certain amount of noise in it, hence the first and
foremost step in image processing for better cancer diagnosis is preprocessing, i.e.,
improving image standard via irrelevant image discarding. If not properly addressed
several levels of inaccuracies are said to persist. Several types of filteringmechanisms
are therefore applied to the raw images for the elimination of statistical noise, salt and
pepper noise, Shot noise, and besides certain filtering mechanisms, like, nonlinear
digital image filtering, sliding window spatial filter, adaptive median filter, Gaussian
smoothing and linear time invariant filter.

The correct blend of pre-processing tasks results in a higher amount of accuracy
rate. Some of the preprocessing methods are contrast enhancement, color equal-
ization, elimination of black frame, Karhunen–Loe’ve transform, blur and noise
removal, pseudo-random filter and so on. Preprocessing in cancer diagnosis specif-
ically comprises of delineation of tumors, performing mammogram labeling and
orientation using preprocessing.

However, with low-resolution images, one of the addendum of interpolation
between lists of images is bi-cubic interpolation. Here, a regular grid type struc-
ture in the form of two dimensional structures is utilized to interpolate the data
points. Here, the interpolated plane is found to be even than corresponding surfaces
generated via bilinear interpolation [5]. It is said to be accomplished by means of
interpolating in-determinates, piecewise third order polynomials, or edge-directed
image scaling algorithm.

While processing images for diagnosing cancerous portions, bi-cubic interpola-
tion is specifically utilized than the bilinear interpolation. On the other hand, when
compared to interpolation in the form of bilinear patterns, that only utilizes 4 pixels,
16 pixels are consideredwhile applying bi-cubic interpolation. Therefore, re-sampled
images via bi-cubic interpolation are found to be highly smoother and have fewer
noises with low contrast also.
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Fig. 7.8 Image processing
flow diagram
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7.3.7 Robust Computer-Aided Detection and Localization

For the last two decades, CAD has been found to be a major attraction with several
researches conducted in this area. However, at the same time, the fullest advantage
is said to be only attained by only improving the overall system quality of service.
This therefore necessitates a fine assessment model that requires optimization of the
algorithms in the part of the CAD designers.

In order to assess the CAD performance, Free Response-receiver Operating Char-
acteristic Curves (FROC) is extensively utilized to measure the CAD performance.
But, a fine assessment hardly ever interests beyond. Recent studies conducted in the
area of medical image processing have manifested that low dose computed tomog-
raphy (LDCT) can prove to be a significant screening mechanism to minimize the
mortality rate involved in cancer. In such cases, Computer-Aided Detection (CAD)
would be an advantageous one for doctors and radiologists.

Studies have illustrated [6] that though Iterative Reconstructions (IR) results in the
improvement of cancer diagnosis quality, however, degrade the CAD performance
or is said to increase the false positive rate. With the purpose of enhancing the
CAD performance, retraining with robust detection mechanism and localization as
a standard preprocessing technique remains to be the solutions.

7.3.8 Maximum Likelihood Lesion Segmentation

Segmentation refers to the process of splitting the image into several regions or parts.
As far as image segmentation is concerned, an image is split into subparts based on
the requirement of the user or the issue to be addressed with respect to a certain
problem, where the image is split into pixels.

In other words, image segmentation splits the image in such a manner that the
required image portions to be processed again is called as the segmentation and is
found to be highly accurate. On the other hand, the outcome of image segmentation
lies in a set of sections or groups that altogether shields the entire image discarded
from the image. Hence, the objective of image segmentation lies in simplifying the
illustration of picturesque in such a form that it is found to be highly notable and
simple to measure, resulting in finer image appearance.

Segmentation is primarily the dissociation of a locality to be obtained from the
image backdrop, when the locality to be obtained remains the major portion that is
said to be utilized for processing. In diagnosis of cancer, the lesion part is said to
be extracted from the diseased part. However, the largest probability assessment has
different competent attributes.

The largest probability assessment is said to be only efficient, when the assessment
factor is unbiased in nature and also evolves to a minimum bound on the variance.
The purpose of applying the largest probability assessment function is to arrive at
the resultant values that improves the potentiality of the existence of the evaluated
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average signal forces at all the calculated values. Hence, the probability assessment
factor necessitates a precise and stringent probability formulation of the measured
average signal force.

7.3.9 Early Detection and Assessment

Early diagnosis [7] is referred to as the early cancer identification in patients those
who have disease symptoms, on the other hand, cancer screening involves the process
of obtaining the cancerous portions that are invisible to the naked eyeor pre-cancerous
lesions in an evidently healthy chosen population. However, both screening and
cancer early diagnosis are said to be highly important, but the fundamental variation
refers to the resource required for diagnosing the disease, requirements in terms of
infrastructure and monetary cost involved in the diagnosis play a major factor.

The concentration of diagnosing cancer in an early stage is cancer early diagnosis
is patient those with the indication and signs as that of a patient with cancer. The
purpose of early detection and assessment remains in identifying the symptoms as
early as possible and associating the patient for remedywithout any time delay.When
done at a prompt stage, cancer is said to be detected at a potentially curable stage,
therefore enhancing both the survival rate and also the life cycle. For early diagnosis
some of the three steps involved are:

• Consciousness of cancer indications and acquiring attention.
• Clinical assessment, recognition and directing.
• Acquiring to therapy.

From the above analysis, certain key elements or early cancer diagnosis are

• Volume of participants.
• Test.
• Health system requirements.
• Awareness and assessing care.
• Training and human resource needs.
• Clinical evaluation.
• Public awareness.
• Follow up.
• Potential advantages.
• Potential limitations.
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7.4 Survey of Improved Deep Learning Applications
in Cancer

Different research works and state-of-the-art methods providing deep learning tech-
niques, methods, principles, ancient surveys, and applying the same in different
research areas have been presented. This section manifests an appraisal of improved
deep learning applications in cancer using different microscopic image evaluation
that is considered to be a hot topic of research.

Definitely, in short, it presents the amateur improved deep neural networks in the
specific area, narrates the forecast of cancer susceptibility, recurrence and survival
rate in detail. With the application of improved deep learning in AI can enhance the
process of updating deep learning from conventional toward medical images and
enhance the overall system performance.

• Prediction of cancer vulnerability.
• Prediction of cancer frequency.
• Prediction of cancer continuity.

7.4.1 Prediction of Cancer Vulnerability

The major findings in designing answerable tools that differentiate between
cancerous and non-cancerous images while diagnosing cancer are risk stratification.
According to the researchers who have conducted the field of research in this area,
conventional works based on the utilization of computer-aided diagnosis methods
have used specific machine learning techniques such as deep learning to evaluate the
danger of the patient surviving from cancer.

Several researchers have applied deep learning with the objective of designing a
predictionmethod that efficiently and effectively classifies cancerousmammographic
images from non-cancerous mammographic images. The method was constructed
utilizing a different numbers of hidden layers that generalized comparatively in a
better manner than a smaller number of hidden nodes. The mammographic records
obtained by the radiologists were also reviewed by obtaining the reading information.

Followed by which the performance was measured via ten-fold cross-validation
even by discarding over fitting. Here, the network error was said to be controlled
during the training and if in case of over fitting the training was stopped. Besides, two
fascinating features are the assessment of twomain elements of accuracy, specifically,
distinction and assessment. In the case of distinction, it is used to evaluate with the
purpose of separating benign abnormalities from malignant images. On the other
hand, assessment is used as a measure wherein the patients are classified into high or
low-risk classes.With this, a Receiver Operating Characteristics is plotted tomeasure
the discerning capability of their model.
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7.4.2 Prediction of Cancer Frequency

In this section, the prediction of cancer frequency is discussed. In a study conducted
on recurrence prediction of Oral Squamous Cell Carcinoma (OSCC) [9] a multi-
parametric decisionmaking activitieswas designed to evaluate theOSCCevolvement
via heterogeneous data and hence a subsequent recurrence.

Besides, accuracy, true positive rate and false positive ratewere evaluated and used
for differentiation between the classificationmethods being used. Besides, more than
one classification technique or ensemble of classification was also utilized to obtain
robust results. ASupportVectorMachine basedmodel for analyzing the recurrence of
breast cancer was also performed. Here, with the categorization of patients suffering
from cancer into risky or non-risky, treatment and follow-up planning were made
in an effective manner. Besides, machine learning techniques involving hyperplane
classification, neural networks and regressionmodels were also utilized for obtaining
the optimal results. Here, too, accuracy, true positive rate and false positive rate were
measured for estimating the cancerous and non-cancerous patient in a more reliable
fashion.

7.4.3 Prediction of Cancer Continuity

For the forecast of cancer, survival robustness plays a major role under the model’s
parameter disparity. Survivability here refers to both types of patients who have
not survived and who have survived after being diagnosed at the early stage using
improved deep learning techniques.

Amongst the most revealing characteristics are the tumor size, numbers and age
of tumor during the diagnosis stage. Five-turn hybrid-recognition was utilized for
measuring the predictive performance models. Based on the finding results, the
Semi-Supervised Learning model was found to be the best model for analyzing the
survival rate, where the most informative features were obtained without separate
pre-processing steps.

7.4.4 Measuring Sensitivity, Specificity, and Accuracy

In several tests, including cancer diagnosis, sensitivity refers to the magnitude to
which genuine positives cases are not ignored and in this case, the false-negative
rates are said to be few. On the other hand, specificity [8] refers to the magnitude to
which genuine negative cases are categorized as such and in this case false positives
are said to be few.

Therefore, a highly sensitive test hardly ever fails to observe a genuine positive (for
scenario, presenting tumor nonexistence in spite of certain tumor being observed).
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On the other hand, as far as a genuine positive (for scenario, presenting nonexistence
tumor in spite of certain tumor being observed) is concerned, a highly specific test
seldom gives a positive categorization for any images however, this may not be the
case for testing.

7.4.4.1 Sensitivity

Sensitivity denotes the test’s potentiality to precise identify patients those who are ill
who do possess the cardinality or who are actually ill. For example, of a medical test
used to diagnose cancer, the sensitivity also referred to as the detection rate refers
to the percentage ratio of the patient testing to be positive for the disease scenario
disease among those patients who actually possess the disease. The sensitivity is
formulated as given below.

Sensitivity = No of true positives

No of true positives+ No of false negatives
No of true positives

Total no of cancer diagnosied patients in samples

7.4.4.2 Specificity

Specificity refers to the test’s potentiality to precisely reject non-tumor patients
without a condition. For example, amedical test for diagnosing cancer, the specificity
of a test is the ratio of a healthy or non-tumor patient known not to have the disease,
testing negative for it. Mathematically, this can also be written as

Specificity = No of true negatives

No of true negatives+ No of false positives

= No of true negatives

Total no of non cancer patients in samples
.

7.4.4.3 Accuracy

Let us consider a scenario measuring new hypothetical testing that identifies patient
for a cancer diagnosis. Each patient those who are subject to test either is said to be a
cancerous patient or referred to as non-cancerous patient. The results of the test may
be positive, i.e., diagnosing the patient with cancer or the results may be negative i.e.,
diagnosing the patient without cancer. However, there also arises situation where the
results of the test for each patient may not match with the patient’s actual status. In
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that setting:

TP(True positive) = Correctly identified

FP(False positive) = Incorrectly identified

From the above settings, the accuracy is used to measure the resultant value and
it involves classification of results in a dual state with the correct identification of
the said condition. On the other hand, accuracy refers to the percentage ratio of true
results with respect to the total patients considered for experimentation. The formula
for quantifying binary accuracy is written as given below.

Acc = (TP+ TN)

(TP+ FP+ TN+ FN)

More commonly as the definition is given above, accuracy refers to a description
of systematic errors or refers to the proximity of the measurements to a determined
value.

References

1. Cancer Facts and Figures 2019, American Cancer Society, 2019. Available online https://www.
cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annualcancerfacts-and-
figures/2019/cancer-facts-and-figures-2019.pdf

2. K. Kourou, T.P. Exarchos, K.P. Exarchos, M.V. Karamouzis, D.I. Fotiadis (2014) Machine
learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J.

3. Hernández-García A, König P, Further Advantages of Data Augmentation on Convolutional
Neural Networks (Springer, 2018)

4. J.M. Johnson, T.M. Khoshgoftaar, Survey on deep learning with class imbalance. J. Big Data
(2019)

5. S.E. El-Khamy, M.M. Hadhoud, M.I. Dessouky, B.M. Salam, F.E. Abd El-Samie, A new
approach for regularized image interpolation. J. Braz. Comput. Soc. 11(3), 65–79 (2005)

6. L. Raghupathi, P.R. Devarakota, M. Wolf, Learning-based image preprocessing for robust
computer-aided detection, Medical Imaging 2013: Computer-Aided Diagnosis, vol. 8670,
International Society for Optics and Photonics, p. 867034 (2013)

7. Guide to cancer early diagnosis, World Health Organization (2017)
8. https://en.wikipedia.org/wiki/Sensitivityandspecificity
9. K.P. Exarchos, Y. Goletsis, D.I. Fotiadis, Multiparametric decision support system for the

prediction of oral cancer reoccurrence. IEEE Trans. Inf Technol. Biomed. 16, 1127–1134 (2012)

https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annualcancerfacts-and-figures/2019/cancer-facts-and-figures-2019.pdf


Chapter 8
Using Deep Learning Techniques
in Detecting Lung Cancer

Osamah Khaled Musleh Salman, Bekir Aksoy, and Koray Özsoy

Abstract Today, with the rapid rise in the number of illnesses, there is a signifi-
cant increase in the number of people who died due to these diseases. Nowadays,
cancer diseases, in particular, are one of the important types of diseases that cause
fatal outcomes. TheWorld Health Organization stated that approximately 9.6million
people died from cancer worldwide in 2018. According to the World Health Organi-
zation, among these cancer types, approximately 1.8 million people pass away from
cancer. Lung cancer has been identified by the World Health Organization as the
deadliest cancer type among all cancer types. For this reason, the early diagnosis of
lung cancer is very important for human health. Computed Tomography (CT) images
are frequently utilized in the detection of lung cancer. In this book section, academic
studies on the diagnosis of lung cancer are examined.

Keywords Deep learning · CT images · Lung cancer

8.1 Definition of Cancer

Cancer is a tumor that occurs when cells in organs or tissues in any part of the body
divide and multiply irregularly. As a consequence of the uncontrolled increase of
cells, the normal working order of the body is disrupted. According to statistics, the
number of people with cancer in the world is about 12.7 million per year, but this
number is estimated to rise to 21 million by 2030 [1]. When the causes of death are
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examined, it is seen that one in every five men and one in every six women in the
world get cancer [2]. Therefore, early detection and treatment planning process is
very important for cancer to increase the probability of survival.

8.1.1 Definition of Lung Cancer

The lung cancer is among the leading types of cancer that causes death, considering
the mortality rates (due to cancer) in both men and women [3, 4]. That cancer type
is caused by the formation of a tumor inside the lung as a result of uncontrolled
cell proliferation. Lung cancer first occurs in the lungs, but in the later stages it can
cause damage to the surrounding tissues. The majority of patients in lung cancer
are Non-Small-Cell-Lung-Cancer (NSCLC), while Lung-Adenocarcinoma (LUAD)
and Lung-Squamous-Cell-Carcinoma (LUSC) are the most common subtypes [5].
The main cause of lung cancer is genetic and epigenetic damage caused by active or
passive exposure to tobacco smoke [6].

8.2 CT Imaging

Computed-Tomography (CT) imaging,which is one of themedical imagingmethods,
is an important radiological diagnostic method used in the diagnosis and treatment of
lung diseases [7]. CT allows to create a cross-sectional image of a region usingX-rays
on the desired area of the body. By combining the images of the region taken from
different angles, a three-dimensional view of the inner structure of that region can be
obtained [8]. The creation of the CT image takes place in three stages as (1) scanning
phase, (2) reconstruction phase, and (3) digital-to-analog conversion phase. In the
scanning phase where X-ray tube and detectors are used, the projection of X-rays
passing over the body section is taken. After the scanning phase is completed, the
data obtained from the detectors that collect the rays are transferred to the computer
digitally and processed with different algorithms. CT images consist of many points
called pixels, and each of these pixels has a different volume according to the section
thickness. At the last stage, digital data is converted to analog data by using electronic
components to make the image grayscale [9, 10].

8.3 Deep Learning

Deep learning is briefly amethod ofmachine learning, as a sub-branch of the artificial
intelligence that started to spread in 2000s [11]. Deep learning allows to estimate
the output using the given dataset and to train artificial intelligence according to this
result [12]. Multi-layered neural networks were created by Hinton in 2006 to process
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data such as images, sound, text, and output, and were then used frequently in deep
learning practices [13]. The reason why deep learning is becoming more widespread
nowadays is that the amount of data required for education is sufficient and there
is an infrastructure to process this data [14]. Deep learning generally compromises
of an input layer, three or more concealed layers and an output layer [15]. Since
the deep learning consists of more than one layer, the learning process takes place
more successfully [16]. In deep learning, the learning process can be carried out as
supervised, unsupervised and semi-supervised [17]. In deep learning architecture,
the feature learned in each layer is the input of the other layer [18]. Deep learning
is used in a wide range of fields such as object recognition [19], speech recognition
[20], and natural language processing [21].

8.3.1 Convolutional Neural Network (CNN)

CNN is an algorithm that is inspired by the visual perception mechanism of living
things and is frequently used in deep learning [22–24]. The CNN algorithm has
gathered attention with its remarkable results in ImageNet competitions, and has
been widely used especially in image processing techniques [25, 26]. CNNs are
two-dimensional neural networks and are frequently used in image analysis, image
classification, clustering, object recognition, medical image analysis, and natural
language processing [27, 28]. In CNN,weights are learned by the system and features
can be determined by filtering (convolution) techniques [29]. As CNN structure,
Fig. 8.1. As seen, it is formed by adding convolution, pooling (sampling) and fully
connected layers to the basic neural network layers [30]. In the convolution layer,
feature extraction is performed by using a convolution process with a dot product
between the input and the kernel. The pooling layer is generally located between two
convolution layers. The purpose of the pooling layer is to reduce the calculation load
on the system by reducing the size of the feature maps and to perform a secondary
feature extraction [31, 32]. Some types of pooling used in this layer are max pooling,
stochastic pooling, mixed pooling and average pooling [32, 33]. In the last layer,
which is called fully connected layer, neurons are directly connected to all previous
neurons as in classical neural networks and they act as classifiers in the CNNmodel.

Fig. 8.1 Convolutional neural network layers
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Fig. 8.2 CapsNet architecture

8.3.2 Capsule Neural Network (CapsNet)

Another deep learning algorithm used in the analysis of medical images is Capsule
Networks (CapsNet). Although successful results of CNN architectures are note-
worthy within the scope of deep learning algorithms, the fact that pooling processes
in this algorithm cause loss of information led to the development of alternative
algorithms. In this context, the CapsNet algorithm, which provides better learning
through capsule layers consisting of a group of neurons, has been introduced to the
literature in order to prevent the loss of knowledge that take place during changes in
input parameters [34, 35]. The depth of a typical CapsNet architecture is created not
only with layers, but also with the help of capsules in one layer, thus, better feature
extraction and learning can be obtained. In addition to the ReLU function in CNN
architectures, the Squash function, whose inputs and outputs are vectors, is also used
in CapsNet [36, 37]. Although these improvements show that the results obtained
with CapsNet are better than CNN-based architectures, it is also seen that using
CapsNet capsules also requires extra computing power [38]. General components of
CapsNet architecture can be seen in Fig. 8.2.

8.3.3 The Importance of Deep Learning Techniques
in Detecting Lung Cancer

Detecting the lung cancer earlier can save lives. Because of that, it is very important
to correctly classify the nodules in CT images. It is observed that the use of deep
learning methods gives fast and accurate results and helps physicians in the stage
of cancer prognosis [39]. In addition, early start of the treatment process with early
detection of cancerous cells using deep learning techniques is effective for reducing
the rates of mortality due to lung cancer. Recently, many datasets have been prepared
for the detection of lung cancer. Commondatasets used in the detection of lung cancer
are given in Chap. 4.
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8.4 Commonly Used Datasets for Lung Cancer Detection

In order to apply deep learningmethods in the detection of lung cancer, large amounts
of data and computer computing power to analyze this data are needed [40]. Some
of the datasets frequently used in the detection of lung cancer are.

8.4.1 LIDC/IDRI Dataset

The dataset, called LIDC (Lung-Image-Database-Consortium) and IDRI (Image-
Database-Res.-Initiative), are among the frequently used datasets for performing
detection regarding the lung cancer. The LIDC/IDRI dataset was prepared in collab-
oration done by eight medical imaging companies, and also seven academic centers,
as including 1018 cases. In cases, there are clinical thoracic CT-scan images and
the XML files providing information for the results of two-phase image annota-
tion process done by four experienced thoracic radiologists. Each data contains CT
images and an XML report file created by an expert [41].

8.4.2 LUNA-16 Dataset

That dataset is briefly a sub-set within the LIDC/IDRI dataset. The Luna 16 dataset
comprises of 888 pectoral CT scan images, marked by at least three of the four
medical specialists for each lesion condition. In this data set, only nodules smaller
than 3mmindiameter are accepted as the positive samples,while all rest of the lesions
are called negative samples [42]. The Luna 16 dataset consists of three-dimensional
images and a CSV file with annotations [43].

8.4.3 NLST (National-Lung-Screening-Trial) Dataset

TheNLST dataset consists of data from 53,454 people with a high risk of lung cancer
in 33 medical centers in the USA between August 2002 and April 2004. The data
set was created by randomly assigning 53,454 volunteers to undergo three annual
screenings with either low dose CT (26,722 participants) or single-view posteroan-
terior breast radiography (26,732 participants) [44]. NLST data set has been used in
studies since 2009 [40].
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8.4.4 ELCAP (Early-Lung-Cancer-Action-Program) Dataset

ELCAP is a dataset created by the collaboration between the ELCAP and VIA
research groups. This data set was created to develop a common dataset that can be
used to assess the performance of difference computer-aided detection systems. The
ELCAP dataset was first released in December 2003. ELCAP dataset is a prototype
for web-based image data archives. The ELCAP dataset consists of 50 low dose CT
scan images with a cross section thickness of 1.25 mm. In the ELCAP data set, the
locations of the nodules detected by expert radiologists are also given [40, 45].

8.4.5 Data Science Bowl 2017 (KDSB17) Dataset
at the Kaggle

The KDSB17 dataset was obtained from the axial CT scan image of the chest cavity
of 2101 patients [46]. Each CT scan image in the KDSB17 data set is labeled as ‘with
cancer’ if the patient is diagnosed within 1 year, otherwise it is labeled as ‘without
cancer’ [47]. In the KDSB17 data set, the nodules are not labeled according to their
location and size.

8.5 Literature Research

When the academic studies for the detection of lung cancer with deep learning are
examined;

Anthimopoulos et al. proposed the CNN model, which is the sub-branch of deep
learning, for the classification of lung disease samples. The proposed model was
evaluated on 12,096 CT scan images of 120 patients and consists of 5 convolutional
layers, an average pooling layer and 3 dense layers. The model in the study uses
Leaky ReLU activation function and Adam optimizer as an optimizer. As a result,
they achieved classification performance of approximately 85.5% [48].

Bayraktar et al. used deep learning methods to determine whether the cancerous
cell is benign or malignant. A dataset of 669 samples with 10 different features was
used to diagnose cancer caused by irregular division of cells. In order to get the best
results, 2 and 4 layer models were developed, epoch numbers, activation functions
and batch-size were changed. In the first model of the application developed using
the Python programming language; first layer is composed of 70 nodes, second layer
is composed of 60 nodes, the number of epochs is taken as 100, the Exponential
function is selected as the activation function and Adadelta selected as an optimizer.
In the secondmodel; first layer is composed of 70 nodes, the other three layers consist
of 60 nodes, the number of epochs is taken as 100, the ReLU function is selected as
the activation function and Adamax selected as an optimizer. As a result, a success
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rate of 99.05% was determined for both models. It has been found that Batch size
has no effect on the model and increasing the number of epochs has a negative effect
on the success of the model [49].

Cheng et al. conducted studies on the computer-based diagnosis (CADx) system
to determine whether lesions and tumors are benign or malignant. In their work, they
used the Stacked Denoising-Autoencoder (SDAE) architecture, which is a more
developed version of the Stacked-Autoencoder (SAE) deep learning model. This
structure is a model based on input reconstruction by making use of the unknowns in
the input data, but it also has the feature to automatically discover different patterns.
This feature allows the changes in the appearance of the lesions to be more effec-
tively removed and compared. In conclusion, in this study, SDAE architecture was
compared with CURVE, RANK and MORPH on lung CT and breast ultrasound
images and SDAE architecture has been shown to perform better compared to the
other three algorithms [50].

Sun et al. used CNN, Deep Belief Network (DBN) and Stacked Denoising-
Autoencoder (SDAE) algorithms for the diagnosis of computer-aided lung cancer.
In their study, they used 52 × 52 pixels, 174,412 sample datasets on CADx system.
They obtained accuracy ratios of 0.7976, 0.8119 and 0.7940 for CNN, DBN and
SDAE algorithms, respectively [51].

Coudray et al. used CNN algorithm (inception v3) to classify the common lung
cancer types, LUAD, LUSC, and the gene mutations of cancer. In the study, it was
demonstrated that the presented method successfully detected lung cancer types with
0.97 area under the curve (AUC) using dataset containing 512× 512 pixel tiles, 1176
tumor tissue and 459 non-tumor tissue images [52].

Ciompi et al. used CNN to classify nodules with abnormal tissue growth in lung
cancer screening. The model was trained with Italian MILD screening trial data
containing 943 patients and 1352 nodule images, and tested with Danish DLCST
screening trial data containing 468 patients and 639 nodule images. As a result of the
study, when the analyzes made by human observers and computer were compared,
it was found that 3 scale CNN had 79.5% accuracy rate [53].

Hua et al. usedDBNandCNN for the categorization of lung nodules inCT images.
In the categorization of pulmonary nodules, it was found that deep learning methods
performed better than traditional computer-aided diagnosis (CAD). The performance
sensitivity and specificity of DBN and CNNmodels were shown to be 73.4%, 82.2%
for DBN, 73.3% and 78.7% for CNN, respectively [54].

Ardila et al. used deep learning algorithms in low-dose computed tomography
(LDCT) to detect the risk of lung cancer. In the study, a 3-dimensional (3D) CNN
model was created. With this model, analysis of LDCT data for tumor detection is
performed for each patient. Presented model achieved 94.4%AUC on 6716 National
Lung Cancer Screening Trial cases [55].

Song et al. used deep learning methods to classify lung pulmonary nodules on CT
images. They used CNN, DNN and SAE deep learning algorithms in their studies.
The study was carried out using the LIDC-IDRI database containing 1010 cases and
244,527 images. As a result, it was found that the CNN algorithm performed best
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with an accuracy of 84.15% in the classification performed to determine whether the
nodules are benign or malignant [56].

Lakshmanaprabu et al. performed analysis on CT images for lung cancer detec-
tion usingOptimal DeepNeural Network (ODNN) and Linear Discriminate Analysis
(LDA). In order to classify the lung nodules as benign and malignant, the dimen-
sionality of the images was extracted using feature Latent Dimensionality Reduc-
tion (LDR). After feature reduction, LDA was used to reduce computation time.
The model is optimized using the modified gravitational search algorithm (MGSA).
With the ODNN model proposed in the study, 96.2% accuracy, 95.26% sensitivity
and 96.2% specificity performance were obtained [39].

Hosny et al. used deep learning for lung cancer prediction (prognosis) in their
studies. In NSCLC, it was seen that many factors affect the prognosis and the same
tumor stage can give different results in each patient. In this regard, analysis was
carried out using the CNN model on 1194 NSCLC patients with a median age of
68.3 who were treated with radiotherapy or surgery. In the study, it has been revealed
that deep learning methods perform better in surgical patients compared to current
methods [57].

Çevik and Dandıl conducted a study on the classification of lung nodules using
CNN. In the study, 23 patients and 1218 CT images were used and 426 regions of
interest (ROI) were tagged. The dataset used in the study consists of a total of 214
lung nodule images, 99 of which are benign and 115 are malignant. In the study,
75% of dataset was used as education dataset and 25%was used as test dataset. With
the proposed CNN-based computer-assisted detection (CAD) 75% performance was
obtained according to the AlexNet architecture result [58].

Kumar et al. proposed a CAD system using autoencoder (AE) that can assist
radiologists in the diagnosis of lung cancer. In their study, they used the LIDC
dataset containing 1010 patients’ CT images to classify lung nodules as benign or
malignant. As a result of the study, they obtained 85.25% sensitivity and 75.01%
accuracy with the proposed system [59].

Wang et al. used the deep learning method to classify g mediastinal lymph node
metastasis of NSCLC. In their study, they used CNN and compared CNN to four
machine learning methods, including random forest, adaptive boosting and support
vector machines (SVM). These methods were assessed using 1397 lymph node
PET/CT scan images collected from 168 patients, and comparison was conducted
using 10 times ten fold cross validation. In the study, 81–85% ACC (accuracy) and
0.87–0.92 AUC values were obtained as a result of classical machine methods. With
CNN, 84 sensitivity, 88 specificity, 86 ACC and 0.91 AUC values were obtained,
while 73 sensitivities, 90 specificities and 82 ACC values were obtained with human
doctors. As a result, no significant difference was observed between the best machine
learning method and CNN, and these methods were found to have higher sensitivity
but lower specificity than physicians [60].

Rosetto and Zhou used CNN in their studies to classify lung cancer CT scan
images. In the study, the lung cancer imaging database supplied by the Kaggle Data
Science Bowl 2017 was used as a data set. The images in the dataset are used both
raw and smoothed with Gaussian filter. With the data labeled positive and negative
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for cancer, the training and testing phase of the model was carried out. As a result of
the study, 97.5% accuracy was obtained and it was revealed that the percentage of
false positives was lower than 10% [61].

Shimizu et al. used SAE for the preliminary diagnosis of lung cancer. In the study,
human urine was converted to three-dimentional data (ionic strength, retention time,
mass-to-charge ratio) with Gas Chromatography Mass Spectrometer (GC-MS). The
neural network used gives two different outputs as a result of calculations: the patient
has lung cancer, or not.With this method, 90% accuracy was obtained in determining
whether the patient had cancer or not [61].
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Chapter 9
Effective Use of Deep Learning
and Image Processing for Cancer
Diagnosis

J. Prassanna, Robbi Rahim, K. Bagyalakshmi, R. Manikandan,
and Rizwan Patan

Abstract The area of medical image processing obtains its significance with the
requirement of precise and effective disease diagnosis over a short period. With
manual processing becoming more complicated, stagnant and unfeasible with higher
data size, there necessitates automatic processing that can transform contemporary
medicine. Deep learning mechanisms can arrive at a higher rate of accuracy in
processing and classifying images in comparison with human-level performance.
Deep learning not only assist in selecting and extracting features but also possesses
the potentiality of measuring predictive target audience and bestows prediction in a
more action format to help doctors significantly. Unsupervised Deep Learning for
cancer diagnosis is advantageouswhenever the involvement of unlabeled data is huge.
By bestowing unsupervised deep learning techniques to such unlabeled data, features
of pixels that are superior compared to manually obtained features of pixels are said
to be learned. Supervised Discriminating Deep Learning directly provides discrim-
inating potentiality for cancer diagnosis purposes. Finally, hybrid deep learning for
labeled and unlabeled data is specifically used for cancer diagnosis with a resource
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or poor pixel representations and hence early detection and diagnosis performed via
bank features. Deep Neural Network, as the name implies includes several layers,
emphasizing the complex non-linear relationships between the features present in
the images, therefore contributing to higher accuracy. Deep Belief Network used in
both supervised and unsupervised deep learning adopting greedy mechanism, maxi-
mizing the likelihood nature of detection and diagnosis at an early stage. Sequential
event analysis is said to be performed by Recurrent Neural Network with the weights
being shared across all neurons, contributing diagnosis accuracy. Certain fine-tuned
learning parameters of consideration for better and precise learning are Interaction
andNon-linearRectifiedActivation function,Circumventing over-fitting viaDropout
and Optimal Epoch Batch Normalization. In the last section, challenges about the
application of deep learning for cancer diagnosis are discussed.

Keywords Medical image processing · Deep learning · Artificial intelligence ·
Machine learning · Sparse auto encoders · Convolution neural network

9.1 Deep Learning Techniques for Cancer Diagnosis Using
Medical Image Processing

The medical healthcare category is entirely different from other fabrication. As far
as the medical healthcare sector is concerned, it is to be of the highest priority and
people anticipate the highest care and services irrespective of cost. This is because
of the reason that most of the medical data performances are being performed by the
medical expert. The second reason is that in terms of execution of images by human
expert, due to its characteristics it is found to be finite with high complicated images
and due to the substantial dissimilarities across the images being acquired.

With the favorable result of deep learning in other real-world applications, exciting
solutions are also said to be achieved with a higher rate of accuracy. In this section,
the outline, threats and prospects of deep learning and image processing for cancer
diagnosis are discussed.

• Outline
• Threats
• Future Prospects.

9.1.1 Outline

With the enormous advancement in image acquisition sensors, devices, that data is
progressing towards big data that makes medical imaging a demanding and fasci-
nating for image analysis and disease diagnosis. This extensive widening in medical
images and modalities necessitates considerable and cumbersome endeavors by
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doctors. However, it is found to be highly susceptible to human error or fatalities,
resulting in variations across several experts.

One of the alternative models is the utilization of machine learning algorithms
that in turn automates the process of disease diagnosis, however, the conventional
types ofmachine learning algorithms are not efficient in dealingwith the complicated
issues related to medical imaging.

Integration of high-level computing performancewithmachine learning promotes
in dealing with big medical imaging process for the accurate and efficient diagnosis,
specifically, cancer.With the aid of deep learning not only the selection and extraction
of features are performed effectively, but also the newer features are said to be
constructed. Besides, not only the disease diagnosis is said to be performed but
also measure prediction in a significant manner and assists physicians to take action
accordingly.

Hence, specifically, techniques of Machine Learning (ML) and Artificial Intel-
ligence (AI) have contributed in the medical field like medical image processing,
computer-aided diagnosis, image interpretation and so on. With these techniques,
doctors and physicians are assisted in disease diagnosis at an early stage and also
measure for prevention.

9.1.2 Threats

Since the inception of digital imaging, deep learning techniques have been the
research topic for disease diagnosis. Most researchers in the field of medical imaging
have started thinking that deep learning-based applications will conquer humans and
due to this most of the diagnosis will be said to be performed using intelligent
machines but will also assists the doctors in prescribing the medicine and guiding in
treatment accordingly.

Even though, a large amount of investment and interest have bestowed in the field
of medical imaging, deep learning future in medical imaging is not that near when
compared to the conventional type of imaging applications due to the complications
involved in the medical imaging process. The idea of applying deep learning-based
techniques to medical imaging is an interesting and budding research area. However,
several threats decelerate their progress [1]. These threats are

• Dataset unavailability
• Privacy and legacy related issues
• Dedicated medical experts
• Nonstandard data machine learning techniques.
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9.1.3 Future Prospects

Three movements that manage the deep learning mutiny and resulting in prospects
are:

• Big data availability
• Current deep learning techniques designed on the human brain
• Power of the processing machine
• Power of processing power.

Though deep learning prospective advantages are exceedingly noteworthy and
so are the inceptive endeavors and prices. Several big tycoons like, Google Deep
Mind, research labs in addition to the most significant hospitals are joining hands
and working toward the optimal solution of big medical imaging. Similarly, research
lab to name a few like, Google, IBM are also putting money into effective imaging
application delivery.

9.1.4 Deep Learning Over Machine Learning

Correct disease diagnosis depends upon the images being acquired and the interpreta-
tion being made for the corresponding disease. Several image acquisition devices are
said to be in existence in the market and with this, with the higher amount of devices,
radiological images like, X-Ray, CT andMRI scans etc. are used for obtaining higher
resolution images.

• Amongst them, one of the best machine learning applications is computer vision.
• This is because of the reason that conventional machine learning techniques

depend on features being crafted utilizing expert analysis.

For example, lung tumor detection necessitates structure features to be extracted.
Due to the significant differentiation being observed from patient to patient medical
imaging data, conventional learningmodels are not found to be authentic.Hence, over
the last few years, machine learning techniques have progressed by its potentiality
to transfer via complicated and big data.

This deep learning mechanism has received a wide range of attention in all the
fields and specifically in medical image analysis, i.e., cancer diagnosis. So deep
learning mechanism for medical image analysis is considered to be the most effi-
cient and effective supervised machine learning model. This supervised machine
learning model utilizes the deep neural network, an extension of Neural Network
(NN) utilizing the advance model when compared to the conventional NN.

• The fundamental computational unit in a NN model consists of a neuron.
• It is said to be a notion influenced by the human brain learning that obtainsmultiple

types of signals as input, integrates the multiple inputs with the aid of weights.
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• These weights are then linearly integrated with the aid of weight and then pass
these integrated signals via nonlinear operations to produce the corresponding
output signals.

Some of the key aspects of deep learning over machine learning are:

• Data Dependencies
• Hardware Dependency
• Problem Solving Perspective
• Feature Engineering
• Execution time.

9.1.4.1 Data Dependencies

The most significant distinction between deep learning and conventional machine
learning is its execution as the size of data gets bigger. Therefore with larger data size
in the image, deep learning algorithms perform well because using the conventional
machine learning only handcrafter rules are said to prevail.

9.1.4.2 Hardware Dependencies

Compared to conventional machine learning methods, deep learning largely is influ-
enced by high-endmachines. This is because of the reason that deep learningmethods
encompass Graphics Processing Units (GPUs) that are an essential part of its func-
tioning. Besides as deep learningmethods involve a larger amount ofmatrixmultipli-
cation operations, efficient optimization of these operations is said to be done using
GPU.

9.1.4.3 Problem Solving Perspective

When solving an issue using conventional machine learning method, it is normally
suggested to split the issue down into different portions or segments, individually
address the issue and integrate them to obtain the final result. This is in the case of
conventional machine learning method and hence the complexity involved is found
to be higher, whereas, deep learningmethod recommends to solve the issue of disease
diagnosis for medical imaging, end-to-end.

9.1.4.4 Feature Engineering

Feature engineering involves the process of placing the domain representation into the
formation of feature extractors to minimize the data complexity or image complexity
and ensure patterns more apparent to learning algorithms to work. This procedure is
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found to be cumbersome and involves higher computational costs both in terms of
time and overhead.

• In the case of conventional machine learning, the features have to be recognized
by a medical expert and then have to be handcrafted as per the requirement of
diagnosis and the data type.

• On the other hand, in the case of deep learning, a higher level of features are said
to be learned from the data itself.

• Hence, deep learning minimizes the task of developing a new feature for every
problem case scenario.

9.1.4.5 Execution Time

During the training of medical images, when applied with a deep learning algorithm,
the longer time is said to be consumed. This is due to the reason that a higher amount
of parameters are required during the training of deep learning algorithms. In the case
of a machine learning algorithm, much lesser time is said to be consumed during the
training stage. However, this process is found to be opposite in the testing time.

During testing time, by applying deep learning algorithms, much lesser time is
said to be consumed and however, a higher amount of time is said to be consumed
during testing when applied with the conventional machine learning algorithm.

9.1.5 Unsupervised Deep Learning for Unlabeled Data

Unsupervised learning [2] is important in scenarios involves an enormous amount of
unlabeled data or images. By employing unsupervised deep learning algorithms to
such unlabeled data or images, features that are found to be comparatively better to
the handwritten label of features is learned. Some of the unsupervised deep learning
algorithms for unlabeled data for cancer diagnosis are:

• Auto Encoders
• Sparse Auto Encoders
• Stacked Sparse Auto Encoders.

9.1.5.1 Auto Encoders

AnAuto Encoder (AE) for cancer diagnosis is utilized in unsupervised deep learning
methods.

• An AE comprises an encoder, followed by a decoder as shown in Fig. 9.1.
• The task of the encoder remains in transforming the input image ‘p’ to intermediate

image ‘f ’ using the auto-encoder function ‘ f e(∗)’.
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Fig. 9.1 Construction of auto encoder

• On the other hand, the decoder extracts the original image input ‘p′’ from ‘f ’,
forming a coarse-grained restoration of the original input ‘p’.

On the other hand, the decoder extracts the original image input ‘p′’ from ‘f ’,
forming a coarse-grained restoration of the original input ‘p’.

9.1.5.2 Sparse Auto Encoders (SAE)

A sparse auto-encoder is said to be formed using a sparsity regularizer utilizing a
systematic auto-encoder.When almost all of the feature appearances are the exclusion
of an only a certain portion of non-zero entries, this type of feature representation is
referred to as the sparse representation. These sparse representations on the SAE are
highly susceptible to noise and also found to be cost-effective. By including overall
samples and sparsity compact encoding on the images, example-specific features for
cancer diagnosis can be obtained.

9.1.5.3 Stacked Sparse Auto Encoders (SSAE)

SSAE is said to be formulated by stacking simultaneously multiple layers of funda-
mental Stacked Sparse Auto Encoders in such a manner that the output from the
first layer is provided as the input to the second layer, the output of the second layer
provided as input to the third layer and so on. Finally, a classifier is applied to the
last output for early cancer diagnosis.

9.1.6 Supervised Discriminative Deep Learning for Labeled
Data

Supervised Discriminative Deep Learning is deliberated to straightforwardly furnish
discerning capability for cancer diagnosis purpose. It is specifically performed by
distinguishing the rear disseminations of categories governed on the visible data.
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Selected labeled data are specifically accessible in unambiguous or ambiguous forms
for such types of supervised learning.

9.1.6.1 Convolutional Neural Network (CNN)

A CNN is dissimilar from the conventional Back Propagation Neural Network
(BPN).This is because of the reason that the BPNN performs specifically on the
extracted handcrafted image features. On the other hand, a CNN performs directly
on the image provided as input where the necessary features are extracted forming
room for efficient image classification and diagnosis. A CNN consists of different
layers, namely,

• ConvolutionalLayers: apply different types of filteringmechanism to input images
to detect relevant features of important or region of interest.

– Hand crafted
– Automated.

• Pooling Layers: down samples the features detected in the corresponding feature
maps once the images are said to be convolved.

• Minimum pooling
• Maximum pooling
• Average pooling.

• Fully Connected Layers: performs classification of images into cancerous or non-
cancerous according to the resultant images obtained via pooling.

• Classification Layers.

9.1.7 Hybrid Deep Learning for Labeled and Unlabeled Data

Finally, hybrid deep learning for labeled and unlabeled data is said to be formed
in conjunction with both the supervised and unsupervised learning, with both the
labeled and unlabeled data.

9.1.8 Reinforced Deep Learning

Reinforcement Deep Learning (RDL) is an extent of Machine Learning (ML). RDL
works on the principle of taking relevant action to increase the reward in a specific
circumstance. This is said to be achieved by utilizing several software and machines
to identify the best probable behavior it should consider for diagnosing cancer and
differentiate between cancerous and non-cancerous cells.
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• The differentiation between the RDP and the SL is that in case of SL, the training
images have the patterns for diagnosis.

• Hence the model is trained with the correct answer.
• In the case of RDL, no patterns are said to be perceived, but the agent present

in the RDL model decides upon the action to be taken and hence differentiate
between cancer and non-cancerous cell based on the occurrences.

9.2 Labeled and Unlabeled Data Modeling

Labeled data refers to a category of illustrative that has been marked with one or
more than one labels.

• The task of labeling the data commonly obtains a set of unlabeled data.
• Next, it makes bigger each piece of that unlabeled portion of that data with

significant tags informative.
• On the other hand, unlabeled datamodeling comprises of image samples involving

natural form that are said to be acquired straightforwardly.

9.2.1 Cross Entropy Auto Encoder

Cross-Entropy [3] is specifically utilized in machine learning as a measure for
loss function. It evaluates the difference between two probability distributions (i.e.
between themeasured value and actual value).Withminimumcross-entropy, anAuto
Encoder utilized back propagation to produce output value nearly samples as the input
values with minimum noise or cross-entropy. Figure 9.2 shows the schematic view
of Cross-Entropy Auto Encoder.

The working of cross entropy auto encoder is given below.

• The input is in the form of image including high dimensionality images and
processes the neural network producing smaller representation with dual chief
elements.

• The first element forms the encoder, representing a group of layer that acquires
the input image, compressing it to minimum dimensionality.

• The second element forms the decoder, where the actual reconstruction of input
image is said to be obtained with minimum cross entropy.

9.2.2 Sparse Specific Feature Auto Encoder

Sparse Specific Feature Auto Encoder (SSFAE) utilizing a sparsity enforcer enforces
a single layer network that in turn evaluates code dictionary, thereforeminimizing the
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Fig. 9.2 Schematic view of cross entropy auto encoder

error and confining code words for reorganization. Figure 9.3 shows the schematic
view of SSFAE.

As depicted in Fig. 9.3, SSFAE comprises of a single hidden layer ‘f ’, that is
connected to the input vector ‘a’ via weight factor ‘w’ resulting in the encoding
section. The hidden layer then outputs to reconstructed the image vector utilizing a
weight factor ‘w′’ resulting in the decoding section. Here, the decoded image forms
either the cancerous or non-cancerous image.

Fig. 9.3 Schematic view of SSFAE
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Fig. 9.4 Schematic view of
SLSAE

9.2.3 Stacking Layer Sparse Auto Encoder

A Stacking Layer Sparse Auto Encoder (SLSAE) comprises of several layers of
sparse auto encoders. Here, the output of each hidden layer is associated with the
input of the consecutive hidden layer. The schematic view of SLSAE is given in
Fig. 9.4.

As depicted in Fig. 9.4, the SLSAE comprises of three steps. They are:

• Training of auto encoder utilizing input image data and obtain the learned data.
• The learned data from the first layer is used as an input for the second layer, the

learned data from the second layer is used as an input for the third layer and
this process is said to be continued until the entire training process is said to be
accomplished.

• Finally, upon the training of all the hidden nodes in the hidden layers, cost
functions are minimized and the corresponding weights are updated to obtain
fine-tuned parameters, contributing to accurate disease diagnosis.

9.2.4 Convolutional Neural Network

AConvolutional Neural Network (CNN) is another form ofDeep Learning algorithm
that obtains an input image, allocates weights and biases to several image objects
to differentiate between each objects. One of the main advantages of this method is
the minimum amount of pre-processing required when compared to other disease
diagnosis classification algorithms.

9.3 Deep Learning Models

Under a moderate acceptance on the activation function, a two-layer neural network,
with a limited number of hidden nodes in hidden layers coarse grains a portion of the
consecutive function.Hence, deep learningmodels are also referred to as a ubiquitous
estimator. Nevertheless, it is also probable to coarse grain complicated functions to
similar accuracy factors utilizing a deep architecture with few neurons overall. In this
manner, the weight functions are minimized, hence ensuring the training of images
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with a comparatively small-sized image. Therefore, using deep learning models,
with the aid of domain expert and engineering skills, good features are said to be
discovered in a hierarchically automatic manner.

9.3.1 Deep Neural Network

A Deep Neural Network (DNN) corresponds to a neural network involving a certain
amount of complexity, including more than two layers.

• For achieving deeper insight, advanced mathematical modeling is utilized so that
processing of data or features are said to be cone in a complicated fashion.

• A neural network synonyms to the process of human brain activity performs the
task of pattern recognition, specifically, patterns for classifying into cancerous
and non-cancerous cell and the progress of input via different layers of simulated
neural associations

• Each layer asmentioned above includes an input layer, an output layer and at-most
one hidden layer in the middle.

• With each layer performing particular types of activities, one of themain purposes
of using this network is dealing with unlabeled data.

By utilizing the characteristics of artificial intelligence diagnose the risk of cancer
by classifying them into cancerous or non-cancerous cell beyond simple input/output
postulates.

• Deep Boltzman Machine
• Deep Belief Network
• Recurrent Neural Network.

9.3.2 Deep Boltzman Machine (DBM)

Deep Boltzmann Machine (DBM) [4] is a representation of a DNN produced from
several layers of neurons using nonlinear activation functions. With the aid of DBM,
the most sophistical and complexity relationships between features are said to be
made ensures advanced performance in learning of high-level feature representation
when compared to the conventional ANNs (Fig. 9.5).

The advantages of using DBM are:

• First, DBM’s have the prospects of learning internal depictions that become
progressively complicated and hence considered to be a favorable means of
solving object and cancer diagnosis problems.

• Second, high-level depictions are said to be constructed from a considerable size
of unlabeled feature inputs and very confined labeled are then said to be utilized
to moderately adjusting the model for a fixed task at hand.
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Fig. 9.5 Schematic view of
deep Boltzmann machine

• Finally, DBM better disseminates unpredictability and hence deal with more
robust and ambiguous input images.

9.3.3 Deep Belief Network

By stackingmultipleDBMs results in a single probabilisticmodel called,DeepBelief
Network (DBN). In other words, the DBN comprises one visible layer ‘VL’ and a
series of hidden layers ‘HL1, HL2, HL3, . . . , HLn’ as shown in Fig. 9.6.

As depicted in Fig. 9.6, while the top two layers form undirected generative
models, whereas the lower layers form directed generative models. The generation
structure of DBN is given below.

• Train the first layer.

Fig. 9.6 Schematic view of
deep belief network
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• Make use of the first layer to acquire a depiction of the input image that is said
to be utilized as the monitoring for the second layer, i.e., either using the mean
activations or samples drawn.

• Train the second layer as DBM, using the transformed samples mean activations
as training examples.

• Iterate steps 2 and step 3 for chosen number of layers, each time communicating
ascending either samples or mean activations.

9.3.4 Recurrent Neural Network

A Recurrent Neural Network (RNN) [5] is special type of ANN where the connec-
tion between nodes results in a directed graph in the form of a temporal sequence,
therefore contributing to temporal energetic behavioral patterns. RNN utilizes their
internal memory to exercise the input sequence of images. This makes them appli-
cable to cancer diagnosis involving medical imaging traits. Figure 9.7 shows the
block diagram of RNN.

As depicted in Fig. 9.7, the RNN refers to two classes of networks, finite impulse
and infinite impulse.

• Both classes of networks show temporal dynamic aspects.
• As far as the finite impulse is concerned, it is a directed acyclic and the other

infinite impulse is concerned, it is a directed cyclic graph.
• Both finite and infinite impulse RNNs possesses an additional stored state.
• It is said to be under direct control by a NN.

Fig. 9.7 Block diagram of
RNN
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9.4 Fine-Tuned Learning Parameters

When training of images of any modalities or types is performed with CNN, the
foremost task in deep learning tasks is to train the network from scratch. This is
because of the reason that an enormous amount of parameters are involved in deep
neural networks, usually in the range of millions. Hence, fine-tuning is said to be
required whenever involving deep learning.

• First training a CNN on a smaller dataset involving any medical images specifi-
cally smaller than the number of required parameters greatly hurts on the CNN,
usually resulting in overfitting.

• Therefore, if the dataset of any images if not different from the pre-trained model
is trained on, fine-tuning is said to be undertaken.

• APre-trained network on a large dataset extracts most unique features like curves,
edges, contrast that are said to be highly relevant and useful to most of the disease
diagnosis problems.

• In cases of images involving specific domain, medical images, with a cancer
diagnosis with the existence of no pre-trained networks, training the network
from scratch is said to be accomplished.

• Truncate final layer.
• Apply smaller learning rate.
• Freeze weight on first few layers.

9.4.1 Interaction and Non-Linear Rectified Activation
Function

For several computer vision applications, involving medical imaging for disease
diagnosis, in recent years deep networks have been used for early diagnosis. The
advantage of using DNNs consisting of multiple layers transforming input images
into output involves the learning process with higher-level features. For this purpose,
deep learning heavily depends on learning different levels of hierarchical data
representations [6, 7].

• Due to the involvement of the hierarchical structure, the DNN parameters are
said to be tuned to approximate the target functions more effectively than the
parameters involved in a shallow format.

• Hence, activation functions are utilized in neural networks (NN) that transforms
the weighted sum of the provided input data and biases.

• In this manner, the decision regarding the neuron to be fired or not fired for
classification is said to be made.

Some of the customarily utilized activation functions are:

• Sigmoid
• Hyperbolic Tangent (tanh)
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Fig. 9.8 Sigmoid curve

• Rectified Linear Unit (ReLU).

9.4.1.1 Sigmoid Activation Function

In neural networks, the widely used functions are sigmoid functions [8]. With the
presence of sigmoid activation function, differentiation between the sigmoid neuron
and logistic neuron is made. Different types of perceptions are

• Perceptron outputs discrete 0 or 1 value
• Sigmoid neuron outputs a continuous range of values between 0 and 1

The sigmoid curve given above is in the shape of S. It has a finite limit of ‘0’ as
‘x’ approaches ‘−∞’ and ‘1’ as ‘x’ approaches ‘+∞’ respectively (Fig. 9.8).

9.4.1.2 Hyperbolic Tangent

In neural networks, a hyperbolic tangent function is considered as an alternative to
sigmoid function.While performing back-propagate, a portion of activation function
is involved as derivative that is said to be indulged while measuring error effects on
weights. In these cases, derivative of a hyperbolic tangent function is said to be used.
Figure 9.9 given illustrates the hyperbolic tangent curve.

As depicted in Fig. 9.9, the hyperbolic tangent function generates output in the
form of ‘[− 1, +1]’ and case of medical imaging, i.e., cancerous or non-cancerous.
Besides, it is said to be in the form of continuous function. Therefore, the hyperbolic
tangent function in Fig. 9.9 is said to produce output for every feature value for
disease diagnosis.
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Fig. 9.9 Hyperbolic tangent
curve

9.4.1.3 Rectified Linear Unit

The use of ReLU enabled supervised training of state-of-the-art DNNs. Upon
comparison to the other conventional activation functions, ReLU is found to be
symmetric. Figure 9.10 given illustrates the ReLU.

As depicted in Fig. 9.10, the characteristic of ReLU provides the advantage for
the hidden units to be sparse and hence more biologically feasible. This property
encourages the hidden units to be sparse, and thus more biologically plausible. Some
of the features of ReLU included are given below.

• To utilize stochastic gradient descent with back-propagation of errors for training
in deep neural networks, an activation function is found to be highly necessary.

• Though it acts as linear function, non-linearity is said to be ensuredusing a rectified
activation function, therefore ensuring complex relationships.

• As far as the neural network is concerned, the responsibility of activation func-
tion remains in transforming the summed weighted input from the node into the
activation of the node or output for that input.

Fig. 9.10 Rectified linear
unit activation function
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• Besides, the rectified linear activation function is a piecewise linear function,
where the rectified linear activation function output the input image in a direct
manner if it is positive. On the other hand, it will output zero. With the aid of
rectified linear activation, better performance is said to be achieved due to ease in
training.

Some of the domains being in used are

• Facial recognition
• Facial verification
• Medical fraud analysis and detection
• Sentimental analysis and evaluation
• Sound detection
• Speech and visual pattern recognition.

9.4.2 Circumventing Over-Fitting via Dropout

9.4.2.1 Over-Fitting

Whenever training images of any nature is said to be involved in a statistical model,
over-fitting is said to occur. Hence, whenever, a model is said to be trained with an
enormous amount of information in the images, learning is said to be initiated from
the noise and inaccurate feature entries in our data set. Due to this reason, the model
does not properly correctly classify the data due to the presence of higher amount of
noise.

• The reasons for over fitting [8] are due to the involvement of non-parametric and
non-linear methods.

• These types of machine learning methods have more individuality in constructing
the model based on dataset of images and hence they are said to be unrealistic
models.

• Solutions to address over-fitting are either application of linear algorithms in case
of linear data or application of decision trees in case of maximal depth.

Some of the mechanisms to avoid over-fitting are

• Cross-validation
• Early stopping
• Pruning
• Regularization.
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Cross-Validation

One of the most fundamental means of avoiding over-fitting is the application of
cross-validation. Here, prediction error is determined based on the out of sample
value using fivefold cross validation.

Early Stopping

By applying the principle of early stopping, over fitting is said to be avoided. In
other words, the number of iterations required to be run is determined, therefore
early stopping is said to be achieved.

Pruning

Whenever related models have said to be constructed, pruning is applied. In other
words, with the application of pruning, the nodes or features that possess little
prediction power is removed.

Regularization

Here, a cost function is introduced for bringing more features based on the objec-
tive function. With this regularization concept, several variables are pushed to zero,
therefore minimizing the cost term, contributing to over-fitting.

• Over-fitting is said to be reduced through dropout [9].
• This is performed to minimize the computational overhead so that regularization

of deep neural network is said to be attained via dropout.
• This model works on the principle of probabilistic model, where the dropping is

said to be performed in a probabilistic manner by either eliminating or discarding
or removing certain irrelevant features, not required in the diagnosis stage while
performing with medical images.

• It works in such a manner that simulation is conducted on a comparatively larger
number of features with very different feature structure and hence making more
robust to the input features.

9.4.2.2 Dropout the Regularization Mode

Some of the dropout regularization modes are

• Use with all feature modalities
• Rate of dropout
• Large network usage
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• Grid search parameters
• Utilization of weight constraint
• Utilization of smaller dataset.

9.4.3 Optimal Epoch Batch Normalization

9.4.3.1 Batch Normalization

Batch normalization works on the principle of normalizing the input layer bymaking
alterations and activation scaling. For example, consider a scenariowhere the features
for medical images for diagnosing cancer include between 0 and 1 and certain non
cancerous cell between 1 and 100 [10].

• To normalize the cancerous and non-cancerous cell, the learning process is said
to be initially learnt, for speeding up the process.

• If by making the changes, advantage in the input layer is said to take place, then
changes are also said to be made in the hidden layers.

• So training speed are said to be changed in an overall manner by 10 times.

In this manner, employing batch normalization, the amount by which the hidden
values is said to be shift around is said to be improved via covariance shift. For
example, let us consider a scenario on cancer diagnosis. The training of medical
images is said to be performed on only cancerous cell image.

So, when applied this network to medical image on non-cancerous call image, it
is obvious, the process is not said to be doing well. The training set and the prediction
set are both medical images but they differ a little bit. In other words, if an algorithm
learned some a to b mapping and if the distribution of a changes, then the learning
algorithm has to be retrained in such a manner to change the distribution of a with
the distribution of b.

9.4.3.2 Batch Normalization Working

Figure 9.11 shows the batch normalization block diagram. To minimize the problem
of covariate shift as mentioned above, batch normalization is added in between the
hidden layers to normalize the function. Here normalization is said to be performed in
a separatemanner for each neuron and hence it is referred to as ‘batch’ normalization.

The working of batch normalization is said to be proceeded as follows:

• To improve and enhance the neural network stability and focus, batch normal-
ization performs the process of normalizing the output of a preceding activation
layer by deducting the batch mean and obtaining the ratio through batch standard
deviation.

• With the shifting operation of activation outputs by certain amount of random
parameters, the weights in the succeeding layer are not found to be optimal.
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Fig. 9.11 Batch normalization. IL—Input layer, HL—Hidden layer, OL—Output

• To ensure optimality, Stochastic Gradient Descent function is applied to undergo
normalization, so that the loss function is said to be minimized.

9.4.3.3 Optimal Epoch Batch Normalization

ImprovedDeep neural networks (DNN) have resulted in an exponential improvement
in the recent few years due to its varied applications in several domains like image
processing, object detection, disease diagnosis and so on. However, due to certain
levels of problems found in the training stage, thousands or millions of images are
said to be processed to obtain fine-tuned images fitting to a specific domain.

In this section, to achieve fine tune learned features, optimal epoch according to
the domain area and applications are said to be applied using batch normalization to
improve the generalization capability of DNN. By enhancing the statistical param-
eters involved in disease diagnosis from the input image to the disease diagnosis in
all batch normalization using optimal epoch across network, deep adaptation in the
field of medical imaging for cancer diagnosis can be attained.

• Batch normalization is specifically said to be implemented as a supplementary
layer in NN to both speed up the processing rate and time, therefore contributing
for medical imaging, specifically cancer diagnosis.

• For each iteration during the cancer diagnosis, of the training process, the optimal
epoch is said to be arrived at by normalizing the batch with its input using both
mean and the variance of each cancerous and non-cancerous image to produce
output possessing zero mean and unit variance.

• In this case, both the average and dispersion value on the input medical images is
probably simulated in such a manner that it should be similar to the average and
dispersion over the overall image.

• During the testing stage, the layer performs the actual normalization process
utilizing the save average and dispersion, that are running averages and dispersion
measured during the training process.
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• With optimal epoch, the input at the batch normalization layer is normalized in
such a manner that the next layer in the network extracts the input images that are
simpler to be trained, therefore improving the training speed.
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Chapter 10
A Deep Learning Architecture for
Identification of Breast Cancer on
Mammography by Learning Various
Representations of Cancerous Mass

Gokhan Altan

Abstract Deep Learning (DL) is a high capable machine learning algorithm with
the detailed analysis abilities on images. Although DL models achieve very high
classification performances, the applications are trending on using and fine-tuning
pre-trained DL models by transfer learning due to the dependence on the number of
data, long train time, employments in modeling the most meaningful architecture. In
this chapter, we proposed own pruned and simple DL architectures on ROIs extracted
from mammography to classify cancer-normal using Convolutional Neural Network
(CNN) and Deep Autoencoder (Deep AE) models, which are the most popular DL
algorithms. Breast Cancer, which occurs as a result of developing of normal breast
tissue to a tumour, is one of the deadliest diseases according to WHO reports. The
detection of cancerous mass at early stages is one of the decisive step to start the
treatment process. Mammography images are the most effective and simplest way
of the diagnosis of breast cancer. Whereas early diagnosis of breast cancer is a hard
process due to characteristics of mammography, the computer-assisted diagnosis
systems have ability to perform a detailed analysis for a complete assessment. The
aim of this study is proposing a robust cancer diagnosis model with a light-weighted
DL architecture and comparing the efficiency of the dense layer with the Deep AE
kernels against CNN. The ROIs from mammography images were fed into the DL
algorithms and the achievementswere evaluated. The proposedDeepAEarchitecture
reached the classification performance rates of 95.17%, 96.81%, 93.65%, 93.38%,
96.95%, and 0.972 for overall accuracy, sensitivity, specificity, precision, NPV, and
AUROC, respectively.
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10.1 Introduction

Breast cancer is the most prevalent and one of the deadliest diseases in the women
population all over the world. It causes more than half a million deaths per year [1].
Even though there are many studies on the identification of breast cancer, where
cancer conditions increase with a rising momentum, it still continues to be one
of the most deadly diseases. Asymptotic phases of breast cancer can be detected
directly from mammography images. Mammography images, which use low dose
X-ray, are the most effective and primary diagnostic tool to identify and screen the
cancerous tissue [2]. The cancerous cell in the tissue is particularly prominent for
advanced cancer conditions since its density is high in mammography. Therefore,
mammography images still stand out as the primary diagnostic tool in monitoring
and diagnosing the disease. Detection of cancerous lesions in the early stages is
more difficult to detect in pathology and color densities since mammography is a
gray-scale image [3, 4]. Early diagnosis supports a key role in stopping and even
keeping the progression of disease under control. Due to this situation, clinicians
double-reading, or processes that require detailed analysis of at least two different
radiologists, or expensive diagnostic systems are frequently used for early detection.
However, this procedure incurs conditions such as additional clinical tests, workload,
and the rate of physicians’ interest in new patients [5]. These disadvantages can be
detected in a short time by using computer-aided diagnosis (CADx) systems, which
can detect smaller pathologies that can bemissed by even two radiologists, and speed
up the patient-specific treatment process.

In the machine learning algorithms used to develop successful CADx models,
database and feature extraction take an important role. The homogenization of the
distribution in the dataset, preventing overfitting by increasing the amount of data,
preparing the train and test sets independently based on the problem are among the
parameters to be considered during modeling [5–7]. Conventional CADx systems on
mammography should be trained to include the characteristics of cancer lesions and
should be determined in the learning process for responsible areas to achieve high
discrimination capability [8]. Excluding the redundant regions from the analysis
is one of the simplest methods. It is used in optimizing the model, especially the
pattern, histogram, hand-crafted and shape-based features of pathological regions [9].
This allows disciplines such as machine learning, image processing to maintain its
popularity and to standout asmore specific areas.Whereasmost of theCADxsystems
use hand-crafted features obtained by statistical analysis [2, 10], transformation
methods and expert guidance [11, 12], novel CADx systems perform high accurate
identification performances using automatized analysis, feature learning and transfer
learning. One of these leading and novel methods is Deep Learning (DL), which has
proven its effectiveness on the image in many disciplines.

DL is a machine learning algorithm that minimizes the use of image processing
and hand-crafted features, which is more distinctive with the multi-layered struc-
tures used in supervised learning [13, 14]. The most important advantage of the
DL is that it extracts the low-, middle-, and high-level features of the images by
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transferring them between adjacent layers and feeds the size-independent character-
istics into the supervised classifier models [10, 14]. In this way, the shape, pattern,
color, and density information of the images can be analyzed with different feature
maps. The basis of advanced image analysis methods is the main approach of the
feature learning phase in DL. DL achieves successful results in many fields such as
image processing, natural language processing, computer vision, time-series analy-
sis, and provides enhancing the ability of models with superior analysis capability in
many different disciplines [15]. Owing to the transfer learning phase in DL models,
the weights obtained by training with different datasets. It provides very successful
segmentation, regression and classification performances and called pre-trained DL
architectures [12]. In addition to the aforementioned disciplines, DL has become
one of the most popular methods in many areas including medical image processing.
Different variations were obtained by transferring different optimization and unsu-
pervised models to feature learning [10]. The main advantages of DL are detailed
avoiding overfitting, analyzing specific feature maps, and using many hidden layers
in supervised learning procedures.

There are various studies that applied pre-trained DL algorithms which are based
on convolutional neural network (CNN) framework on different mammography
databases [4, 6, 8, 15, 16]. They reported well-enough classification andmass detec-
tion performances. In particular, in addition to mammography images, histology and
histopathology images, which are different cancer imaging techniques, were also
analyzed with DL and achieved remarkable segmentation and classification results.
However, the pre-trainedCNNarchitectures includingAlexNet,DenseNet,VGGNet,
GoogleNet, DenseNet, and more have a high number of optimization parameters
about 12–132 M [15–17]. This case increases the requirements including proper
computational capability and training time. This study aims at proposing a robust
cancer diagnosis model with a light-weighted DL architecture and comparing the
efficiency of the dense layer with the Deep AE kernels.

10.1.1 Literature Overview

Breast Cancer analysis is a discipline that is frequently studied due to the disease is
fatal and has a high prevalence [1, 4]. While mass detection and diagnostic analysis
are performed using hand-crafted features [18], especially before the DL approach,
an indispensable tool in the segmentation of pathological patterns, mass detection,
mass bounding, and classification of the lesions with the flexibility, feature learn-
ing capability and adaptability specifications of DL has been highlighted for medical
images [9, 19].Histology andhistopathology images are popular aswell asmammog-
raphy; however, they contain very different patterns and color-based characteristics
compared to mammography images [1]. Moreover, these diagnostic tools are expen-
sive medical devices. Therefore, mammography images were preferred in this study
since they are not applicable to every healthcare institution. While most studies in
the literature focus directly on cancer-normal, malignant-benign, mass-calcification,
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malignant-benign-normal classification from mammography images [20, 21], some
studies have carried out mass detection and localization of the mass pathologies and
calculating region of interest (ROI) performance for predicted regions to evaluate
the responsibility of the models [22–24].

Pardamean et al. separated the mammography images into normal and cancer
classes using transfer learning on ChexNet model weights. They augmented the
DDSMdatabase using 5 crop augmentation techniques due to the necessity of a large
database on DL. Their model performed various experiments to define the impact
of the learning rate, dropout factor and L2 regularization on pre-trained DenseNet
architecture with 121 layers. They achieved accuracy rates of 98.02 and 90.38% for
training and testing fold [21].

Zeng et al. used a smoothing technique on convolution layers and the ROI pooling
layer for mass detection. They applied faster regions with CNN (R-CNN) by com-
bining rectangular mass tissues. They identified the benign and malignant masses
on mammography with a sensitivity rate of 93.60% and an average false positive
value of 0.651 per image. Their model enabled extracting multi-level features and
transferring the specified characteristics for the supervised learning stage [3].

Yoon and Kim extracted hand-crafted features including mass shape, mass mar-
gin, calcification type, density, assessment to separate mammography with benign
from mammography with malignant. They used 5-fold cross-validation on multiple
support vector machines (SVM) with a recursive feature elimination model. They
modified the radial basis function kernel and Ada-boost classifier for the SVM for
the classification system. They reported an area under the receiver operating char-
acteristic curve value of about 0.9473 for training. They suggested the descriptor
features as deterministic mass characteristics [18].

Ertosun andRubin proposed a regional probabilistic approach for the classification
of mammography with and without mass. They also detected the mass area for
mammography for the pathological patterns. They performed a data augmentation
by cropping, translation, rotation, flipping, and scale-based methods. They utilized
adapted pre-trained CNN architectures and reported the success of GoogleNet for
mass detection [25].

Suzuki et al. analyzed the mammography images to classify them into mass and
normal by a CADx system. They extracted ROI images from the DDSM database.
They trained AlexNet architecture using transfer learning on 1656 ROI images with
an equal number of images for each class. They tested the model using a separate
testing fold (198 images) [26].

Zhu et al. adapted the adversarial model to segment the mass tissue for DL archi-
tecture. They applied pixel position-dependent normalization on theDDSMdatabase.
They augmented the mammography images by flipping horizontally and vertically.
They proposed an adaptive level set segmentation on breast cancer segmentation.
They iterated the conditional random field algorithm, adversarial model, and CNN
architecture using hybrid methods. They reported the dice index for the mass detec-
tion with the rates of 90.21%, 90.97%, and 91.30% for CNN, CNN with conditional
random field algorithm, and CNN with Adversarial and conditional random field
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algorithm, respectively. They commented on the efficiency of the hybrid methods on
the identification of mass tissue using mammography [13].

Xi et al. used class activation maps on pre-trained CNN architectures to clas-
sify calcification and mass mammography. They applied 5-fold cross-validation to
the training phase of the classifier architectures. They achieved mass detection per-
formance rates of 91.23%, 92.53%, 91.80%, and 91.10% for AlexNet, VGGNet,
GoogleNet, and ResNet, respectively. They commented on the feature extraction
efficiency of VGGNet on mammography images for localizing pathological tissue
by class activation maps [19].

Sarosa et al. cropped ROI images of mass from the DDSM mammography
database. They classifiedmalignant and benignmasses for the identification of breast
cancer. They extracted contrast sharpening and histogram equalization algorithms.
They analyzed gray-level co-occurrence matrix features using the SVM classifier.
They utilized 3-fold cross-validation on the training of their proposed model and
reported an accuracy rate of 63.03% and a specificity rate of 89.01% for binary
classification [11].

Nguyen and Lim integrated Gabor filter into the CNN architecture. They applied
thresholding and median filtering as the pre-processing of their proposal. They com-
bined two databases (DDSM and MIAS) for defining the robustness of the model.
They classified malignant, benign and normal mammography images with a sensi-
tivity rate of 96%. They chose to feed the classifier with ROI images of the abnor-
malities instead of getting the whole mammography image as input. Even though
they achieved a high sensitivity rate for separation of three lesions, using different
databaseswithout standardization has possibilities to lead into error in the application
and medical use [24].

Touahr et al. have proposed a CADx system to perform automated breast tumor
detection. They analyzed malignant and benign tissues using local binary patterns.
They applied batch normalization on the CNN architecture. They compared the clas-
sification performance of local binary patterns and directly CNN using mammogra-
phy. They reported CNN/CNN with local binary patterns classification performance
rates of 93.24/96.32%, 92.91/96.81%, 91.92/95.83%, and 97/97% for accuracy, sen-
sitivity, specificity, and AUROC, respectively [27].

10.2 Materials and Methods

10.2.1 Deep Autoencoders

Autoencoder (AE) is an unsupervised algorithm to generate different presentations
using encoding and decoding procedures. The adaptable dimensional characteristic
of AE on encoding procedure makes it a popular module for unsupervised stages of
the DL algorithms [28]. AE constructs a set of encoding weights using input data into
an intermediate representation and then generates another set of decoding weights to
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Fig. 10.1 Autoencoder
structure

convert intermediate representation into an approximate representation of the input
data [7].

Whereas AE models generate different presentations of the input image, it is
also a method used for feature dimensionality reduction and data enhancement.
They usually produce compressed representation and ensure that responsible and
significant features are transferred to the next layers [28, 29]. The structure of AE is
depicted in Fig. 10.1.

The encoding process is a mapping function that constructs input x ∈ Rdx into
x ∈ Rd (1)

using non-linearity. dx and d (1) are dimensions of the input and encoded
representation, respectively.

z(1) = h(1)
(
W (1)x + b(1)

)
(10.1)

where h(1) represents a non-linear transfer function for the encoding process. W (1)

and b(1) represent encodeweight matrix and encoder bias, respectively. The decoding
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process is a mapping function that reconstructs input using encoded representation.

x̂ = h(2)
(
W (2)z(1) + b(2)

)
(10.2)

where h(2) represents a non-linear transfer function for the decoding process. W (2)

and b(2) represent decode weight matrix and decoder bias, respectively. Typically
the dimension of under complete AE code is smaller than the input dimension due
to provide learning most characteristic information of the training. The learning
procedure aims at minimizing the cost function which states the error between input
data and reconstructed output (x̂) [29].

Ĵ (ψ, b) =
[
1

N

N∑

i=1

(
1

2
‖z(l−1)

i − x̂i
(l)‖2

)]

+ ϑ

2

ul−1∑

j=1

ul∑

i=1

(
ψ l−1

ij

)2
(10.3)

where N , ϑ , and ul represent the number of samples, weight decay parameter, and
the number of units in the 1st layer, respectively (z1i = xi). The second term denotes
the weight decay for avoiding overfitting. Sparse AE is a simple AE approach that
adds a regularization parameter to the cost function to obtain useful representations.
The sparsity regularization parameter is a function that denotes the average output
activation of a neuron [30]. The cost function of sparse AE is formulated as follows:

Ĵ (ψ, b) = J (ψ, b) + γ.�sparsity (10.4)

where � represents sparsity penalty term and γ defines the responsibility of sparsity
term.

Deep AEmodels are encoded by handling layer by layer (see Fig. 10.2). The Deep
AE models have a higher learning capacity than shallow and linear AE models [7].
Compressed representations have the ability to be decoded for many layers using
Deep AE approaches [28, 29]. Hereby, the efficiency and robustness of CNN and
Deep AE with dense layers were compared on the same supervised learning stages
on mammography images with cancer and non-cancer tissues.

10.2.2 Digital Database for Screening Mammography
(DDSM)

DDSM, one of the largest mammography databases with online access, was used
for the proposed model [31]. DDSM is a wide breast cancer database that has a
total number of 2620 cases. The DDSM was gathered and opened for analysis for
the researchers within the scope of the project by Massachusetts General Hospital,
Wake Forest University School of Medicine, Sacred Heart Hospital and Washington
University in St. Louis. Having mammography images from different devices is one
of its most important features to analyze various image resolutions and bits.
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Fig. 10.2 Deep Autoencoder structure with one hidden layer in decoding and encoding

Among them, we excluded the benign case sets. We collected normal and cancer
cases from all devices since the proposed Deep AEmodels need a big number of data
and avoiding overfitting. The analyzed mammogram images in this paper comprise
the complete set of normal and cancer cases available in the DDSM. Table10.1
presents themammography andROI distribution according to the scanners inDDSM.
DDSM also has ROI segmentation, general locations of lesions, and bounding boxes
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Table 10.1 The number of normal mammography, cancer mammography an ROI images in the
analysis

Mammography ROIs

Cancer Normal Cancer Normal

DBA 97 430 117 457

Howtek 424 183 435 317

Lumisys 393 82 421 278

Total 914 695 973 1052

Fig. 10.3 Randomly selected ROIs with cancer (a) and normal (b)

for cancer mammogram images for the training of the machine learning algorithms.
The sample analyzed ROIs are indicated in Fig. 10.3. We augmented the ROIs using
cropping and flipping techniques.

10.2.3 Performance Evaluation

Dataset was tested using 5-fold cross-validation. In this algorithm, the dataset is
divided into 5 folds with a homogeneous distribution of classes. In other words, the
number of samples from different classes in each fold must be equal. One fold is
used for testing the trained model, whereas remaining folds are used for the training
of the classifier [32]. This process is implemented for each fold and the average of
the test results for each fold is used to evaluate the overall performance of the model
[7].

The predicted labels obtained in the test results are compared with the actual
labels to obtain the confusion matrix. Performance evaluation metrics can be cal-
culated using True Positive (TP), False Positive (FP), True Negative (TN), False
Negative (FN), which are the distribution in the confusion matrix [32]. TP is the
number of ROIs that are correctly classified as cancer; FN is the number of ROIs that
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are actual cancer, are predicted as normal; FP is the number of ROIs that are actually
normal, falsely predicted as cancer; TN is the number of ROIs that are correctly
classified as normal. Utilizing the output of the proposed Deep AE models, we cal-
culated accuracy, sensitivity, specificity, precision, negative predictive value (NPV),
F1 Score, and AUROC. The formulation of the performance evaluation metrics are
as follows:

Accuracy : (TP + TN )

(TP + FP + TN + FN )
(10.5)

Sensitivity : TP

(TP + FN )
(10.6)

Specificity : TN

(FP + TN )
(10.7)

Precision : TP

(TP + FP)
(10.8)

NPV : TN

(FN + TN )
(10.9)

F1Score : 2 ∗ TP

(2 ∗ TP + FP + FN )
(10.10)

10.3 Experimental Evaluation

In this section, we shared the experimental setup, model architectures, classification
parameters and tuned ranges for Deep AE and CNN models. The best results for
both classifiers were presented and compared with the existing literature. A series
of experiments with a standardized classifier model for both classifiers at a limited
variety is carried out on ROI images with cancer lesions and normal tissue from
mammography. The efficiency of the representation capabilities for Deep AE and
convolution layers are compared with each other.

10.3.1 Experimental Setup

Cancer and normal ROIs segmented using mass locations from mammography
images were used for the analysis of breast cancer on DL models. Hereby, experi-
ments were carried out based on two different DL models. In the first proposed DL
model, conventional CNNmodels with fully connected layers were trained using the
extracted ROI images for cancer-normal mammography classification. In the sec-
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ond DL model, the Deep AE outputs were fed into the fully connected layer. The
classification parameters at the supervised stage including the number of the fully
connected layer and neuron size were iterated at a specific region for a complete com-
parison of Deep AE and convolutional layers performances. The same classification
parameters including learning rate, dropout parameter, and Adam optimization were
set for each model at the supervised training. In the proposed models, the classifier
performances on CONV and Deep AE were evaluated for the same fully-connected
layers. In the proposed models, the convolution filter size, max pooling, dropout fac-
tor, stride, layer sizes, which affect the classifier performance, are increased at certain
intervals and their contribution to the generalization performance and achievements
were improved. The depth for convolution layers and Deep AE layers is fixed at 3.
The number of nodes for each layer in Deep AE models is iterated at the range of
10–250 with a step-size of 10, whereas the filter size for Convolutional layers is set
at a range of 3–10 with an increasing 1 by 1. The filter size of the max-pooling layer
was set to 2 × 2 for each layer after convolution (CONV). CONV kernels sifted with
a stride length of 1 (non-stride) and no-padding until the entire ROIs were traversed.
Rectified Linear Unit (RELU) was utilized for eliminating negative values after each
max-pooling. Meanwhile, the sparsity regularization parameter at each AE layer is
fixed at 10−3. Sparsity penalty term (γ ) variance is set over {0.1, 0.75} in the exper-
iments. Fully-connected layers were tuned over two layers. The number of nodes at
each fully connected layer was tuned at a range of 50–200 with a step-size of 10 neu-
rons. The dropout factor was set as 0.5 for each layer. The training of fully-connected
layers was stopped at the 200th epoch. The output of the fully-connected layer was
fed to the softmax classifier as input. The softmax classifier predicts the output as a
probability function that defines the level of relation to cancer or normal.

10.3.2 Data Augmentation

Unlike other machine learning approaches, deep learning algorithms have capabil-
ities to train the models that increase generalization performance and classification
performance for large-scale databases. Therefore, data augmentation is frequently
used in DL-based image analysis. Data augmentation inmedical images enables gen-
erating additional data using simple transformations that solve the rarity problems
of Deep AE training.

Using larger training datasets, DL models have the ability to learn more robust
and characteristic information.Moreover, it prevents the classifier models from over-
fitting, which is the main and compulsive issue for machine learning algorithms.
However, it is an important issue to have a homogenous distribution by classes.

The most popular data augmentation techniques including cropping, flipping,
rotating, andmore are not only simple but also effective for deep learning algorithms.
Filtering is not well chosen for data augmentation, because of the convolution lay-
ers are already a kind of filtering in images. Considering these characteristics in
Deep Learning models, we augmented the ROIs to enhance the performance of the
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Fig. 10.4 Data
augmentation progress steps
for ROIs

proposed models using flipping in different directions (vertically, horizontally and
both). The ROI mammography dataset was augmented by 4 times (1 original ROI, 3
flipped ones). The details of the data augmentation process on DDSM is depicted in
Fig. 10.4. Using this augmentation procedure, we attained 3892 and 4208 ROIs from
mammography for cancer lesions and normal tissue, respectively. Each ROI image
was resized to 224 × 224 for Deep AE and CNN analysis.

10.3.3 Results and Analysis

In this subsection, the analysis results proposed Deep AE and CNN with fully-
connected layers were evaluated considering the various AE layers and convolutional
layers. The experimental results and the highest classification performances for both
Deep AE and CNN were compared with the existing literature on the identification
performance of cancer and normal tissues on mammography images. We want to
highlight that original and augmented ROI images were fed into the Deep AE and
CNN architectures to classify the ROIs and to evaluate the generating significant
representations performances. The best achievements are presented in Tables10.2
and 10.3 for Deep AE and CNN, respectively. It is evident that the proposed Deep
AE with two fully-connected layers achieved better performance on all sparsity
penalty terms. However, vying performances were achieved for conventional CNN
architectures as well.

Experimental iterations with different Deep AE models have shown that a three-
layerDeepAEmodel has the ability to classify cancer-normalmammography images
with high classification performance achievements. Figure10.5 depicts the classifi-
cation performance achievements for proposals. Especially, Deep AE models with
low sparsity penalty value had higher generalization capacities than a high spar-
sity penalty value. The best classification performances with low sparsity penalty
term (γ = 0.1) were reached to the rates of 95.17%, 96.81%, 93.65%, 93.38%, and
96.95% for overall accuracy, sensitivity, specificity, precision, andNPV, respectively.
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Fig. 10.5 Comparison of proposed Deep Learning architectures considering system performances
(%)

The highest classification performancewas achievedwith a low sparsity penalty term;
additionally, successful models were generally achieved for its high value, as well.
The highest classification performances with high sparsity penalty term (γ = 0.75)
were reached to the rates of 93.78%, 97.80%, 90.95%, 88.36%, and 98.33% for over-
all accuracy, sensitivity, specificity, precision, andNPV, respectively. It is experienced
that most of the accurate Deep AE models consisted of funnel-shaped compression
architecture.

Table 10.2 The best five classification performances (%) for DeepAEmodels with fully-connected
layers

Deep AE
model

FC
layers

� Acc Sen Spe Pre NPV F1
Score

180-120-90 130–210 0.1 95.17 96.81 93.65 93.38 96.95 0.9507

120-100-60 90–120 94.48 94.96 94.04 93.64 95.28 0.9430

200-190-110 70–160 93.74 95.30 92.30 91.97 95.50 0.9360

90-90-130 80–120 93.65 98.00 89.64 89.74 97.97 0.9411

170-140-60 90–70 93.40 97.69 89.42 89.52 97.66 0.9343

110-90-50 160–220 0.75 93.78 97.80 90.95 88.36 98.33 0.9284

150-130-90 130–110 92.62 89.18 95.79 95.15 90.54 0.9207

130-140-130 110–170 92.59 88.67 96.22 95.60 90.18 0.9201

100-40-30 230–40 91.07 97.53 85.10 85.82 97.39 0.9130

210-30-30 100–240 90.68 96.33 85.46 85.97 96.18 0.9085

Acc accuracy, Sen sensitivity, Spe specificity, Pre precision, FC fully-connected



182 G. Altan

Table 10.3 The best five classification performances (%) for CNN models with fully-connected
layers

CNN model FC layers Acc Sen Spe Pre NPV F1 Score

CONV(5) @96 210–220 91.44 91.62 91.28 90.67 92.18 0.9114

CONV(8) @64

CONV(9) @32

CONV(5) @96 200–200 90.21 90.65 89.81 89.16 91.20 0.8990

CONV(8) @64

CONV(9) @32

CONV(5) @96 190–230 90.02 89.44 90.57 89.76 90.27 0.8960

CONV(6) @64

CONV(7) @32

CONV(7) @96 170–180 89.59 89.13 90.02 89.20 89.95 0.8917

CONV(8) @64

CONV(3) @32

CONV(3) @96 240–180 89.21 93.47 85.27 85.44 93.39 0.8928

CONV(4) @64

CONV(3 )@32

Acc accuracy, Sen sensitivity, Spe specificity, Pre precision, FC fully-connected

10.4 Discussion

The CADx systems are frequently brought to the fore with various approaches on
breast cancer, especially as novel models that provide fast and detailed analysis of all
image types. The fact that DL algorithms enable more detailed analysis opportuni-
ties for CADx systems is DL has an advantage for the development of these models.
Accordingly, low-, middle-, high-level feature extraction capabilities of CNN archi-
tectures provide tuning successful diagnostic models in the analysis of mammogra-
phy images. Besides being a model that has proven itself in many disciplines; using
different supervised techniques as a feature learning approach is a highlighted pro-
posal in recent years, as well. In this chapter, we explored the popular DL algorithms
including Deep AE and CNN with the same classification parameters to evaluate the
efficiency of Deep AE kernels on mammography images to identify cancer tissue
against CNN. Moreover, we focused on answering the question that “Do deep AE
kernels have the ability to extract significant characteristics from mammography to
learn cancer lesions?”. To tackle this question, we adopted Deep AE as a feature
learning stage to abstract informative patterns from ROIs with cancer and normal
tissue and to learn complex mapping relations in ROIs. Afterward, we fed the com-
pressed representations and flattened CONV features to the fully-connected layer-
based supervised learning stage with the same classification parameters to evaluate
the performances.

As is clearly seen in Table10.4, most of the studies focused on the analysis of
breast cancer usingDeepLearning algorithms. Especially, the pre-trainedCNNarchi-
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Table 10.4 The state-of-art for classification of mammography for cancer-normal identification on
DDSM

Papers Methods Classifier Acc Sen Spe AUROC

Pardamean
et al. [21]

Transfer learning
from ChexNet

CNN (DenseNet) 90.38 – – –

Ertosun and
Rubin [25]

Regional
probabilistic
approach

CNN
(GoogleNet)

85.00 85.00 – –

Suzuki
et al. [26]

Transfer learning
from ImageNet

CNN (AlexNet) 85.35 89.90 – –

Nasir Khan
et al. [20]

Multi-View
Feature Fusion

CNN (VGGNet) 94.45 98.07 88.13 0.918

Al-antari
et al. [9]

First-Higher
Order Statistical
Features

DBN 92.86 – – –

Swiderski
et al. [22]

Non-negative
matrix
factorization

CNN 85.82 82.38 86.59 0.919

Agarwal
et al. [23]

Transfer learning
from ImageNet

CNN
(ResNet-50)

84.00 – – 0.92

This study ROI extraction CNN 91.44 91.62 91.28 0.931

Deep AE 95.17 96.81 93.65 0.972

Acc accuracy, Sen sensitivity, Spe specificity, Pre precision

tectures are the main and the most popular approaches for cancer detection due to
the transfer learning advantage and adaptability of CNN models.

Pardamean et al. transferred the weights of the pre-trained ChexNet model for
learning mammography images. They experimented on fully-connected layer size,
learning rate, dropout factor and regularization parameters at the supervised stage
of their CNN model. They adapted 121 layers of DenseNet architecture and opti-
mization of supervised learning. They achieved an accuracy rate of 90.38% using
their proposal [21]. Ertosun and Rubin utilized CNN classifiers with popular pre-
trained models. They achieved classification accuracy rates of 84.00%, 82.00%,
and 85.00% for AlexNet, VGGNet, and GoogleNet, respectively. They reported the
highest sensitivity rate of 85.00% and an average false positive value of 0.9 using
GoogleNet architecture for each mammogram for ROI localization [25]. Suzuki et
al. proposed a deep neural network structure with the transfer learning capability of
ImageNet weights. They used AlexNet architecture and achieved the classification
performance rates of 85.35%, 89.90%, and 19.20% for accuracy, sensitivity, and aver-
age false positive, respectively [26]. Nasir Khan et al. proposed a multi-view feature
fusion model. They used four mammography images for each breast. They focused
on different classification problems including cancer-normal, mass-calcification, and
malignant-benign. They used bilateral filter and contrast enhancement techniques
as a pre-processing stage. They adapted pre-trained CNN architectures including
VGGNet, GoogleNet, and ResNet. They reported VGGNet as the best CNN archi-
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tecture for distinguishing cancer and normal mammography images by training their
own weights. They reached classification performance rates of 94.45%, 98.07%,
and 88.13% for accuracy, sensitivity, and specificity, respectively [20]. Al-antari
et al. proposed a CADx system using representational learning architecture Deep
Belief Networks which is similar to Deep AE on a limited number of mammography
images. Their proposal used restricted Boltzmann machines as the supervised stage
and attained pre-trained weights for supervised learning. They extracted first- and
high-order statistical features including entropy, histogram, asymmetry, skewness,
kurtosis, moments from various orders, dissimilarity rates, and more from the ROIs
from mammography images with cancer and normal. They fed the statistical feature
set into multiple machine learning algorithms such as linear discriminant analysis,
quadratic discriminant analysis, SVM, andDeep Belief Networks. They achieved the
highest classification performancewith an accuracy rate of 92.86% usingDeep belief
networks [9]. Agarwal et al. proposed a cancer mass detection model using transfer
learning from ImageNet weights. They adapted the pre-trained ResNet-50 which is
a popular CNN architecture on augmented mass and normal mammography images.
They achieved a classification accuracy rate of 84.00% and an AUROC value of 0.92
for ImageNet weights on DDSM. They fine-tuned the ResNet-50 model using the
InBreast database by training a novel architecture. They reached an accuracy rate of
92.00% and an AUROC value of 0.98 [23]. Swiderski et al. applied the non-negative
matrix factorization method that enables generating a different presentation in the
factors form of the Hilbert matrix by a vector. They proposed a novel light-weighted
CNN architecture instead of using pre-trained CNN models. They ensured a model
with extracting middle- and high-level features from mammography. They tested
the CNN model using 10-fold cross-validation. They classified cancer and normal
mammography imageswith classification performance rates of 85.82%, 82.38%, and
86.59% for accuracy, sensitivity, and specificity, respectively. Their training reaches
an AUROC value of 0.919 [22].

Whereas the related works focused on using pre-trained CNN models, our pro-
posal analyzed the efficiency of Deep AE as a feature learning stage. The proposed
model has also trained a novel CNN architecture with the capability of extracting
significant information from mammography images. The achieved results at iterated
classification parameter ranges show that DeepAE has a higher andmore responsible
feature extraction ability against CONV layers on ROI images. The constructing of
Deep AE models needs to define the layer sizes and number of neurons at each layer
for generating a responsible representation. The proposed Deep AE model classi-
fied cancer and normal ROIs with high classification performance rates of 95.17%,
96.81%, 93.65%, 93.38%, and 96.95% for accuracy, sensitivity, specificity, preci-
sion, and NPV, respectively. The proposed CNN architecture classified cancer and
normal ROIs with the performance rates of 91.44%, 91.62%, 91.28%, 90.67%, and
92.18% for accuracy, sensitivity, specificity, precision, and NPV, respectively. The
Deep AEmodel had a better generating responsible representation capability against
the CONV model at experimented classification parameter ranges. The results show
that using a compression model with a funnel-shaped Deep AE model has a bet-
ter generalization capability for mass classification. Using lower sparsity penalty
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term value has advantages of carrying significant characteristics for ROIs on mam-
mography images. Using a big number of nodes at fully-connected layers provided
a better classification performance for Deep AE compressed representations. This
case enables performing more detailed learning procedures for DL algorithms.

Considering the conventional CNN models among the proposed DL models, the
highest classification performance was achieved using the CNN architecture that is
composed of CONV(5) with 96 filters, CONV(8) with 64 filters, CONV(9) with
32 filters, FC1(210), and FC2(220), respectively. We want to note that each CONV
layer is followed by a max-pooling layer with a filter size of 2 × 2 and a RELU layer.
The proposed CNN architecture has separated the ROIs into cancer and normal with
classification performance rates of 91.44%, 91.62%, 91.28%, 90.67%, and 92.18%
for overall accuracy, sensitivity, specificity, precision, and NPV, respectively.

10.5 Conclusion

We explored the CNN and Deep autoencoder algorithms on mammography consid-
ering feature extraction stages; in particular, how deep AE kernels separated ROIs
with cancer and normal tissue from mammography images without impairing gen-
eralization capability and classification performance of popular DL algorithms. This
study demonstrates how the Deep AE algorithm is effective not only using dense
layers with many optimization parameters but also using AE kernels on simplified
feature learning stages of DL architectures.

There are many existing studies focused on Deep AE kernels [10, 14]. However,
these Deep AEmodels rarely show how they can be integrated into the DL classifiers
as feature learning stages. This chapter compared the efficiency of CONV and Deep
AE performances on the identification of mass lesions for breast cancer.

This section presented an approach to combine the Deep AE into various machine
learning algorithms that perform unsupervised training for Deep AE on generating
representations of detailed pattern analysis. The result of proposed simplified Deep
AE architecture as feature learning is an adaptable algorithm to improve medical
imaging applications, made available to a wider community of academics and prac-
titioners, and, in addition, is easy to perform for even DL models with many hidden
layers using Deep AE kernels.
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Chapter 11
Deep Learning for Brain Tumor
Segmentation

Khushboo Munir, Fabrizio Frezza, and Antonello Rizzi

Abstract Brain tumors are considered to be one of the most lethal types of tumor.
Accurate segmentation of brain MRI is an important task for the analysis of neu-
rological diseases. The mortality rate of brain tumors is increasing according to
World Health Organization. Detection at early stages of brain tumors can increase
the expectation of the patients’ survival. Concerning artificial intelligence approaches
for clinical diagnosis of brain tumors, there is an increasing interest in segmentation
approaches based on deep learning because of its ability of self-learning over large
amounts of data. Deep learning is nowadays a very promising approach to develop
effective solution for clinical diagnosis. This chapter provides at first some basic
concepts and techniques behind brain tumor segmentation. Then the imaging tech-
niques used for brain tumor visualization are described. Later on, the dataset and
segmentation methods are discussed.

Keywords Deep learning · Convolutional neural network · Brain tumor
segmentation · Artificial intelligence

11.1 Introduction

Machine learning (ML) [1, 2] is a fundamental approach for designing intelligent
systems and it is considered a basic ingredient in artificial consciousness [3].Artificial
intelligence systems, mostly based on ML, are nowadays applied in many fields
such as agriculture [4, 5], computer vision [6, 7], medical diagnosis [8, 9] and
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scene analysis [5, 10]. Neural networks based advancements [11, 12] introduced
deep learning (DL) into the market which nowadays is considered to be the most
powerful approach. It can discover deep feature representations meaningful for a
particular application, difficult to be found by the specialist. The methodologies used
to determine those features are known as automatic strategies of feature acquisition
[13, 14]. Deep learning has been widely used in the field of medicine and has proven
to be the best among all other clinical methods.

Among all others, brain is themost important part of the body,whereas brain tumor
is caused by a disordered proliferation of cells. Central Nervous System tumors can
develop either in the spinal cord or in the brain [15], while the prime symptoms
are headaches, neural coordination issues, mood swings, and memory loss. Brain
tumors are categorized based on their growth origin, nature, and progression rate
[16, 17]. There are benign tumors and malignant tumors. Benign tumors have low
progression rate, they don’t contain cancerous cells and are non-invasive, whereas the
malignant tumors have a high progression rate, they consist of cancerous cells and are
invasive in nature [18]. Brain Tumors are classified into four grades by brain tumor
associations [19] inwhich grade I and II are benign, whereas III and IV aremalignant.
If the benign tumor is not treated carefully it can turn itself into malignant. In the
invasive case, incision is done for collecting tumor samples which, is also known as
biopsy. Non-invasive diagnostic approaches makes use of images of different types,
for example, positron emission tomography (PET), computed tomography (CT) and
magnetic resonance imaging (MRI) [20, 21]. MRI is useful in providing human
cerebrum information and is more useful because of its non-ionizing radiation and
non-intrusive nature.

Deep learning is used for investigating various types of brain tumors. The convo-
lutional neural network is the most used deep learning structure outperforming other
structures, especially for cerebrum tumor segmentation and categorization. The idea
is to convolve the images through learned Finite Impulse Response (FIR) filters,
organized in many layers in order to achieve a chain of feature activations. Basic
steps of computer vision system design, at training stage, are image acquisition, pre-
processing, segmentation, feature extraction, feature reduction, and model synthesis.
Feature extraction has the purpose of computing a set of meaningful characteristics,
while feature reduction (selection) is in charge of selecting the most related subset
of characteristics, given the problem at hand. This chapter basically provides the
recent trends for segmenting brain tumors digital images, used as basic features for
classification by using deep-learning techniques.

11.2 Brain Image Compression Techniques

Image compression is basically a process of reducing the size in bytes of images
deprived of demeaning the superiority and quality of the image to an objectionable
level. The decrease in image size permits further images to be stored in a specified
quantity of disk or memory space. In order to represent a part of the human body in
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digital form, CT images are used. There exists a variety of work that has been done
in dealing with the medical imaging process. Image compression is another way of
handling such images. A huge amount of work has been done in this prospect. After
knowing what exactly image compression is, we will now overview various methods
and procedures presented in this prospect.

11.2.1 Computed Tomography (CT)

CT images are the combination of X-rays processed images taken from different
angles of the brain to produce images centered on the degree of alteration. CT process
basically consists of the subject of examination which is being controlled. In Table
11.1, some of the methods of brain compression using CT techniques are given.

11.2.2 Electroencephalography (EEG)

In EEG method electrodes are attached to the scalp in order to record the electrical
signals and activities of the brain. EEG enables us to analyze distinct brain zones
by providing with the strength, power, and position of electrical deeds. Table11.2
discusses some of the works using EEG compression.

Table 11.1 Comparison of compression techniques of CT brain images

CT compression CT compression pros CT compression cons CT compression
results

[22] (Rhodes et al.,
1985)

Heavy image
compression

Expensive in terms of
computation

5% Compression
achieved

[23] (Lee et al., 1991) 3D image compression
in addition to 2D data

Expensive in terms of
computation and
system stops
compressing in the
worst case

Efficient and effective
method

[24] (Hashimoto et al.,
2004)

Obtained image
quality is adequate

Expensive in respect
of computation

Improved eminence
and pixel quality

[25] (Li et al., 2006) Image quality is
preserved

Only for limited types
of images

A portion of choice is
compressed

[26] (Signoroni et al.,
2009)

Coding efficient with
increased reliability

The system is slow Effective result

[27] (Ju and
Seghouane, 2009)

No effect on the image
quality

Expensive in terms of
computation

96% sensitivity for
polyps achieved
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Table 11.2 Comparison of compression techniques of EEG brain images

EEG compression EEG compression pros EEG compression
cons

EEG compression
results

[28] (Cinkler et al.,
1997)

Accurate and fast Limitation of memory Acceptable
compression

[29] (Memon et al.,
1999)

Error rate less than 1% Expensive in terms of
computation

achieved a high
compression rate

[30] (Aviyente and
Selin 2007)

small data used affects image quality Acceptable
compression rate

[31] (Higgins et al.,
2010b)

Power is minimized Expensive in terms of
computation

The method is better
than other EEG
compression methods

11.2.3 Magnetic Resonance Imaging (MRI)

MRIbasicallymeasures the brain activity by usingmagnetic grounds and radiowaves
hence producing enriched superior signals in 3D or 2D spatial dimensions. Some of
the works using MRI compression are given in Table11.3 and 3D MRI are given in
Table11.4.

Table 11.3 Comparison of compression techniques of MRI brain images

MRI compression MRI compression pros MRI compression
cons

MRI compression
results

[32] (Cavaro-Menard
et al., 1999)

Can be used for
segmentation
application

Compression ratio is
limited

The achievable
compression ratio is
67:1

[33] (Raghavan et al.,
2002)

If even area are in
MRI than substantial
compression is
achievable

Increase in image
storage

Mask image
compression achieved
to large value with
large even areas sum

[34] (Badawy et al.,
2002)

Quality of image is
preserved

Large systems and
complex systems

It provides an
acceptable
compression ratio

[35] (Gornale et al.,
2007)

Handles variation in
images, its intensity
and frequency

Compromised results
for higher frequencies

The ratio of
compression is highly
dependent on the
image

[36] (Karras et al.,
2009)

Independent of
parameters defined by
user

Obstruction
possession removal for
divided borders

In addition to image
particular protection
method acquired
effective outcomes



11 Deep Learning for Brain Tumor Segmentation 193

Table 11.4 Comparison of compression techniques of 3D-MRI brain images

3D-MRI compression 3D-MRI compression
pros

3D-MRI compression
cons

3D-MRI compression
results

[37] (Yodchanan et al.,
2008)

Decreases the
complexity of
computation

Only skull region of
brain MRI can be
handled

40% of enactment by
dent is achieved

[38] (Corvetto et al.,
2010)

3D images are handled – –

[39] (Dhouib et al.,
2009)

3D images are handled High storage
requirements for
images

An effective method
with a large storage
requirements

11.3 Image Segmentation Using Multi-models

Analysis of the medical images becomes a challenging problem because of varia-
tion of the shape, size and target issue location. Although many different algorithms
are proposed for the segmentation, still their comparison is not possible due to the
fact that their evaluation was done on different types of datasets with different met-
rics. So to face this issue public health challenges were created, where the same
data are used in order to perform a fair and useful comparison, such as Ischemic
Stroke Lesion Segmentation (ISLES), Brain tumor Segmentation (BraTS) [40], MR
Brain Image Segmentation (MRBrainS) [41], Combined (CT-MR) Healthy Abdomi-
nal Organ Segmentation (CHAOS), Neonatal Brain Segmentation (NeoBrainS) [42],
Automatic intervertebral disc localization and 6-month infant brain MRI Segmenta-
tion (Iseg-2017) [43] and segmentation from 3D Multi-modality MR (M3) Images
(IVDM3Seg).

Table11.5 describes the detailed dataset information mentioned above.

Table 11.5 Summary of multi-model image segmentation dataset
Data-set provider Task Training Testing Images size Modalities

BraTS (2012) Brain tumor 35 15 160×216×176
176×176×216

T1, T1C, T2, flair

BraTS (2013) Brain tumor 35 25 160×216×176
176×176×216

T1, T1C, T2, flair

BraTS (2014) Brain tumor 200 38 160×216×176
176×176×216

T1, T1C, T2, flair

BraTS (2015) Brain tumor 200 53 240×240×155 T1, T1C, T2, flair

BraTS (2016) Brain tumor 200 191 240×240×155 T1, T1C, T2, flair

BraTS (2017) Brain tumor 285 146 240×240×155 T1, T1C, T2, flair

BraTS (2018) Brain tumor 285 191 240×240×155 T1, T1C, T2, flair

BraTS (2019) Brain tumor 285 191 240×240×155 T1, T1C, T2, flair
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11.4 DataSet

Before the implementation of any algorithm designed for brain cancer diagnosis
problem, the first step is to analyze dataset at hand. MICCAI BraTS provides free
access to a large amount ofMRI volumes for the research of brain tumors. TheseMRI
volumes consist of four modalities, T1-weighted, T2-weighted, T1CE-weighted and
FLAIR. Each modality is explained briefly in this section.

Tl-weighted is basically used for differentiating among healthy tissues from dis-
eased ones and these scans provide gray and white matter contrast (is shown in
Fig. 11.1).

T2-weighted are well suited for brain diseases in which water accumulates inside
the tissues of the brain because of the sensitivity of this modality to water content.
This modality delineates the edema region hence resulting in the production of a
bright signal on the image. A colorless fluid present in the spinal cord and brain
known as cerebrospinal fluid (CSF) can be successfully differentiated by using T1-,
while T2-weighted images. This CSF looks bright in T2-weighted modality images
and in T1-weighted images it looks dark (Fig. 11.2).

T1-weighted MRI with gadolinium contrast enhancement (T1-Gd) is the fourth
type of MRI sequence (Fig. 11.3). In this modality accumulated contrast agent such
as gadolinium ions are used in the active cell region of the tumor tissues to create a
bright signal which enables to distinguish between the border of the tumor. As the
necrotic cells don’t interact with the used contrast agent, they are differentiated as a
hypointense part of the tumor core, therefore easing the segmentation of hypointense
part from active cell region. FluidAttenuated Inversion Recovery (FLAIR) except for
its acquisitionprotocol is similar toT2-weighted images (Fig. 11.4).Here suppression
of water molecule is carried out, which in turn helps to differentiate between edema
from Cerebrospinal Fluid (CSF). FLAIR can suppress the water signals and because
of which the hyperintense periventricular lesion is visible clearly.

Fig. 11.1 MRI T1-weighted
volume used for brain tumors
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Fig. 11.2 MRI
T1CE-weighted volume used
for brain tumors

Fig. 11.3 MRI flair volume
used for brain tumors

Fig. 11.4 MRI T2-weighted
volume used for brain
tumors
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11.5 Data Processing

Data preprocessing is a fundamental step, consisting in selection of dimensions of
the data, pre-processing of the images, and data-augmentation. These steps form the
basis of deep learning segmentation.

11.5.1 Dimension of Data

There are 3D images used for the segmentation of medical images. There are 2D-
models which breaks these 3D images into slices for the model training [44–47].
3D-models are created which directly makes use of these images for the training of
the model [48–50]. 3D Models inputs 3D images with 3D convolution kernels in
order to extract spatial features of the images. The 3D approach is computationally
expensive. A solution to this computational problemwould be to break the 3D images
into small patches in order to train the model. One of the examples of these 3D patch
training approach is the algorithm proposed by Kamnitsas et al. [51] who randomly
extracted 10 k 3D patches to train its model for brain tumor segmentation. On the
other hand, there is a 2D approach in which 3D images are converted into 2D slices
and by using 2D convolutional kernel spatial information is extracted. This approach
helps in reducing the computational cost but it loses the spatial information of z-
direction.Mlynarski et al. [52] extracted 2D features using a CNN-basedmodel from
the images of axial, coronal and sagittal views, feeding a 3D-CNN basedmodel. This
method achieved the median dice score for whole tumor 0.918, 0.883 for the tumor
core and 0.854 for enhancing core. This method can learn features directly in 3D
representations.

11.5.2 Data Pre-processing

Images with multiple models shows variations in contrast, intensity and noise in the
images; therefore pre-processing has a vital role in order to make the images smooth
for training. Among themost popularly used pre-processing techniques are the inten-
sity normalization, bias field correction and image registration. BraTS dataset under-
goes through the image registration process before it is made public [53, 54]. MRI
data distortion is corrected by applying the N4ITK method [45, 51, 55]. Images are
then normalized by subtracting mean and dividing by standard deviation of the brain
region.
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11.5.3 Data-Augmentation

A labeled data with a large number of patterns for training is not practically available
because this labelling requires a large amount of time of experts. Conversely, if the
model is trainedwith limited data then overfittingmay occur [56]. In order to increase
the data set and reduce overfitting, a technique of data-augmentation is introduced.
This technique applies operations such as rotation, scaling, translation, flipping,
addition of Gaussian noise and distortion addition over the dataset images and creates
new images. These newly created images along with the original dataset images
are fed into the neural network. Overfitting problem was reduced by application
of data augmentation techniques such as random scaling, random rotation, gamma
correction, random elastic deformations and mirroring on the dataset was used by
Isensee et al. [48].

11.6 Segmentation of Tumor

The most famous type of brain tumors are gliomas [55]. Patients with low-grade
tumors have the survival chance of many years as they are less destructive in nature.
On the contrary high-grade tumors decrease the survival expectancy of the patient to
two years [57]. Classification of gliomas and glioblastomas is really difficult as they
are combined with edema with poor contrast and undefined structures. Segmentation
of tumor means to localize the tumor region. There are three types of tumor tissues
dynamic, necrotic and edema.

11.7 Deep Learning Strategies for Brain Tumor
Segmentation and Classification

There are various forms of segmentation blocks used for the segmentation of brain
tumors nowadays, such as Convolutional neural networks (CNNs), Deep convolu-
tional neural networks (DCNNs), Auto Encoders (AEs), Recurrent Neural Networks
(RNNs), Generative Adversarial Networks (GANs), Deep Neural Networks (DNNs)
and Long Short Term Memory (LTSM). Deep learning methodologies are able to
determine automatically useful features for the final classification stage. The general
strategy is to pass an image through the trained pipeline of deep learning building
blocks and input image segmentation is performed depending on the deep features.

Classification basically depends on the classifier’s methodology. In general, at
first image features are extracted and fed to the classifier. Most of the classifica-
tion research focuses on CNNs. Many researchers used fuzzy c-mean and discrete
wavelet transform (DWT) for reduced feature extraction, which are then passed to
a deep neural network for prediction. Features obtained from the CNN network are
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fused with handcrafted features for tumor classification by Saba et al. [58]. Capsule
networks are used by Afshar et al. [59] for brain tumor classification. These Capsule
networks are the newly formed AI structure introduced to remove the weaknesses
of CNNs. Nie et al. [60] used a 3D CNN for feature extraction and the support vec-
tor is trained on these features for the classification of tumors. Xu et al. [61] used
AlexNet for deep feature extraction for further use of tumor classification. Multi-
class predictions using CNN for tumor classification has been studied by Sultan et al.
[62].

11.8 Discussion and Conclusion

In clinics the general practice for brain tumor analysis is performed by the medical
experts, which is a challenging task as the brain images are varying and complex.
Therefore these manual methods are tedious whereas the automated segmentation
methods make this task to be performed with ease. Computer-aided systems have
given a positive contribution in the medical field of diagnostics because of its fast
speed and accuracy. Deep learning provides automatic feature acquisition which is
time-efficient as compared tomanualmethods. In additionGraphics ProcessingUnits
(GPUs)makes it even fast. Training data is another factor to increase the performance
of the system. There are some drawbacks too in addition to the advantages of DL and
GPUs which causes limitations of the DL approaches such as the cost of GPU. This
review helps the readers to evaluate what recent DL algorithms have been developed
for the analysis of brain tumors, pointing out further research problems in existing
DL approaches.

Quite a bunch of work has already been performed in recent years on brain tumor
MRI segmentation and classification using the deep learning methods but the com-
plexity of MRI images makes it a challenging technical area that provides a big
amount of room to researchers for further study in this area. Classification and seg-
mentation both provide medical experts to refer themselves for a second opinion
which is purely based on the results provided by the automated results. At the same
time, there is an issue of robustness in accuracy which makes this domain suffer.
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Chapter 12
Convolutional Neural Network Approach
for the Detection of Lung Cancers
in Chest X-Ray Images

D. A. A. Deepal and T. G. I. Fernando

Abstract Chest X-rays are considered to be the most widely used technique within
the health industry for the detection of lung cancers. Nevertheless, it is very difficult
to identify lung nodules using raw chest X-ray images and analysis of such medical
images has become a very complicated and tedious task. This studymainly concerned
on convolutional neural network approach to identify whether a suspicious area is a
nodule or a non-nodule. The JSRT digital images of the chest X-ray database devel-
oped by the Japanese Society of Radiological Technology (JSRT) is used to train and
test these models. Further, support vector machines and multilayer perceptrons are
used for comparison with convolutional neural network model. “Pylearn2” research
library is used to build the convolutional neural networkmodel andmultilayer percep-
tron model. “scikit-learn” Python library is used to build the support vector machine
models. “MATLAB” is used to extract nodule and non-nodule locations from the
original images and other image processing parts. Under support vector machine
models, three functions (linear, polynomial and radial) are used and the linear func-
tion showed the highest accuracy rate (92%). Comparing of these three approaches,
the convolutional neural network approach showed the highest accuracy rate (94%).

Keywords Convolutional neural network (CNN) · Graphics processing unit
(GPU) · Gray level co-occurrence matrix (GLCM) · Japanese society of
radiological technology (JSRT) · Multilayer perceptron (MLP) · Support vector
machine (SVM)

12.1 Introduction

Human is considered as the brainiest animal in the earth. Their inventions and discov-
eries have made the world developed. Other than the physical, technical and process
developments in their urge to study has extended to study their own body. Even
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though the study of the body can be very enlightening, it is rather mysterious. There
are functions that the body performs unconsciously, such as the heart beats, respira-
tion and digestion. Other than the amazing aspects, the body of human suffers from
different diseases. The cancer is among the most dangerous diseases of human life.
Bladder, breast, leukemia, colon and rectal, endometrial, kidney, lung, melanoma,
non-Hodgkin lymphoma, prostate, pancreatic and thyroid cancers are the generic
types of cancers in the human body. Other than the said types, many people suffer
and die from lung cancers than any other cancer [1–3].

The government of Sri Lanka has taken steps to control non-communicable
diseases and had declared year 2013 as the year of non-communicable disease preven-
tion. Cancer is a non-communicable disease where the lifetime risk of developing
any type of cancer, is one in every 13 people. It is one in every 12 for males and one
in every 13 for females.

According to the cancer registry issued in 2007 relating to Sri Lanka has recorded
that the cancers in trachea, bronchus and lungs are showing an increasing trend in the
age level of thirty and above. Lung cancer is a disease that occurs due to uncontrolled
cell growth in tissues of the lung [4]. This can cause metastasis, by affecting adjacent
tissue and infiltration beyond the lungs.

It has been revealed that the survival rate of lung cancer patient is only about
14%. If a patient can identify lung cancer symptoms in an early stage, the survival
rate can be increased up to 50% [3]. The survival rate is notably improved, but there
is a need to increase this survival rate more than the current rate [1]. If lung cancer
nodules can be recognized exactly at an early stage, the patients’ survival rate can be
increased by a significant percentage [5]. There are several methods to use to take an
image of the inside of the human body. They are like CT scans, X-rays, MRIs, etc.
The CT scan is the most suggested method which produces 3D images of the lungs
[1].

The chest X-rays are considered to be the most widely used technique within the
health industry for the detection of lung cancer. But it is very difficult to identify
lung nodules using raw chest X-ray images and analysis of such medical images has
become a very complicated and tedious task [5].

Death of a human cannot be borne by his/her beloveds. The life of a human is
momentous. Cancer can destroy the ambitions, love to be lived and the feelings of
a person. Not only the cancer patient but also his/her family members and others
should suffer. Therefore, this study will be useful to detect lung cancers, so that
speedy treatments can be implemented thereafter.

12.2 Literature Review

Udeshani et al. [5] proposed a method to detect a lung cancer in chest X-ray images,
using a “Statistical Feature-based Neural Network Approach.” Chest X-ray images
have been used by them in the formof a novel approach in order to detect lung cancers.
They have used a pipeline of image processing routines at the initial stage. This is in
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support of removing the noise and segment of the lung out of the other anatomical
structures in the X-ray of the chest. Also, regions that exhibit shape characteristics of
lung nodules can be extracted by using this image processing routines. Inputs to the
neural network are the first and second order statistical texture features. It verifies
whether a region extracted in the initial stage a nodule or not and this approach
detects nodules in the diseased area of the lung by using the pixel-based technique
and the feature-based technique.

Zhou et al. [6] proposed an automatic pathological diagnosis procedure named
Neural Ensemble based Detection (NED) to identify lung cancer cells in Chest X-ray
images. The ensemble comes with two-level ensemble architecture. Each individual
network has only two outputs which can be identified as normal or cancer cell. First
level is used to evaluate whether a cell is normal with high confidence. Cells that are
evaluated as cancer cells by the first-level deal with the second level and each indi-
vidual network has five outputs (adenocarcinoma, squamous cell carcinoma, small
cell carcinoma, large cell carcinoma and normal). Amongst them the previous four
are different types of lung cancer cells. The predictions of those individual networks
are combined with an existing method. Neural ensemble-based detection achieved
high rates of overall identification with low rates of false negative identification.

Ozekes et al. [7] proposed amethod for nodule detection by using the density value
of each pixel in CT images. Thereafter, rule-based lung region segmentation has been
performed. 8-directional search is used to extract the Regions of Interests (ROIs).
After that preliminary classification is executed usingLocationChangeMeasurement
(LCM). The later nodules are checked using a trained Genetic Algorithm from the
images of ROIs. The system showed not only 93.4% sensitivity, but also 0.594 false
positive rate.

Ozekes et al. [8] proposed lung cancer nodules detection in four steps using
Genetic Cellular Neural Networks (GCNN) and 3D template matching with fuzzy
rule-based thresholding. The regions of interests (ROIs) are thereafter extracted using
8-directional search. Convolution-based filters have been used to detect the nodules
by searching through 3D images with a 3D template. Finally, fuzzy rule-based
thresholding is applied and the ROIs are found.

Abdullah and Shaharum [9] proposed a Lung Cancer Cell Classification Method
(LCCCM) using an Artificial Neural Network. In this method, image processing
procedures such as image re-processing, lung nodule detection, lung field segmen-
tation, and feature extraction have been used and additionally it has been used an
artificial neural network for the classification process.

Shriwas et al. [10] proposed a lung cancer detection and prediction method by
using a neural network in CT scan images. Preprocessing of images, image enhance-
ments, image segmentation techniques, feature extraction, GLCM (Gray Level Co-
OccurrenceMethod), binarization approach and neural network classifiers have been
used for lung cancer detection.

Kaur and Ada [11] proposed a lung cancer detection algorithm by using a
neural network in CT scan images. Preprocessing of image, morphological oper-
ators, feature extraction, GLCM (Gray Level Co-Occurrence Method), binarization
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approach, PCA (Principal Component Analysis) and neural network classifiers have
used for lung cancer detection.

Nancy and Kaur [12] proposed to automate the classification process for the early
detection of lung cancer in CT scan images. Lung cancer detection techniques such as
preprocessing, training and testing of samples, feature extraction, and classification
algorithm (i.e. neural network) and optimization (Genetic Algorithm) have been used
in the above study.

With the use of the CT scan images in Dicom (DCM) format, Shettar and Naresh
[13] attempted to diagnose lung cancers at its initial stage. This input image has
been converted to a gray scaled image and then, to remove Gaussian white noise,
a non-local mean filter has been used. The lung part is segmented by using Otsu’s
threshold from lung CT image and, after that its textural and structural features are
extracted from the processed image. Three classifiers (SVM, ANN, and kNN) were
applied for the detection of lung cancers and the severity of disease (stage I or stage
II). Then, it has been compared with ANN, and kNN classifier according to different
quality attributes, namely accuracy, sensitivity (recall), precision and specificity. It
revealed that SVM scores higher accuracy of 95.12% when ANN achieves 92.68%
accuracy in the analysis of the given dataset and kNN is of least accuracy of 85.37%.
SVM algorithm which achieved 95.12% accuracy helps patients to take remedial
action on time and reduces mortality rate from this deadly disease.

Retico et al. [14] recommended that the pleural region could be identified with
the help of themorphological opening and directional-gradient concentration (DGC).
The regions of interest are taken from the segmented pleura region. The features are
extracted and candidate nodules are classified using a feedforward neural network.
Each nodule candidate is characterized by 12 morphological and textural features,
which are analyzed by a rule-based filtering and a neural network classifier.

Maeda et al. [15] emphasized the usage of temporal subtraction of consecutive CT
images in order to detect candidate nodules. These features of candidate nodules are
calculated thereafter. Afterwards, these are refined under rule-based feature analysis.
The feature space is thereafter lowering by referring to PCA and artificial neural
network for nodule classification.

Tan et al. [16] introduced the isotropic resampling of a CT image to change
the resolution of the image. The lung region is segmented and the nodule center is
estimated using the divergence of normalized gradient. The multi-scale nodule and
vessel enhancement filtering has been used to segment nodule clusters. The invariant
shape and regional descriptors are calculated thereafter. The mix of ANN, GA (FD-
NEAT) and SVM have been used for the feature selection and nodule classification.

Kiran et al. [17] proposed an ANN based approach to identify lung cancers from
raw chest X-ray images. It mainly consists of three stages. They are pre-processing,
feature extraction and classification. The pre-processing involves resizing which
enables the further processing is easier. Feature extraction involves extracting the
features. The classification stage involves an artificial neural network.



12 Convolutional Neural Network Approach … 207

12.3 Research Methodology

This section describes the research methods used in this study in detail. This study
proposes two approaches to detect lung cancer nodules using chest X-rays. The JSRT
digital image database was used in this study. It contains 154 chest X-rays of lung
nodules (100 malignant cases, 54 benign cases), and 93 chest X-rays of non-nodules.

154 cancer nodules and 154 non-nodules were used to train and test the above
two approaches. More than one location from some non-cancer X-rays were used to
create 154 non-nodule locations from the 93 chest X-ray images and cancer nodule
locations of 154 lung cancer X-ray images were used to create 154 lung cancer
nodules.

As the initial stage, histogram equalization was performed on all images to
improve their intensities.

The methodology used in the first approach is based on MLP and CNN. The rota-
tion and shifting processes were carried out on all images with the aim of increasing
the datasets. Then, an area of size128*128 area extracted and the extracted area was
then sharpened. The pixel values were used as the training and testing datasets to
the MLP and CNN.

The second approach is based on SVM methodology. From the histogram equal-
ized X-ray images, an area of size 128*128 was extracted. The extracted area was
then sharpened. The calculated values of the 10 selected statistical values were used
as the training and testing datasets for the SVM.

12.3.1 First Order Statistical Features

First order statistical features are based on the statistical moments.
The nth moment is defined as,

μn =
L−1∑

i=0

(zi − m)n p(zi )

where µn—nth moment, m—average gray level, zi—possible value of intensity,
p(zi)—percentage of pixels with intensity value zi, and L—Possible intensity levels.

The First order statistical features are listed below (Table 12.1).

12.3.2 Second Order Statistical Features

Gray Level Co-Occurrence Matrix (GLMC) was used to measure the spatial rela-
tionship between pixels of examining texture. It is a statistical method, also known as
the gray-level spatial dependence matrix. The GLCM functions describe the texture
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Table 12.1 First order statistical features

Texture features Expression Measure of texture

Average gray level
m =

L−1∑
i=0

zi p(zi )
A measure of average intensity

Standard deviation σ = √
μ2(z) μ2(z) is second

moment
A measure of average contrast

Smoothness R = 1 − 1
(1+σ 2)

Measures the relative smoothness
of the intensity in a region. This
is 0 for a region of constant
intensity and 1 for regions with
large excursions in the value of
its intensity level

Skewness (Third moments)
μ3 =

L−1∑
i=0

(zi − m)3 p(zi )
Measures the skewness of a
histogram. This measure is 0 for
symmetric histograms. Positive
for histograms skewed to the
right and negative for the left

Uniformity
U =

L−1∑
i=0

p2(zi )
Measures uniformity. This
measure has its maximum when
all gray levels are equal
(maximally uninform) and
decreases from that point

Entropy
e = −

L−1∑
i=0

p(zi ) log2 p(zi )
A measure of randomness

of an image. It calculates how often pairs of pixels with specific values and in a
specified spatial relationship occur in an image. The pixel of interest and the pixel
to its immediate right (horizontally adjacent) is defined as the spatial relationship.
Statistical measures can be extracted from this matrix. These statistics provide infor-
mation about the texture of an image. The following Table 12.2 lists the second order
statistics.

Table 12.2 Second order statistical features

Statistic Description

Contrast Measures the local variations in the gray-level co-occurrence matrix

Correlation Measures the joint probability occurrence of the specified pixel pairs

Energy Provides the sum of squared elements in the GLCM. Also known as uniformity
or the angular second moment

Homogeneity Measures the closeness of the distribution of elements in the GLCM to the
GLCM diagonal
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12.3.3 System Architecture

Figure 12.1 shows the system architectures of the two approaches used in this
research.

12.3.3.1 Histogram Equalization

Histogram equalizationmethodwas applied to X-ray images. It helps to adjust image
intensities to enhance the contrast of X-ray images (Fig. 12.2).

12.3.3.2 Approach 1

The first approach is based on Convolutional neural network (CNN) and Multilayer
perceptron (MLP). The pixels values were used as the training and testing datasets
to MLP and CNN.

Fig. 12.1 System architecture
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Fig. 12.2 Histogram equalization. aBefore histogram equalization. bAfter histogram equalization

Fig. 12.3 Step 1

To increase the number of images in each category, the following augmenting
methods were used.

Rotation

In this method the original image is rotated by 0°, 5°, 10°, 15°, 20°,
−5°, −10°, −15° and −20°.

Pixels Shifting

Step 1: Shift the top edge of the marked 128 × 128 area by two pixels left and two
pixels top (Fig. 12.3).

Step 2: Extract an area of size 128 × 128 pixels from the image and shift the new
top edge by one pixel right (Fig. 12.4).



12 Convolutional Neural Network Approach … 211

Fig. 12.4 Step 2

Fig. 12.5 Step 3

Step 3:Repeat the step 2 until total right shifted pixel count is equal to 5 (Fig. 12.5).
Step 4: Shift the new top edge by 5 pixels left and shift down by one pixel

(Fig. 12.6).
Step 5: Repeat step 3 and step 4 until total down shifted pixel count is equal to 5

(Fig. 12.7).
25 images were created from one image using the pixel shifting method.
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Fig. 12.6 Step 4

Fig. 12.7 Step 5
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Fig. 12.8 Sharpening the image. a Original images. b Sharpen images

Extract 128 × 128 square areas from X-Ray images

128*128 areas of pixels were extracted from the images generated by applying the
previously mentioned (histogram equalization, rotation and pixels shifting) methods
to original images.

Sharpening the Image

It enhances the definition of edges in the extracted area (Fig. 12.8).

Datasets for MLP and CNN

The pixel values were used as the input to MLP and CNN. These neural networks
require a large dataset. Rotating and pixel shifting were used to expand the dataset.
The original image is rotated by 0°, 5°, 10°, 15°, 20°, −5°, −10°, −15° and −20°
and extracted the above 25 shifted images (128 × 128) from each rotated image.

Two hundred and twenty five (225) images were created from one image using
the above two methods. These images were used to train MLP and CNN networks.
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Fig. 12.9 Training and testing datasets for MLP and CNN

Training and Testing Datasets for MLP and CNN

In this approach 308 images (nodule and non-nodule) were used and they were
divided into training and testing datasets (Fig. 12.9). Then twopairs of training/testing
datasets were created using augmented methods (rotating and shifting).

First Training/Testing Datasets

The first training dataset contains 212 images (106 nodules and 106 non-nodules)
and these images were expanded to 47,700 images using rotating and pixels shifting
methods. Other 96 images (48 nodules and 48 non-nodules) were used as a testing
dataset and these 96 images also expanded to 21,600 images using rotating and pixels
shifting methods.

These expanded 47,700 images were used to train MLP and CNN networks and
above 96 images and expanded 96 images (21,600 images) were used to test these
trained networks.

Second Training/Testing Datasets

In the second training dataset, more 48 images (24 nodules and 24 non-nodules) were
added from the testing dataset to the training dataset. The second training dataset
contains 260 images (130 nodules and 130 non-nodules) and these images were also
expanded to 58,500 images using rotating and pixels shifting methods. Other 48
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images (24 nodules and 24 non-nodules) were used as the testing dataset and these
48 images were also expanded to 10,800 images using rotating and pixels shifting
methods.

These expanded 58,500 images were used to train MLP and CNN networks and
above 48 images and expanded 48 images (10,800 images) were used to test these
trained networks.

MLP Approach

In the first method, first training dataset (47,700 images) was used to train the MLP
network and this trained MLP network was tested with 96 images and expanded 96
images (21,600 images).

In the second method, second training dataset (58,500 images) was used to train
the MLP network and this trained MLP network was tested with 48 images and
expanded 48 images (10,800 images).

Parameters of the MLP Approach

The batch size of theMLP training model which was developed in this study is 1,000
and the learning rate is 0.0001. The coefficient of the model is 0.0005 and include
probability of the dropouts is 0.8.

MLP Network Architecture

This MLP network has input layer, 5 hidden layers (4 fully-connected layers with
4,000 nodes and one fully-connected layer with 1,024 nodes) and a softmax layer.
Dropouts were used to reduce the overfitting. The MLP network is shown in
Fig. 12.10.

CNN Approach

In the first method, first training dataset (47,700 images) was used to train the CNN
network and this trained CNN network was tested with 96 images and expanded 96
images (21,600 images).

In the second method, second training dataset (58,500 images) was used to train
the CNN network and this trained CNN network was tested with 48 images and
expanded 48 images (10,800 images).

Parameters of the CNN Approach

The batch size of the CNN training model developed in this study is 100 and the
learning rate is 0.0001. The coefficient is 0.0005 and the probability of the dropouts
is 0.8.
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Fig. 12.10 MLP network
architecture

CNN Network Architecture

This CNN network has 5 Convolutional layers, 3 Max-pooling layers and 4 fully-
connected layers and 1 softmax layer. Dropouts were used to reduce the overfitting
and applydropout to fully-connected layers. TheMLPnetwork is shown inFig. 12.11.

12.3.3.3 Approach 2

This approach is basedonSVMmethodology.The calculated values of the 10 selected
statistical features were used as the training and testing datasets for the SVM.
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Fig. 12.11 CNN network architecture
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Fig. 12.12 Training and testing datasets for SVM

Dataset for SVM

From the histogram equalized X-ray images, 128*128 area was extracted. The
extracted area was then sharpened. Ten statistical features were extracted from the
above 154 nodule locations and 154 non-nodule locations. These statistical features
were divided into training and testing sets.

In the first training dataset, these 308 images were divided into two samples for
training (212 images) and testing (96 images) and the second training dataset, another
48 images were added from the earlier testing dataset to training set. There were 260
images for training and 48 images for testing (Fig. 12.12).

SVM Approach

In this approach, linear, polynomial and radial based SVMswere used to identify lung
cancer nodules and statistical features were used as the input to the above SVMs. In
first method, first training dataset (212 images) and testing dataset (96 images) were
used to train and test the above SVMs. In second method, second training dataset
(260 images) and testing dataset (48 images) were used to train and test the above
SVMs (Table 12.3).



12 Convolutional Neural Network Approach … 219

Table 12.3 Parameters of the SVM approach

SVM model Penalty parameter of the error term (C) Degree Gamma

Linear 0.151

Radial 0.5 2 0.01

Polynomial 0.5 2 0.009

12.4 Results and Discussion

This section presents the results obtained for the two main approaches carried out to
achieve our research objectives. In the first approach, the extracted pixel data from
the X-ray images were given to MLP and CNN to identify the lung cancer nodules
in the images and in the second approach, extracted data were tested using the SVM
methodology. Under SVM method, we carried out the experiments based on linear,
polynomial and radial kernel functions.

12.4.1 Results

12.4.1.1 Test Results of MLP Network

In the first method, the first training dataset (47,700 images) was used to train the
MLP network. Batch size of the model was 1,000. Learning rate of the model was
0.0001 and the coefficient of the model was 0.0005.

This trained MLP network was tested with 96 images. The accuracy rate of the
identifying an actual nodule as a nodule was 91.67% (Table 12.5) and the accuracy
rate of the identifying an actual non-nodule as a non-nodulewas 91.67% (Table 12.5).
The error rate of the identifying an actual nodule as a non-nodule was 08.33%
(Table 12.5) and the error rate of the identifying an actual non-nodule as a nodule was
08.33% (Table 12.5). The overall accuracy of this model was 91.667% (Table 12.4).

Next, this trained MLP network was tested with expanded 96 images (21,600
images). The accuracy rate of the identifying an actual nodule as a nodule was
decreased to 88.64% (Table 12.5) and the error rate of the identifying an actual

Table 12.4 Test results of the CNN and MLP

Method Overall accuracy (%)

Train images—47,700 Train images—58,500

Test images
96

Test images
21,600

Test images
48

Test images
10,800

MLP 91.667 89.417 91.667 89.945

CNN 89.001 88.593 94.001 94.538
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Table 12.5 Image identification rates of the CNN and MLP for 47,700 training images

Method Image type Train images—47,700

Test images—96 Test images—21,600

Identify as a
nodule
(%)

Identify as a
non-nodule (%)

Identify as a
nodule
(%)

Identify as a
non-nodule (%)

MLP Nodule 91.67 8.33 88.64 11.36

Non-nodule 8.33 91.67 9.75 90.25

CNN Nodule 89.58 10.42 88.54 11.46

Non-nodule 12.50 87.50 11.35 88.65

nodule as a non-nodule was increased to 11.36% (Table 12.5). Also, the accuracy rate
of the identifying an actual non-nodule as a non-nodule was decreased to 90.25%
(Table 12.5) and the error rate of the identifying a non-nodule as a nodule was
increased to 9.75% (Table 12.5). The overall accuracy of the model was decrease to
89.417% (Table 12.4).

In the secondmethod, the second trainingdataset (58,500 images)was used to train
the aboveMLP network and this trainedMLP networkwas tested with 48 images and
expanded 48 images (10,800 images). Batch size of the model was 1,000. Learning
rate of the model was 0.0001 and the coefficient of the model was 0.0005.

This trained MLP network was tested with 48 images. This MLP model remains
with same identification rates and error rates compared to its earlier trained model
tested with 96 images (Table 12.6). The overall accuracy of this model was not
changed and it was 91.667% (Table 12.4).

Thereafter this trainedMLP network was tested with expanded 48 images (10,800
images). The accuracy rate of the identifying an actual nodule as a nodule was rela-
tively not changed and it was 91.69% (Table 12.5). The accuracy rate of the identi-
fying an actual non-nodule as a non-nodule was decreased to 88.20% (Table 12.6).
The overall accuracy of the model was decreased to 89.945% (Table 12.4).

Table 12.6 Image identification rates of the CNN and MLP for 58,500 training images

Method Image type Train images—58,500

Test images—48 Test images—10,800

Identify as a
nodule
(%)

Identify as a
non-nodule (%)

Identify as a
nodule
(%)

Identify as a
non-nodule (%)

MLP Nodule 91.67 8.33 91.69 8.31

Non-nodule 8.33 91.67 11.80 88.20

CNN Nodule 95.83 4.17 94.13 5.87

Non-nodule 8.33 91.67 5.06 94.94
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12.4.1.2 Test Results of CNN Network

In the first method, first training dataset (47,700 images) was used to train the CNN
network. Batch size of the model was 1,000. Learning rate of the model was 0.0001
and the coefficient of the model was 0. 00005.

This trained CNN network was tested with 96 images. The accuracy rate of the
identifying an actual nodule as a nodule was 89.58% (Table 12.5) and the accuracy
rate of the identifying an actual non-nodule as a non-nodulewas 87.50% (Table 12.5).
The error rate of the identifying an actual nodule as a non-nodule was 10.42%
(Table 12.5) and the error rate of the identifying an actual non-nodule as a nodule was
12.50% (Table 12.5). The overall accuracy of this model was 89.001% (Table 12.4).

In the second method, second training dataset (58,500 images) was used to train
the above CNNnetwork and this trainedCNNnetworkwas testedwith 48 images and
expanded 48 images (10,800 images). Batch size of the model was 1,000. Learning
rate of the model was 0.0001 and the coefficient of the model was 0. 00005.

This trained CNN network was tested with 48 images. This CNN model was
succeeded in identifying an actual nodule as a nodule image with a rate of 95.83%
(Table 12.6). The error rate of the identifying a nodule as a non-nodule was decreased
to 4.17% (Table 12.6). Also, the accuracy rate of the identifying an actual non-nodule
as a non-nodule was increased to 91.67% (Table 12.6) and the error rate of the
identifying an actual non-nodule as a nodule was decreased to 8.33% (Table 12.6).
The overall accuracy of this model was increased to 94.001% (Table 12.4).

Next, this trained CNN network was tested with expanded 48 images (10,800
images). The accuracy rate of the identifying an actual nodule as a nodule was
increased to 94.13% (Table 12.6) and the error rate of the identifying an actual
nodule as a non-nodule was decreased to 05.87% (Table 12.6). The accuracy rate
of the identifying an actual non-nodule as a non-nodule was increased to 94.94%
(Table 12.6) and the error rate of the identifying a non-nodule as a nodule was
decreased to 05.06% (Table 12.6). The accuracy of the model was increased to
94.538% (Table 12.4).

12.4.1.3 Test Results of SVM

Linear SVM Model

In this method, linear kernel function was used to fit the linear model. Penalty
parameter of the error term (C) was set to 0.151.

First dataset containing 212 images was used to train the model. It gave 92.71%
overall accuracy (Table 12.7) when it was tested using the testing dataset of 96
images. The accuracy rate of the identifying an actual nodule as a nodule was 87.50%
(Table 12.8) and the accuracy rate of the identifying an actual non-nodule as a non-
nodule was 97.92% (Table 12.8). The error rate of the identifying an actual nodule as
a non-nodule was 12.50% (Table 12.8) and the error rate of the identifying an actual
non nodule as a nodule was 02.08% (Table 12.8).



222 D. A. A. Deepal and T. G. I. Fernando

Table 12.7 Test results of the
SVMs

Method Overall accuracy (%)

Train images—212
Test images—96

Train images—260
Test images—48

Linear 92.708 87.500

Polynomial 83.333 79.167

Radial 84.375 77.083

Table 12.8 Image
identification rates of the
SVMs for 260 training images

Method Image type Train images—212
Test images—96

Identify as a
nodule
(%)

Identify as a non
nodule
(%)

Linear Nodule 87.50 12.50

Non nodule 2.08 97.92

Polynomial Nodule 81.25 18.75

Non nodule 14.58 85.42

RBF Nodule 89.58 10.42

Non nodule 20.83 79.17

Table 12.9 Image
identification rates of the
SVMs for 212 training images

Method Image type Train images—260
Test images—48

Identify as a
nodule
(%)

Identify as a non
nodule
(%)

Linear Nodule 83.33 16.67

Non nodule 8.33 91.67

Polynomial Nodule 79.17 20.83

Non nodule 20.83 79.17

RBF Nodule 83.33 16.67

Non nodule 29.17 70.83

Second datasetwith 260 imageswas used to train the above linearmodel and tested
this model using 48 images. The accuracy rate of the identifying an actual nodule as a
nodule was decreased to 83.33% (Table 12.9) and the error rate of the identifying an
actual nodule as a non-nodule was increased to 16.67% (Table 12.9). The accuracy
rate of the identifying an actual non-nodule as a non-nodule was decreased to 91.67%
(Table 12.9) and the error rate of the identifying a non-nodule as a nodule was
increased to 08.33% (Table 12.9). The overall accuracy of this linear model was
87.50% (Table 12.7).
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Polynomial SVM Model

In this method, polynomial kernel function with degree 2 was used to fit the SVM
model. Penalty parameter of the error term (C) was 0.5 and kernel coefficient
(gamma) of this model was 0.009.

First dataset with 212 images was used to train this polynomial model and tested
this model using 96 images. The accuracy rate of the identifying an actual nodule as a
nodule was 81.25% (Table 12.8) and the error rate of the identifying an actual nodule
as a non-nodule was 18.75% (Table 12.8). The accuracy rate of the identifying an
actual non-nodule as a non-nodule was 85.42% (Table 12.8) and the error rate of the
identifying an actual non-nodule as a nodule was 14.58% (Table 12.8). The overall
accuracy of this polynomial model was 83.33% (Table 12.7).

Second dataset (260 images) was used to train the above polynomial model and
tested this model using 48 images. The accuracy rates of the identifying an actual
nodule as a nodule and actual non-nodule as a non-nodule were decreased to 79.17%
(Table 12.9) and the error rates of the identifying a nodule as a non-nodule and actual
non-nodule as a nodule were increased to 20.83% (Table 12.9). The overall accuracy
of this polynomial model was 79.17% (Table 12.7).

Radial SVM Model

In this model, radial kernel function was used to fit the SVM model. The degree of
this radial model was 2 and penalty parameter of the error term (C) was 0.5. Kernel
coefficient (gamma) of this model was 0.01.

First dataset with 212 images was used to train this radial model and tested this
model using 96 images. The accuracy rate of the identifying an actual nodule as a
nodule was 89.58% (Table 12.8) and the accuracy rate of the identifying an actual
non-nodule as a non-nodulewas 79.17% (Table 12.8). The error rate of the identifying
an actual nodule as a non-nodule was 10.42% (Table 12.8) and the error rate of the
identifying an actual non-nodule as a nodule was 20.83% (Table 12.8). The overall
accuracy of this radial model was 84.375% (Table 12.7).

Second dataset with 260 images was used to train the above radial model and
tested this model using 48 images. The accuracy rate of the identifying an actual
nodule as a nodule was decreased to 83.33% (Table 12.9) and the error rate of the
identifying an actual nodule as a non-nodule was increased to 18.75% (Table 12.9).
Also, the accuracy rate of the identifying an actual non-nodule as a non-nodule was
decreased to 70.83% (Table 12.9) and the error rate of the identifying an actual non-
nodule as a nodule was increased to 29.17% (Table 12.9). The overall accuracy of
this radial model was decreased to 77.083% (Table 12.9).
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12.4.2 Discussion

When compared with the original test images, MLP has succeeded in identifying
nodule images and non-nodule images correctly with a ratio of 91.67% while CNN
method identifying nodule images correctly with 89.58% and non-nodule images
correctly with 87.5% for 47,700 training images. When compare with overall accu-
racies, MLP shows a higher overall accuracy of 91.667% over CNN method for
47,700 training images.

But, MLP fails to increase the accuracy when the training dataset is increased to
58,500 images. It remains with same accuracy rates compared to its earlier results
of 47,000 training images. On the other hand, CNN has succeeded in increasing
its accuracy rate of identifying nodule images correctly to 95.83% and non-nodule
images to 91.67%. It also gives the lowest rate of 4.17% in identifying nodule images
as non-nodule images.

When compared with overall accuracies, CNN has succeeded to increase its
overall accuracy when the training dataset is increased (89.00% → 94.00%).

When compared with the expanded test images, the accuracy rates of both MLP
andCNNmodels trainedwith 47,000 images, does not show significant difference for
identifying nodule images correctly and identifying non- nodule images correctly.
But both MLP and CNN models have been able to increase their accuracy rates
when the training dataset increased. Again, CNN method gives the highest accuracy
rate in identifying nodule images correctly and lower rates of 5.87% and 5.06% in
incorrectly identifying nodule images as non-nodule images and vice versa. When
compare with overall accuracies, MLP shows a lower accuracy rate compared to its
previous results. But CNN has again succeeded in increasing its accuracy rate when
the training dataset is increased (88.59% → 94.54%).

Therefore, it can be concluded that CNN shows higher overall performance when
compared to MLP.

Among the three SVM approaches, linear approach shows the highest accuracy
rate. Radial based approach gives higher accuracy than polynomial based approaches.
It is also notable that in all three approaches have failed to increase their accuracy
rates when the training dataset is increased.

Therefore, we can conclude that linear based approach is capable of identifying
lung cancer nodules than other two SVM approaches.

Comparing of these SVM,MLPandCNNapproaches, theCNNnetwork approach
showed the highest accuracy and it was reported as 94.54%.

12.5 Conclusions

The main objective of this research was to develop a convolutional neural network
approach for the detection of lung cancers in chest X-ray images. SVM and MLP
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approaches were used to compare the results of the above CNN network. Feature-
based technique was used to train the SVM model and pixel-based technique was
used to train MLP and CNN networks.

Among the three SVM approaches, the linear based approach shows the highest
accuracy. Therefore, it can be concluded that linear based approach is capable of
identifying lung cancer nodules than other two SVM approaches.

When compared with deep learning approaches, CNN shows the highest accuracy
rate compared to MLP. Therefore, it can come to the conclusion of saying CNN
approaches are capable of identifying lung cancer nodules than MLP approach.

Comparing of these SVM,MLPandCNNapproaches, theCNNnetwork approach
shows the highest accuracy and therefore it can be concluded that CNN approaches
are capable of identifying lung cancer nodules than other two approaches.
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Chapter 13
Future of Deep Learning for Cancer
Diagnosis

Pinar Koc and Cihan Yalcin

Abstract Long-term treatments observed in cancer-derived diseases have a higher
risk of death than other diseases. The effectiveness of the developing technology in
human life is manifested in the treatment and diagnosis of diseases. ‘Early diagnosis
saves lives’, which is frequently heard in all diseases, comes to life in this part. The
first of the most important points in cancer and derivative diseases is early detection
of the disease. Artificial intelligence is used to simulate and simplify the human
life offered by developing technology. This study focuses on the methods of deep
learning, which is one of the subfields of artificial intelligence. The aim of this study
is to emphasize the deep learning methods used in cancer diagnosis. As a result
of emphasizing the methods, the present and future potential of the literature in
terms of cancer diagnosis has been revealed. It is thought that the study will be a
current reference for the researchers who will conduct research within the scope of
the subject.

Keywords Deep learning · Artificial intelligence · Deep learning in cancer
diagnosis · Deep learning in bioinformatics ·Machine learning

13.1 Introduction

Technological tools, machines and innovations have occurred in the life of human
beings since the existence and continue to come. Although these developments and
innovationswere sometimes out of curiosity, sometimes in linewith the needs.One of
themost important issues affecting the development of technology and science, in line
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with the needs is the diseases that affect human life. Although some of the diseases
can be easily diagnosed and treated, a long and difficult process may be required in
the diagnosis and treatment of some diseases. Cancer, which requires a long and chal-
lenging process and has difficulties in its diagnosis and treatment, includes cancer.
Considering the definition of cancer is the formation of bad neoplasms with the irreg-
ular division and reproduction of the cells in the tissue and organ [4]. According to
another definition, cancer is a cluster of more than 100 diseases that contain groups
of cells in the body [14]. If a general definition of cancer is to be made from the given
definitions, it is possible to define “cancer, in the organs and in the cells inside the
organs, to have different diseases in the uncontrolled and different form of normal
growth.” Diagnosis and treatment of cancer disease, requires both a long process
and high costs. At the same time, cancer disease takes the second place in diseases
that result in death [4]. Therefore, WHO (World Health Organization) emphasizes
the methods of protection from them in order not to catch diseases [13]. WHO stated
that approximately 9.6 million people died from various cancer types in 2018, and
that even by 2030, approximately 13.1 million people could die due to cancer disease
[29]. The most important issue in preventing these deaths caused by cancer is the
most important diagnosis (early diagnosis). When current data are analyzed, it is
concluded that 90% of cancer patients are treated by early diagnosis [25].

Artificial intelligence is a learning system that will imitate human intelligence
[13]. The purpose of artificial intelligence technology is to create intelligent systems
through to digital systems to solve real world problems [16–19]. It is the learning
of machinery to the branch of science that makes people’s lives easier and allows
them to think and imitate them as people [13]. Machine learning, which is one of the
most important sub-branches of artificial intelligence, forms the basis of the system
called intelligent systems that learn the existing situation, develop it and adapt to this
situation [16–19]. In fact, machine learning is the backbone of artificial intelligence
[16–19]. Machine learning is a system that includes learning, application and testing
processes.

The machine learning technique completes the training of the algorithm thanks to
the learning time and checks whether there is any problem in the learning part of the
systemwith a test process before the actual application [16–19]. In thisway, the appli-
cation of the algorithm that the system has been trained and in a healthy way can be
observed.Machine learning,which constitutes the building blocks of the current tech-
nology, emerged in the 1980s [3]. It is possible to divide the learning approaches of
artificial intelligence and machine learning into 4. These approaches are; Consultant
learning, Unconsultant learning, Reinforced learning and Semi-Consultant learning.
The educational data in consulting learning method and the result to be used in the
method/system to be used are obvious. In consultant-free learning, there are again
educational data, but the outcome is uncertain. In reinforced learning, the existing
problem situation is externally directed with feedbacks such as yes-no, true-false,
and the applied method is continued with experience. Semi-Consultant learning is
the method in which systems with and without the results will be used together [16–
19]. Although machine learning is used in many fields such as industry, material
production and security systems, it is also used in medical fields such as diagnosis
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of diseases and making forward predictions [8, 20], Ayturan [3]. Machine learning
is one of the most used systems in the early diagnosis of diseases [13].

It is thought that any disruption experienced in cancer diagnosis and treatment that
continues to increase causes tremendous problems. Within the scope of the study,
emphasis is placed on diagnostic applications using deep learning methods in cancer
diagnosis. In this study, the information about which deep learning method is used in
studies according to cancer diagnosis is given. The study content in the section one;
what is deep learning, what are their types and deep learning architectures included.
In section two, which deep learning methods used in the field of health and case
studies. Especially, the intensity of deep learning information used in diagnostics is
given. In the third part; processes of cancer diagnosis which has used deep learning
methods and expectations are given as information. In addition, how to benefit from
deep learning can be used in cancer treatment and the expectations/predictions about
what direction the studies should be. Discussion and conclusion part, using deep
learning technologies advantages of commonly used methods for cancer diagnosis
perhaps a remedy solution and the way of direction to how future studies will provide
a given direction during the event is referred.

13.2 Deep Learning

In cancer diagnosis, deep learning in the classes of machine learning is used. In deep
learning, it is the area studied by the analogy method from the neural networks in the
brain. Deep learning is the area used to simulate multilayered and mixed problems of
machines produced by comparing the neural networks of the brain [3]. According to
a different definition, deep learning is a system that processes raw data and automat-
ically extracts the desired features [31]. The term deep learning is also expressed in
the form of the Deep Neural Network [6]. The biggest differences between machine
learning and deep learning are the ability to easily process larger data with the
machine learning method and the way deep learning solves this data [3]. One way
of deep learning does not learn the rules, coded differently from classical machine
learning systems, instead it is used for sound, video, picture etc. It automatically
learns files such as icons [13]. It has an algorithm structure in deep learning and these
algorithms can be supervised/unsupervised [24]. The system that allows multi-layer
network structures to be used together is deep learning [26]. In the system in consec-
utive layer structures, data that is output on one layer is taken as input on the other
layer [24]. It is possible to talk about different architectures (methods) in the field of
deep learning. These architectures are; Deep Neural Networks (DNN), Evolutionary
(Convolutional) Neural Networks (ENN), Repetitive (Recursive) Neural Networks
(RNN), Long-Short Term Memory Networks (LSTM), Deep Boltzman Machine
(DBM), Deep Faith Networks (DFN) and Deep Auto-Encoders (DAE) It can be
examined in 7 subgroups [31].
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Deep Neural Networks (DNN), having more than two layers, this network struc-
ture is generally used for classification and analysis. It enables the identification of
complex data structures [13].

Evolutionary (Convolutional) Neural Networks (ENN) is seen as the most basic
architecture among deep learning architectures [10]. These are structures that are
used in multi-layered sensors and generally in 2D structures such as visual elements
[24]. The most frequently used method of deep learning methods used in cancer
diagnosis is Evolutionary (Convolutional) Neural Networks. The architectures of
convolutional neural networks have an important place in cancer diagnosis. CNN
models are being developed for cancer diagnosis. The methods used for cancer diag-
nosis of the developed CNN models; AlexNet, GoogleNet, VGGNet, ResNet are
encountered [31].

Repetitive Neural Networks (RNN) also includes the ability to analyze the data
flow of RNN, which has the ability to model the time dependence and memorization
ability of the sequential events that occur [13]. The basic system used in RNN uses
sequential data and RNN creates a directed loop of existing connections between
units within the system [24].

Deep Boltzman Machine (DBM) are random neural networks that learn proba-
bility distribution logic in input data. It is at the forefront as fast learning algorithm
[24]. Undirected connections occur between layers in the network [13].

Long-Short-Term Memory Networks (LSTM), this system used before the
discovery of RNN architectures is a knowledge-using based system [24]. LSTM
idea was found to eliminate the problems caused by the gaps between time contexts
in RNN. There are memory cells in LSTM and it is the network structure used to
calculate hidden situations in RNN [7].

Deep Faith Networks (DFN) is defined as the data stack/storage of long-short term
memory networks [24]. Only the first two layers have non-directional connectivity
and therefore the network can be trained both supervised and unsupervised [13].
These are graphical structures that will represent the data set in the network structure
consisting of hierarchical binding of the layers in the restricted boltzman machine
[7].

Deep Auto-Encoders (DAE), which is used for unsupervised learning purposes,
is also called Diabolo [24]. Auto-encoders used for educational purposes are used
in different types to represent a healthy representation (Fig. 13.1). Some developed
auto-encoders; They appear with the names of sparse (intermittent) auto-encoders,
noise-clearing auto-encoders, auto-encoderswith pullingpower, and convective auto-
encoders [13]. DAE, which has been in neural networks for a long time, started to
be mentioned in this field with the formation of deep learning architectures [7].

As frequently used models in deep learning field, it emerges us; AlexNet, ZF Net,
GoogleNet and Microsoft RestNet. AlexNet is used for pattern and visual identifica-
tion purposes and is a 11% healthier andmore reliable model in terms of reducing the
error rate from 26 to 15% [7]. With this computerized object identification system,
architecture can classify 100 objects. The matrix structure is 11 × 11 [10]. The ZF
Net algorithm was obtained with the development of AlexNet architectural struc-
ture. ZF Net reduces the error rate by 11.2%, and a visualization technique called
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Fig. 13.1 Deep learning methods for diagnosis

Deconvolutional Network has been developed and a different dimension has been
developed in this way [7, 32]. The 11 × 11 matrix structure on AlexNet has been
made 7X7. With this change, the small filter size in the convolution layer provides
protection of the original pixel information contained in the input size [10].

GoogleNet has a complex structure, the error rate of this system is 5.7%. The
144-layer structure filters different dimensions through Inception module. Thanks
to this filtering, size reduction can be made [7]. In this structure Microsoft RestNet
with an error rate of 3.6%, the number of layers is higher than other structures. There
are two RELUs, a linear layer and a one-time residual value-enhancing block in this
structure [7]. Microsoft RestNet architecture has a structure consisting of Residual
blocks [10].

13.3 Deep Learning in Cancer Diagnosis

Deep learning methods can be used for different purposes in the field of health. For
these purposes, gene diversity, drug design, interaction of proteins, interactions of
proteins with DNA and RNA, cancer diagnosis, etc. Such situations can be counted
[13]. Deep learning architectures in systems generally used in bioinformatics vary
according to cancer types. The reason for the changes observed in the architectures
used are the data sets used and the reliability rates obtained from the methods used.
The studies and the methods used in the studies below are included.

Xu et al. [30] uses multi-model deep learning methods in their study for the diag-
nosis of Cervical Dysplasia. They use the convolutional (neural networks) method to
convert video and non-image data into combinable feature vector. The multi-model
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structure proposed and used in the study contains a large dataset in the diagnosis of
cervical dysplasia. Compared to other methods, ENN method has been found to be
more successful and 90% specificity-87.83% sensitivity has been obtained with this
method.

Nie et al. [22] used three-dimensional ENN method for early diagnosis of brain
tumor (Glioma type). They also propose a new network architecture that works with
consulting learning and large datasets. In the study, a training is given for the patient’s
survival time. In this method 89.90% accuracy value was determined.

Ibrahim et al. [9] provided 9% more success in the diagnosis of liver cancer, 6%
in lung cancer and 10% in breast cancer (in F1 measurements) as a result of the
experimental studies they performed instead of the classical methods (HCC).

Khademi and Nedialkov [15] conducted a study for the genetic diagnosis of breast
cancer in their study. Within the scope of this study, they use Deep Faith Networks
(DFN) which are deep learning methods to complete the missing features and extract
the desired features from microarrayed data. They applied the structure learning
algorithm of clinical data and as a result, the clinical model can be automatically
extracted. The resulting model was integrated with softmax nodes and achieved
more promising results.

Ahmed et al. [1] aim to early diagnosis and treatment of breast cancer in their study
for the diagnosis of breast cancer.Within the scope of the study, they developmethod-
ology based on deep convolutional neural systems. As a result of the methodology,
they made 5-class group assignments and reached an accuracy rate of 88.4%.

Yildiz [31] proposes a system that enables early diagnosis of skin cancer (type
of melanoma) and deep diagnosis and machine learning methods to be treated in his
study titled “Detection of melanoma from dermoscopy images with deep learning
methods”. In the experimental study, which is used the deep neural networks C4Net
model, it was observed that 96.94% success rate in the diagnosing of skin cancer.

Kadiroglu et al. [12], types of AlexNet and VGG16 trained before the convolu-
tional neural networks, were used for early diagnosis of skin cancer (type of lesion),
which is frequently encountered using deep attributes and colors. A total of 200
images were used within the scope of the study and these images were tested in
AlexNet fc6, AlexNet fc7, VGG16 fc6 and VGG16 fc7 structures. Accuracy rates
are 92%, 94%, 94%, 94%, respectively. In the total evaluation of the data, the accuracy
rate was found 98%.

Varol and Iseri [27] used 135 digital images in their study for the diagnosis of
lymph cancer by making use of the image processing structures of deep learning.
In an experimental study with pre-trained algorithms, three types of lymph cancer
(CLL, FL and MCL) structures were examined. As a result of experiments using
though image processing structures, an accuracy rate of 89.72% was succeed.

Ismael et al. [11] used the deep learning method for brain cancer diagnosis. In
their study, using a network system in the deep learning, three types of brain tumors
(meningiomas, Gliomas and Pituitary), was evaluated. Compared to other studies,
better results were obtained with the data set that the study was conducted. In this
study, the used model has reached the highest accuracy rate of 99%.
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Zhang et al. [33] proposed that image-based processingmethod in order to identify
early skin cancer. In their study, they use the Convolution Neural Network (CNN)
architecture. CNN method was tried to be optimized with the thrived “whale opti-
mization”. To achieve their goals, they used two different methods on two data sets.
As a result of the simulations, the proposed method has obtained better results in
percentage compared to other methods.

Nayak et al. [21] conducted a study for the brain abnormalities (discrepancy in
abilities and skills) and diagnosis of breast cancer using the auto-coding architec-
ture of deep learning. In this study they proposed “Random Vector Functional Link
(RVFL) based Autoencoder (SRVFL-AE)” neural network structures. SRVFL-AE
which they used for RVFL structure, forms the basis of the system. The reason for the
opt this structure, customary auto-encoder based structure methods, allow compar-
isons to be made and increase the speed of learning. To compare proposal SRVFL-A
method, two brain data sets (MD-1 and MD-2) were examined. Analysis showed
that, MD-1 96.67% and MD-2 95% accuracy rate were observed. The same method,
was also tested in breast cancer dataset. As a result of the tests, shorter training period
and better success were achieved thanks to the proposed method.

Arefan et al. [2] in their study on breast cancer diagnosis, they used digital
mammograms of the scanned traditional scans as datasets. After these scans, aimed
at speeding up the diagnosis of breast cancer with deep learning methods, they
compared the two structures in deep learning (GoogleNet and GoogleNet-LDA). In
the study it concluded that, GoogleNet-LDA perform better results than GoogleNet.
It should be emphasized that larger data studies should be conducted by using deep
learning method for breast cancer risk assessment.

Coccia [5] in his study, emphasizes of using deep learning method in cancer
imaging. Thanks to deep learning technology, pathologist’s highlights that “helps to
detect and classify the stage of cancer”. Diagnosing of cancer typewith deep learning
methods it is emphasized that the correct detection rate is better. At the same time
deep learning technology for cancer imaging, shows the resource spread point (the
source of the cancer). Beside this advantage deep learning, is emphasized that it has
socioeconomic benefits and supports filling the current gap in the health sector.

13.4 Cancer Diagnostication and Treatment Proposal
with Deep Learning Methods in Future

In the previous sections, cancer diagnosis and use of deep learning methods in cancer
diagnosis are mentioned. This section includes that using deep learning for cancer
diagnosis, treatment methods and the way of direction to works that can be made,
forecasts in the future. Information which will be described in this section, to guide
the deep learning studies in the future and cancer diagnosis/treatment expectations
are included.
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Working in the field of health with deep learning provides great convenience. It
is especially important in the diagnosis of cancer, which is tackle within the scope
of the study. However many difficulties are encountered when using deep learning
in the field of health. Difficulties Encountered [23];

• “Data shortage”Data access due to ethical concerns and various rules/regulations.
• “Information sharing” Cooperation between relevant institutions is time

consuming or difficult to obtain the necessary data for the studies.
• “Computing skills” Failure to create a team of artificial intelligence (data scientist,

developer and solution architect) experts to fill the gap created by other software
with deep learning study.

• “Deep learning skills”; The team, which will be formed by artificial intelligence
experts, must be knowledgeable both in AI and in the field of health. Because,
information such as error status, internal/external factors, and/or insufficiency
of the conditions in the data obtained as a result of the operations made can be
obtained from experts.

The situation observed in the studies conducted that cancer types can be diagnosed
with deep learning. In our study it includes that which cancer types is determined
with the deep learning architecture by processing datasets. The studies to be carried
out in future, expectations from deep learning for cancer diagnosis and treatment
suggestions are higher than other study methods. Beyond the cancer diagnosing,
deep learning should now be included in the treatment.

Today’s world health and medical sectors are concentrated on visualization and
scanning technologies. The number of people whose waiting for diagnosis with an
increase in the patient profile is directly proportional to the order of cancer scanning.
Modern imaging devices such as NMRI (Nuclear Magnetic Resonance Imaging),
BT (Computed Tomography), PET (Positron Emission Tomography) have harmful
G Gamma radiation and radiation values that are reflected in the body compared to
the old conventional imaging devices. Transition from single detector conventional
imaging devices (Fig. 13.2) to complex modern imaging devices with a minimum of
8- to 256 detectors;

Fig. 13.2 Conventional imaging devices
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• Close-up time to approximately 1 h to 45 s.
• Reduced high radiation levels to the amount of radiation exposed during a long-

range flight (Istanbul-London).
• Increase high electricity consumption levels to a large volume electric heater level.
• Patient movement originated shooting errors are minimized.
• Hardware sustainability and disruption.

By minimizing those rates, it has led to a major leap forward in its intended
production target.

Besides going to the numerical increase of imaging devices and technological
innovations, most soft tissue cancers and some derivatives, the conventional diag-
nostic methods for the popularity continues. In line with humanitarian needs such
as intense work tempo, sleeplessness and morale, the data obtained from scanning
device with diagnose interpreted by human fatigue and this all carried out by the
doctors.

In the interpretation and acquisition of data section, a combination of information
of radiologists andArtificial Intelligence is observed. Radiologists take the necessary
shots through modern imaging devices (Fig. 13.3) and imaging results are sent to the
relevant doctors computer [28].

In new studies, after diagnosing with deep learning; it is expected to include
information about the treatment methods and/or medicine schedule that can be cure
to the patient. After the necessary tests are made for the individual and the diagnosis
is confirmed; it should provide a report either suggestion on the path to be followed.
This report will include information such as the type of treatment recommendations
(irradiation, chemotherapy, medication, etc.).

The system which is expected to emerge, thanks to the relationship between deep
learning and cancer diagnosis/treatment, stages from diagnosis to treatment of the
disease are as follows:

Fig. 13.3 Modern imaging
devices



236 P. Koc and C. Yalcin

1. The dataset which is obtained from the individuals, whose disease has been
diagnosed should be analyzed in deep learning architectures, and the diagnosis
of cancer and the type of cancer should be learned. The part up to this point is
still carried out today.

2. Diagnostic proses and cancer derivatives, passed through again from the deep
learning architectures which can be implemented method of treatment (radiation
therapy, chemotherapy, medication etc.) should be listed. At the same time, the
report which includes deep learning and treatment method recommendations, it
should also contain the steps to be follow during the treatment. The observation
of result, the drug to be given the chosen treatment which is chemotherapy “How
muchCC should be applied to patient, howoften (Treatment Schedule) andwhich
steps to follow on the phases” that report, should have offer these information’s
to aimed the expectations If radiotherapy is to be applied the patient, it is also
expected to provide a suggestion for the apply region and duration to be irradiated.

If these studies can be carried out, it is possible to list the advantages of this
situation as follows.

1. Diagnostics for the decision for treatment, which saves time will be lost.
2. Saves time lost in the decision-making process on which method will be

implemented.
3. In current situation, in case of negative result of the chosen treatment method;

the patient’s body to unnecessary drug/radiation installation’s disadvantage to
get free from.

4. Receiving peer interpretations for the treatment to be applied and preventing time
loss in the procedural process.

The use of deep learning method in cancer diagnosis and classification, will
prevent loss of time until passed to the treatment process consequently it is estimated
that it will lead to the treatment of the disease much faster.

13.5 Conclusions

Cancer is a disease that has a huge impact on human life. It is known that the
diagnosis and treatment of cancer is a long and difficult process. Studies are carried
out to shorten the long and difficult process experienced in the diagnostic process as
much as possible. Artificial intelligence are machines that mimic human behaviors.
In the cancer diagnosis process, deep learning is used from the sub-fields of artificial
intelligence.Deep learning aremachines that enable the solving ofmany and complex
data problems of artificial neural networks produced by comparing them to the neural
networks of the brain. Although deep learning is used with many fields such as
industry also it has been frequently used in medical field since 2014. Deep learning
has been used in cancer diagnosis in recent years.

The use of deep learning methods varies according to cancer types.When the data
in the previous section is examined, it is seen that different deep learning methods
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are used for each type of cancer. Thanks to the studies conducted, the accuracy rates
are also emphasized in order to know which method should be used in the diagnosis
of the cancer type. In this study, deep learning methods, architectures and deep
learning methods used in diagnosis of cancer types are emphasized. In this study,
Recent studies are highlighted and current dates are evaluated. It is thought that the
study will lead future studies in terms of the current informations and the in-depth
examination of the field. It is also important to work with the feature of directing the
work to be done.
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24. A. Şeker, B. Diri, H.H. ve Balık, A study on deep learning methods and applications. Gazi J.
Eng. Sci. 3(3), 47–64 (2017). (In Turkish)

25. Sencard.com.tr, Importance of early diagnosis in cancer (2019). (In Turkish). Online https://
www.sencard.com.tr/kanserde-erken-teshisadresinden. Retrieved 19 Dec 2019
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Chapter 14
Brain Tumor Segmentation Using
2D-UNET Convolutional Neural Network

Khushboo Munir, Fabrizio Frezza, and Antonello Rizzi

Abstract Gliomas are considered as the most aggressive and commonly found type
among brain tumors. This leads to the shortage of lives of oncological patients.
These tumors are mostly by magnetic resonance imaging (MRI) from which the
segmentation becomes a big problem because of the large structural and spatial
variability. In this study, we propose a 2D-UNET model based on convolutional
neural networks (CNN). The model is trained, validated and tested on BRATS 2019
dataset. The average dice coefficient achieved is 0.9694.

Keywords Deep learning · Deep UNET · Brain tumor segmentation · Artificial
intelligence · Convolutional neural network

14.1 Introduction

Brain tumors are one of themost lethal types of cancers. Studies have shown thatmag-
netic resonance imaging can be effectively used for the detection of the brain tumors
[1–3]. Multi-modal MRI protocols have been used for the evaluation of brain tumor
vascularity, cellularity, and blood-brain barrier integrity. This is because of the crucial
complementary information provided by the different contrasts of these multimodal
images. The most generally used MRI protocols are T1-weighted, T2-Weighted,
T1-weighted with gadolinium enhancement (T1CE) and Fluid-Attenuated Inversion
Recovery (FLAIR) resulting in valuable diagnosis [4]. One of the most wanted and
critical problems in brain tumor diagnosis is its segmentation because of the fact
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then correct segmentation can eliminate the confounding structures from tissues of
the brain and can help in the classification of different types of tumors. The main
challenges of brain tumor are due to high variations in shape, size, location, regularity
and heterogeneous appearance [5]. Studies related to brain tumor segmentation are
categorized into supervised learning based [6–8], and unsupervised learning based
[9–11]. Combining region-growing and fuzzy clustering for brain tumor scans by
T1-weighted and T2-weighted was done by Hsieh et al. [12] and achieved the accu-
racy of segmentation up to 73%. Brain tumor segmentation using multi-stage fuzzy
c-means was implemented by using multi-model MRI scans but it was tested on a
very limited dataset achieving promising results. Under the conditional random field
framework, superpixel features were extracted by Wu et al. [13] but the obtained
results were varied from patient to patient while under performing for the images of
LGG.

Supervised deep convolutional neural networks are used to extract complex fea-
tures directly from data [14]. Using BraTS benchmark deep learning got itself on
the top of all other methods of brain tumor segmentation [15, 16]. Apart from the
developments in deep learning, the main challenges relating to brain tumors are first
the brain tumor segmentation which is considered as an abnormal region detection
problem and is relatively more difficult than the classification task. Secondly if the
network can give high performance for HGG it can still perform poor for the LGG.
Thirdly, comparing the segmentation of complete tumor the delineation of enhanced
infiltrative regions and core tumor regions is still not well performed, particularly
when considering other important features of the trainedmodel, such asmemory foot-
print and processing efficiency. This study presents a 2D Unet convolutional neural
network for the segmentation of brain tumor using multi-modal 3D MRI volumes
formBraTS 2019 archive [17–20]. In order to increase the performance of the system
data augmentation technique is used. The proposed method has performed well on
both HGG and LGG. The results are comparable to the state-of-the-art methods for
the segmentation of brain tumors.

14.2 Method

14.2.1 Convolution Neural Networks

Convolutional neural networks are considered to be the current state of the art for the
problem of image recognition in the machine learning domain [21, 22], in particular
when dealing with biomedical MRI [23]. They are formed by a sequence of typical
layers, convolution, pooling and flatten ones. In the convolution layer filter size and
number of filters are defined. A moving dot product is performed between a fixed
defined K × K filter against subpictures of the original image. The output of this dot
product is finally feeded into a nonlinear activation function. Themost famously used
activation functions are rectified linear unit and sigmoid function. Both activation
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functions are differentiable and can fit during the training into the framework of
standard gradient descent learning techniques for neural networks.

When a k × k kernel is convolved with a sub-picture of p × p the resultant image
will be of size (p − k + 1)× (p − k + 1). Usually, a convolutional layer is followed
by a pooling layer in order to reduce the dimensionality to make the training of the
CNN network a little bit easier.

14.2.2 Convolutional U-Network

After the application of series of a convolutional filters, the dimension of the final
layer is usually a way much smaller than that of the original image provided to the
network. In order to tackle the problem of checking whether the selected pixel of the
input image is a part of a lesion or not, the output of the network must be of the same
dimensions as the input was. Ciresan et al. [24] tried to solve this dimensionality
problem by considering each input image pixel and a small localized region around
it instead of the entire image into the neural network. Whereas Ronneberger et al.
[17] presented a powerful solution of a U-Net CNN. It basically solves the problem
by deconvolving the layer performing an upsampling procedure to increase image
dimensionality.

14.2.3 Data Acquisition and Pre-Processing

The method proposed in this paper is trained, validated and predicted on BraTs 2019
dataset [25] which contains High-Grade Gliomas (HGG) and Low-Grade Gliomas
(LGG) patient scans. The dataset consists of four types of modalities: these are T1-
weighted, T2-weighted, T1-weighted with gadolinium-enhancing contrast (T1CE)
and FLAIR. T1, T2, and FLAIR were co-registered into T1CE dataset which was the
resampled and interpolated into 1× 1× 1mm3, corresponding to image size in pixels
equal to image as 240× 240× 155. Data is normalized by subtracting each MRI
modality with its mean and dividing it by its standard deviation. The images dataset
provided by the BraTS are 3D volumes, each represented with four modalities. This
dataset is divided into six sets for HGG and two sets of LGG. Each set consists of
40 volumes. The volumes are shown in Fig. 14.1.

The first step in the preprocessing is the conversion of these 3D volumes into
2D slices. Among these slices there exist the slices which do not contain any useful
information thereby causingoverfitting problem. In order to reduce the overfitting, the
slices containing low or no information are discarded. On the remaining slices, data
augmentationwill be performed. The basic purpose of performing data augmentation
is to increase the training data in order to improve network performance. In doing so
rotation, flipping and shifting are applied to the slices obtained in the previous step.



242 K. Munir et al.

14.2.4 Proposed CNN Based on UNET Architecture

Biomedical data images contain detailed patterns of the brain tumor with variable
edge boundary definitions of tumor objects. Long et al. [26] proposed an architec-
ture based on skip connections which have the basic function of combining decoding
layer high-level representation with the encoding layer shallow appearance represen-
tation. The method provided good results on natural images and can be applied to
the biomedical images [26, 27]. Combining this skip-architecture with the unet-
architecture Ronneberger et al. [17] solved the problem of cell tracking. The archi-
tecture which we are proposing consists of two distinct sub-structures, an encoding
part (downsampling) and decoding one (upsampling).

The encoding part consists of 5 convolutional blocks where each block contains
two 2D convolutional layers with kernel size of 3× 3, with same padding and rec-
tified linear unit activation. In the third layer batch normalization is applied. The
fourth layer is composed of 2Dmax pooling. After the first two convolutional blocks
a drop-out layer of 0.2 is applied. The last encoding block consists of only one con-
volutional layer. Decoding part of each block consists of a deconvolutional layer
with kernels of size 3× 3, stride (2, 2), same padding and relu activation. This first
layer of upsampling is concatenated with the batch normalization layer of encoding
block therefore named as a merge block. The third layer performs 2D convolution,
therefore, a decoding block consists of these three layers. The four decoding blocks
follows the same pattern except the fact that merging layer of the first decoding block
concatenates with normalization layer of fourth encoding block, merging layer of the
second encoding block concatenates with the normalization layer of third encoding
block, merging layer of third decoding block concatenates with the normalization
layer of the second encoding block and the merging layer of fourth decoding block
concatenates with normalization layer of first encoding layer. Drop out of 0.2 is
applied after the first two decoding blocks. After the application of four decoding
blocks, a convolutional layer is applied with 3× 3 kernel, same padding, and relu
activation. The final layer is an output layer consisting of 2D convolution with soft-
max activation.

Fig. 14.1 Examples of MRI images in the considered dataset
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14.2.5 Network Training

For the training, the used cost function is soft dice metric as given in [28] rather
than using a quadratic cost function or cross-entropy. Stochastic gradient-based opti-
mization is required for the training of a deep neural network, therefore, minimizing
the cost function with respect to network parameters. To estimate the parameters
adaptive moment estimator known as Adam is used [29]. Generally, first and sec-
ond gradient moments are used by the adam to update and correct current gradients
moving average. Learning rate of Adam optimizer is set to 1e(−5), the batch size is
set to 100 and the number of epochs are 50. As the dataset was divided into six sets
to reduce the computational complexity and cost reduction the network is allowed
to train on each preprocessed set one by one.

14.2.6 Experiment, Results and Discussion

The evaluation has been done using a set by set approach for both HGG and LGG
data respectively. Dice coefficient is used for the evaluation of the tumor region.
This study proposed a U-Net convolutional neural network for the segmentation of
brain tumor. Essentially the problem of tumor detection and segmentation belongs
to semantic segmentation. A comprehensive technique of data augmentation is used.
Dice coefficient and the loss tested for sets are given in the Fig. 14.2. The average
dice coefficient achieved by the proposed network is 0.9694 which is a very much
promising result as compared to the pre-made neural networks. Figure14.3 shows
the segmentation results comparison with the ground truth for HGG and Fig. 14.4
shows the segmentation results for LGG. The network is implemented by using the
TensoFlow and Keras libraries. The network is processed by using the Tesla K80
google collab Graphic Processing unit with 25GB memory. The basic problem in
training the network with 2D images or 3D volumes is because of the memory limits
as a 2D network can be processed with full slices at once, whereas only one patch

Fig. 14.2 Dice coefficient and dice coefficient loss
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of 3D volume can be processed by the 3D system at the same time. The processing
time of 1 epoch is 12 seconds which is more time-efficient as compared to previous
studies such as [16] which took 30 seconds, [15] which consumed approximately
from 25 s to 3min and [14] which took 8min for prediction of one tumor study.
There are some limitations of the network we proposed, since there is a possibility
to perform evaluation through cross-validation scheme by running separate different
datasets that may provide different evaluation results. Secondly, some parameters in
the network have to be set carefully. Apart form these limitations our network gave
very efficient results for brain tumor segmentation. Further study by taking different
scenarios into account can be done and this network can be made more efficient.

14.3 Conclusion and Future Work

A fully automatic method of brain tumor segmentation is presented in this paper
using a 2D U-Net based deep convolutional network. The network was trained and
tested on the well-known BraTS 2019 benchmark containing both HGG and LGG
patients scans. Our method provided efficient and robust segmentation which was
comparable to the delineated ground truth. Comparing to other state of the art meth-
ods our algorithm achieved quite promising results. This network can also be tested
for different datasets in the future and can be further improved by the introduc-
tion of different other data augmentation methods and noise addition. However, this
proposed method makes it possible to segment the tumor region without a manual
interface therefore allowing to perform automatically the diagnostic task, treatment
planning, and patient monitoring.
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Chapter 15
Use of Deep Learning Approaches
in Cancer Diagnosis

M. Hanefi Calp

Abstract Cancer is among serious health problems with an uncertain and complex
structure that causes fatal results. Cancer is a disease that consists of uncontrolled
proliferation of cells in different organs, whose clinical appearance, treatment and
approach are different from each other and that should be controlled in the early
stages. The cancer burden should be estimated in order to determine priorities for
cancer control. In this context, there are many studies on diagnosis and treatment
methods and a rapid development is observed in this regard. The aim is to increase
the survival rate of people with cancer. In order to achieve this goal effectively,
early and accurate diagnosis is especially important in the treatment of cancer, as
it causes fatal results. It is known that cancer is very difficult to diagnose in the
early stages and accurately with traditional diagnostic methods. At this point, the
artificial intelligence, a new or current approach, comes to the agenda. Developments
in this area offer very important opportunities in cancer diagnosis as in many areas.
Therefore, in this study, deep learning approaches which are an artificial intelligence
technique in the literature for the diagnosis of cancer disease are examined, and the
applications in the literature on how these approaches are used are included. Since
the subject of the study is up to date, it is considered that the study will be a guide
for people or institutions working in this field.

Keywords Artificial intelligence · Deep learning · Cancer diagnosis · Treatment

15.1 Introduction

Cancer is a type of disease that threatens human life and has fatal consequences.
This disease is expected to be among most serious diseases that cause deaths in the
coming years. According to the data of the World Health Org. (WHO) [1], cancer
corresponds to 13% of all deaths in the world in 2018. While the number of people
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dying from cancer will increase significantly in the future, a predicted 12 million
people will die from cancer in 2030. Scientists, researchers and doctors are working
on new techniques to effectively fight cancer, however, this struggle is known to be
quite difficult [2–4].

Over the years, manual, automatic or controlled methods have been tried to detect
cancer disease or cancerous region and many different solutions have been offered
by applying these methods in a single or hybrid structure. However, these techniques
are not very effective in detecting cancer if sufficient data could not be obtained.
Therefore, in recent years, computer-aided diagnostic detection systems and similar
techniques have attracted the attention of researchers, scientists and radiologists [2,
5]. At this point, various options for cancer treatment are still being sought and devel-
oped. In particular, artificial intelligence-based forecasting methods are among these
techniques. Improvements in the predictive accuracy helps doctors plan patient treat-
ments and eliminate physical and mental difficulties caused by the disease. Improve-
ment in the percentage of diagnosis using the most advanced artificial intelligence
technology is a support factor for clinical researchers. Technical and theoretical
advances in computer software and statistics have allowof computer or software engi-
neers and health scientists to achieve successful results in diagnosis using traditional
logistic regression, multi-factor analysis and artificial intelligence-aided analysis.
The accuracy of such estimates are significantly higher than the experimental esti-
mates.With the application of artificial intelligence, scientists have recently begun to
create newmodels to estimate and diagnose cancer. These models are very important
in improving the accuracy of cancer sensibilty and survival estimates [4].

However, the realization of this diagnosis in the early stages of the disease is as
important as the diagnosis and treatment of cancer. Early diagnosis of cancer is the
top priority to save many people’s lives. Normally, visual inspection and manual
approaches are utilized for types of this cancer diagnosis. That explication (manual)
of medical images requires a lot of time and is highly prone to errors [3]. Diagnosis of
cancer in the early stages is a very difficult process due to uncertain symptoms, uncer-
tainties in mammograms and screening, and there is a possibility that it will reappear
after treatment. Therefore, better predictive models should be developed usingmulti-
variate data and high-resolution diagnostic/treatment tools in clinical cancer studies.
When the studies on the diagnosis and treatment of cancer are examined in the
literature, it is seen that the use of artificial intelligence technique is increasing. In
addition, it has been revealed that traditional analysis solutions like the statistical
and multivariate analysis are not as successful as artificial intelligence technique.
Among the artificial intelligence techniques, especially the deep learning approach
gives very effective results [6–9].Deep learning is a kind of neural networkwithmany
hidden layers. In recent years, deep learning has been used in a wide variety of fields.
In particular, it has provided high performance-success in application types like as
speech recognition, and also image recognition and classification within high-tech
devices such as autonomous vehicles and drones [10–12]. In addition, basic classi-
fications like healthy and cancerous tissue diagnosis are performed and traditional
machine learning solutions are employed in the developedmodels.However, artificial
intelligence-based deep neural networks are a more effective method of generating
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classification models with data matrices. These models are useful for diagnosing
cancer, seeing and predicting its progress, and thus applying timely and optimal
cancer treatment [13].

In this study, deep learning approaches used in cancer diagnosis and treatment
are examined. The aim of the study is to show with the support of the literature the
extent to which effective results are obtained with a deep learning approach, which
is one of the artificial intelligence techniques of a disease such as cancer, which
methods and techniques are used, and how these methods are used. In the second
part of the study, artificial intelligence and deep learning technique are explained; in
the third part, deep learning approaches in cancer diagnosis and treatment processes
and examples in the literature; In the fourth part, the results obtained from the study
and the suggestions about the study are included.

15.2 Artificial Intelligence and Deep Learning

15.2.1 Artificial Intelligence

From the past to the present day, human intelligence has been explored through
science or various ways, and it has been tried to be created by imitating or modeling.
The studies in this field have come to an advanced level every day. Intelligence can be
improved by working, teaching, training, and acquired knowledge and experience,
and skills based on experience. The ability to adapt, understand, learn and analyze an
event encountered for the first time can be realized with intelligence. Intelligence can
be imitated by software or integrated chips, and this is called artificial intelligence.
Since human intelligence is accepted as the most complex structure in the world,
the concept of artificial intelligence did not go beyond representing the effort to
imitate the human brain. While human intelligence can perform a simple numerical
operation in a few minutes, a very short time is required for a perception related
process. It is insufficient on issues the application of the knowledge gained through
understanding and applying, while the computer analyzes very complex numerical
operations instantly [14, 15].

Artificial Intelligence is a branch of science that has the abilities of machines to
such as reasoning, use of from past knowledge, planning, learning, communication
and perception. Systems ensuring certain human behaviors with artificial intelli-
gence and that run human thinking process related to certain specialties such as
computation and medical diagnosis can be established [16]. Artificial intelligence
is a technique that provides solutions to real world problems such as classification,
optimization, prediction, prediction, pattern and image recognition, control, diag-
nosis and interpretation. Therefore, it is used by all disciplines in almost every field
[17–21]. Artificial intelligence is based on imitating people’s ways of thinking and
behavior, however, in time, any kind of dynamism, which can be put into mathemat-
ical, and also logical patterns in the sense of the frame of intelligent functions within
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nature can be expressed. Briefly, it is a multidisciplinary field in which it is aimed to
automate the activities that take place with human intelligence [22].

According to Stuart J. Russell and Peter Norvig, Artificial Intelligence can be
examined in the context of four different categories: systems that think like people,
systems that act like people, systems that think rationally and systems that act ratio-
nally. They also stated that artificial intelligence evaluates human decisions, that
it have a human characteristic, such as thinking, and that it has logical decision-
making capabilities [23]. Essential objective of the artificial intelligence is to create
machines smarter, understand about what intelligence is, and also ensure machines
more useful. In addition, imitating human intelligence bymeans of a computermeans
in this sense to give a certain degree of learning ability to computers. Thus, artifi-
cial intelligence often corresponds to methods, which try to model human thinking,
the working model of the brain, or the evolution (biological) of the nature [24].
In summary, artificial intelligence is the equipping of machines by modeling with
human intelligence, physiological and neurological structure. It is computer system
that think and act like a human [25, 26].

15.2.2 Deep Learning

In recent years, deep learning, which is a very popular subject and has a high success
in almost every field, is an effective technique used in the perception and under-
standing of the world of machines. Deep learning methods are used in areas such
as image classification, speech recognition, video analysis, and the natural language
learning. Analysis can be made without the need for an attribute extractor based on a
mathematical model previously created with deep learning. One of the most impor-
tant advantages of deep learning methods is that it can be generalized. A learned
neural network approach can be used for other applications and data structures. If
the data set is insufficient, the performance of deep learning will also be low [27, 28].

Deep learning is known as amachine learning sub-field, which follows advantages
of nonlinear processing unit layers. The next layer receives the output of the previous
layer as the input. In the deep learning technique, the data are based on learning
from the representation of the data by learning more than one feature level. Top-
level features are derived from low-level features, thereby creating a hierarchical
representation. Deep learning methods have been developed as oriented on artificial
neural networks generally, but have more hidden neurons and layers. Deep learning
methods have yielded very successful results in the processing of many types of data
such as video, audio, text [29–33].

Deep learning methods are used in the application types like [30, 34]:

1. Natural language processing/language modeling
2. Speech and audio processing
3. Information retrieval
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4. Computer vision/object recognition
5. Multi-modal and multi-task learning.

15.3 Deep Learning Within Cancer Diagnosis

Doctors often rely on their personal knowledge, skills and experience when diag-
nosing the disease. However, no matter how skilled he is, a doctor cannot claim that
the diagnosis of the disease is absolutely correct, and he definitely makes misdiag-
noses. Therefore, at this point, artificial intelligence technologies come to the agenda.
Because artificial intelligence has the ability to analyze large amounts of data, solve
complex problems and predict with high accuracy. Deep neural network, one of
the most up-to-date artificial intelligence techniques of today, expresses a series of
computer models that are used effectively in obtaining information from images.
Deep learning algorithms have been applied for activities in many medical special-
ties (most commonly, radiology and pathology). In addition, high performance has
been get in the sense of running deep learning solutions in the areas of cancer biology,
as like clinical imaging of several species [4, 35]. In Fig. 15.1, artificial intelligence
techniques and their relationship are given in estimating cancer diagnosis.

Fig. 15.1 The techniques of AI, ML, and DL, and their relationships [4]. a: Use of AI technology
such as ML and DL as a decision support tool, b: The differences exist between ML and DL, c: The
example for ML, d: Involves more operations than DL



254 M. Hanefi Calp

15.3.1 Steps Regarding Cancer Diagnosis

15.3.1.1 Pre-process Step

Since the raw images contain noise, the first step in the detection process is pretreat-
ment. Preprocessing is to improve the quality of the considered image that will be
used more by removing image information, which is unwanted and called image
sounds. If this problem is not corrected, incorrect classification can be made. The
right combination of preprocessing tasks is required to increase the accuracy rate [3].

15.3.1.2 Image Segmentation

Segmentation is essentially the partition or division of a zone. It is divided into four
part: threshold-based, pixel-based, region-based, and also model-based segmenta-
tion. There are also other techniques such as histogram threshold, adaptive threshold,
distributed and localized region definition, gradient flow vector, clustering and
statistical region growth, active contours, boot learning, supervised learning, edge
detection. These methods are also used in hybrid forms [3, 36, 37].

15.3.1.3 Post-processing Step

Next to the pre-process and the image segmentation steps, the post-processingprocess
begins. The basic steps of the three titles described so far are summarized inTable 15.1
[3].

Table 15.1 Steps regarding
cancer diagnosis

Pre-processing step Image segmentation Post-processing
step

Adjustment of the
contrast

Histogram
thresholding

Opening and
closing operations

Remove of the
vignetting effect

Distributed and
localized

Island removal

Region identification

Correction of the
color

Clustering and
active contours

Region merging

Image smoothing Supervised learning Border expansion

Hair removal Edge detection and
Fuzzy logic

Smoothing

Normalization and
the localization

Probabilistic
modeling and graph
theory
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15.3.1.4 The Rule of ABCD

The ABCD characters in this rule corresponds to A-asymmetry, B-border, C-color,
and the D-diameter of the image of lesion, respectively and each is defined as follows
[38]:

(A) for the Asymmetry: The related input image is divided into a vertical axis,
giving the lowest possible value of the asymmetry score.

(B) for the Border: The related image is divided into eight and checks for sharp and
sudden changes.

(C) for the Color: Shades of color are used for cancer detection.
(D) for the Diameter: A ceraful check for the diameter of the lesion is done.

15.3.1.5 7-Point Checklist Method

It has two types of criteria, large and small, and the main criteria have three scores,
and each of the small criteria has 4 points with a value of 1 point [39].

15.3.1.6 Menzies Method

There are several positive and negative features. The asset of negative features means
that melanoma is malignant. That will be benign if one or more positives are true
and both negatives are absent [39].

15.3.1.7 Pattern Analysis

A method oriented on determining patterns that are global or local can be run. Main
objective of that method is to perform a qualitative evaluation of dermoscopic criteria
separately [3].

15.3.2 Deep Learning Methods and Use in Cancer Treatment

Deep learning methods are widely used because they have multi-layered neural
networks and perform successfully especially in areas such as computer vision and
pattern recognition. The most important feature of this method is that the feature
extraction process is accepted as a part of the learning process [40, 41].

The deep learning methods in the literature are listed below and each of them is
briefly explained and several examples in practice are included.
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15.3.2.1 Deep Neural Networks (DNN)

A simple neural network has an input layer and is directly linked to the output. DNNs
that are effective in solving complex problems have multiple hidden layers and the
weight of each layer has been adjusted with the delta learning method. By adding
more hidden layers to deep neural networks, complex nonlinear relationships can
be detected. DNNs are used in supervised and unsupervised learning problems, but
learning processes are very slow. However, it is generally used for classification and
regression purposes, and high performance results can be obtained [32, 34].

In Fig. 15.2, an example DNN model is given.
Ohmori et al. detected endoscopic detection and differentiation of esophageal

lesions using deep neural network. It was revealed that there was no significant
difference between the artificial intelligence system and experienced endoscopists in
terms of diagnostic performance. The neural network system has high sensitive and
they developed has shown high accuracy in differentiating non-cancerous lesions
[43].

Schwyzer et al. investigated whether deep neural networks can be used to detect
lung cancer in the environment of low positron emission tomography/computed
tomography scans. They found that the deep neural network algorithm achieved high
performance for lung cancer detection. They showed that the further development of
this technology increased the success of lung cancer screening efforts [44].

Tan and colleagues designed a model on adaptive melanoma diagnosis, by
employing clustering, ensemble and DNNs. They used the hybrid Particle Swarm
Optimization algorithm for skin lesion segmentation and also classification. They
used the Firefly algorithm to diversify and so that improve accordingly the algo-
rithm. It has been used in conjunction with the clustering algorithm of K-Means,
in order to increase segmentation of the lesion. In addition to these techniques, the
lesion classification was performed with deep neural networks using the skin lesion
data set, and the results showed higher performance than other techniques [45].

Skourt et al. conducted a research on lung computed tomography image segmen-
tation using the deep neural network approach. At this point, U-net architecture, one

Fig. 15.2 An example for DNN model [42]
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of the architectures commonly used in deep learning technique for image segmenta-
tion, was used. Because the deep neural network can be trained from very few images
and end to end, they have achieved better performance than other methods [46].

Pomponiu and colleagues have proposed a model that classifies a skin mole lesion
with a pre-trained deep neural network. They found that experimental tests on a clin-
ical data set performed better than other state-of-the-art classification performance
using deep neural network-based features. That is, experimental results have shown
that the transferred properties are a suitable solution for skin mole characterization
and achieve better classification accuracy [47].

Jiang et al. have introduced a model for recognition or segmentation of basal cell
carcinoma in digital histopathology images captured by smartphones with a deep
neural network. With the model they developed, they were able to divide all the
images they obtained with high accuracy. As a result, they were able to recognize
basal cell carcinoma pathology with high sensitivity and accuracy by using deep
learning method via smartphone [48].

15.3.2.2 Convolutional Neural Networks (CNN)

CNN is a type of multilayer sensors. CNN algorithm, a forward neural network, has
been developed by inspiring the visual characteristics of animals. The mathematical
convolution process here can be considered as a neuron’s response to stimuli from
its impulse domain. CNN consists of one or more fully bound layers [29, 33].

In the convolution process, the symmetry of the filter, which will be applied to
two dimensional data, is taken according to the x and y axis. As the filter is moved
on the image depending on the step length, the overlapping values are multiplied by
element on each step and the sum of all values is recorded as the relevant element of
the output matrix. The process performed when the filter is not symmetrical is called
cross-correlation. While the input data is single channel, this operation can be done
simply. The number of channels of the exit sign is also equal to the number of filters
applied [28, 49, 50] (Fig. 15.3).

Fig. 15.3 An example for CNN model [51]
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Paul et al. used Deep Neural Network and Traditional Image Features approaches
to increase survival estimation accuracy in lung cancer patients. They reported that
deep feature extraction via (pre-trained)CNN is successful for some image areas. The
researchers applied a pre-trained evolutionary neural network method for obtaining
deep features from computed tomography images (lung cancer), and then classified
them to predict long-term and also short-term survivors. Using the technique in
question, they achieved high accuracy and performance results [52].

Ghoneim et al. have developed a system for cervical cancer classification using
CNNs and extreme learning machines. First of all, cell images were transmitted to
convolutional neural networks and input imageswere classifiedwith extreme learning
machines. The test results were carried out using the created database. Researchers
have revealed that the proposed system can be used for high accuracy for detection
and classification problems [53].

Rasti et al. have studied breast cancer diagnosis to distinguish benign and malig-
nant breasts usingCNNs. In the proposed system, themasses in the chest are classified
using the data. Experimental results revealed that the proposed model can be used
as an effective tool for radiologists to analyze breast images [54].

Arevalo et al. performed a representative learning for mammography mass lesion
classification using CNNs. In their work, they proposed an innovative model that
automatically learned discriminatory features by avoiding the design of customhand-
made image-based feature detectors for breast cancer diagnosis in mammography.
To improve image details, they implemented two phases: preprocessing and super-
vised training to learn the classifier of breast imaging lesions. Compared to the latest
technology image identifiers of the method they developed, they achieved successful
results in terms of performance. As a result, they suggested that the deep learning
based convolutional neural networks approach is an effectivemethod to automatically
handle the classification of breast mass lesions in mammography [55].

Zhang et al. have developed a new optimized image processing-basedmodel using
convolutional neural networks for early diagnosis of skin cancer. They used thewhale
optimization algorithm to optimize the CNNs part of the model. They compared with
different methods in the different data clusters to evaluate the proposed method. The
experimental results showed that the proposed method is superior to other methods
compared [56].

15.3.2.3 Recurrent Neural Networks (RNN)

RNN is a type of artificial neural network where connections between units ensure a
loop, which is directed. Unlike feed forward neural networks, RNNs use sequential
information to process their input memory random strings of inputs. The reason why
RNNarchitecture is called duplicate is that it performs the same task for each element
of an array based on previous outputs. RNN is often preferred because of its serial
processing feature in the field of natural language processing. It produces successful
results in sequential flow data such as speech, text, music, and video [29, 49, 57]
(Fig. 15.4).
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Fig. 15.4 An example for RNN model [58]

Azizi et al. conducted a study on deep recurrent neural networks for the detection
of prostate cancer. In the study, they used deep repetitive neural networks to model
temporal information. They achieved a high sensitivity and accuracy rate that distin-
guishes cancer in the prostate from benign tissue. They have proven to significantly
improve cancer detection accuracy, based on previously presented studies usingRNN
[59].

Zanjani et al. conducted a study aimed at detecting the cancerous region on mass
spectrometry imaging data using repetitive neural networks. In the proposed RNN
model, lung and bladder cancer datasets, mass spectra have a fast training time and
have been able to classify with high accuracy and better performance [60].

Chen et al. proposed a model using the incremental combination of repetitive
neural networks for estimation ofmalignancy in breast cancer, which is very common
in women. The researchers stated that the early detection of malignancy of breast
cancer and a treatment suitable for diagnosis greatly increased the survival rate of
patients. As a result, they have achieved highly effective and successful results using
a repetitive neural network layer to classify the benign and malignant features of
breast cancer [61].

Amirkhan et al. Employed a recurrent neural network model for predicting
colorectal cancer among patients. In the study, they applied repetitive neural networks
to see whether these networks can learn and produce accurate predictionmodels. The
experimental results showed that equal performance is achieved with the latest tech-
nology algorithms. They also reported that such models could be a source of support
for issues such as cancer detection and could be used as a resource for future research
[62].

15.3.2.4 Deep Boltzmann Machine (DBM)

DBM is a productive random artificial neural networkmodel, which has the ability of
learning probability distribution over the input set. They consist of two-part graphs
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Fig. 15.5 An example for DBM model [64]

with symmetrical connections between them, that are visible and hidden [29, 63]
(Fig. 15.5).

Nivaashini and Soundariya have proposed a model for deep boltzmann machine-
related breast cancer risk assessment for health systems. In the proposed system, it
is aimed to find a particularly effective feature set and to divide the cancer status
into two groups as good and malignant. Outputs from the study were evaluated
by using specificity, sensitivity and accuracy with the classifiers like support vector
machine (SVM), unified neural network (CNN), probabilistic neural network (PNN),
multilayer perceptual neural network (MLPNN), repetitive neural network (RNN).
Naïve Bayes (NB), SMO and C4.5 techniques were used to classify breast tumors. A
high detection rate was obtained in the estimation and classification of breast tumors
using the proposed medical diagnostic decision-making system; that is, the authors
have shown very good results and performance [65].

Jeyaraj and Nadar have provided the classification of the cancerous region in
order to provide a better health system by using the DBM algorithm. At this point,
computer-aided diagnostic performance is enhanced by confirming the region in the
hyperspectral imagewith the pre- and post-cancer region classification. A three-layer
unsupervised network with back propagation structure was used for implementation.
Image fragments were collected from the presented dataset. It has been revealed
that the proposed model produces solutions with high precision and accuracy, and
according to the classification, accuracy and success rates achieved, DBM better
classifies complex images compared to the traditional convolution network [66].

15.3.2.5 Deep Belief Networks (DBN)

DBN’s are defined as a stack of DBMs. Each DBM layer is linked with both previous
and next layers. However, the nodes of any layer do not have horizontal communi-
cation with each other. It has the ability to classify as the last layer or cluster for
unsupervised learning. DBN architectures are implemented in image recognition
and production [29, 67] (Fig. 15.6).
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Fig. 15.6 An example for
DBN model [68]

Zhao et al. designed a new deep learning and clustering model called DBN and
Fuzzy C-Means (FCM) to cluster lung cancer patients. In the proposed model, the
images after preprocessing are first coded into multiple layers of hidden variables
to achieve hierarchical properties and feature distribution and to create high-level
representations. Experimental results reveal that it performs better than unsuper-
vised classification methods and also show that the proposed model enables practical
implementations in lung cancer pathogenesis studies and is a useful guide for cancer
treatment [69].

Shahweli realized an exemplary study the use of deep learning technique in
predicting diseases, classifying and analyzing the causes of diseases such as cancer.
In the study, he used the DBNs method to predict Predisposition to Lung Cancer in
TP53 Gene. The data set is trained with the back propagation neural network; The
training is divided into three parts to represent the set of validation and testing. The
experimental results revealed that the neural network model can highly predict lung
cancer [70].

Renukadevi and Karunakaran have proposed a method to optimize deep belief
network parameters using the grasshopper algorithm for liver disease classification.
Initially, image quality is enhanced by preprocessing techniques, and then features
such as texture, color, and shape are obtained. In the study, DBN parameters were
optimized to recognize liver disease. The proposed method has yielded successful
results with a high accuracy, precision and precision rates compared to existing
techniques in the simulation method [71].

15.3.2.6 Deep Autoencoders (DA)

DAs is a machine learning method with input and output layers having the same
properties, consisting of clustering multiple auto-encoders on top of each other to
represent multi-dimensional data. The purpose of this method is to automatically
extract the attribute set or reduce the number of data sizes. That is, to capture themore
accurate ratio with less attributes. In this method, unsupervised learning method is
used; that is, there is no need for a marked data set for learning. However, the method
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requires a pre-learning phase to find suitable weights. DAs are frequently used in
feature extraction and data compression processes [32, 34, 67, 72, 73].

Mallick et al. have proposed a technique for cancer detection that enables image
classification using a deep wavelet auto-encoder based DNN. In the study, they
blended the image decoupling feature of the wavelet transform together with the
main feature reduction feature of the automatic encoder. A brain image was taken
as a data set and the data was classified with the proposed image classifier. The
performance criterion of the model has been compared with other existing classifiers
such as automatic encoder-DNN or DNN, and it has been stated that the proposed
method outstrips existing methods [75].

Kucharski et al. proposed a semi-controlled segmentation approach, thanks to
convective autoencoders so that it was possible to solve the problem of segmenta-
tion tasks with few ground-reality images. They used deep network architecture to
differentiate benign and malignant skin lesions of cancerous areas in histopatho-
logical images of skin samples. They have developed a deep learning tool with
computer vision support that can effectively ensure segmentation of slots based on
the autocoderwith two learning steps.With their experimental results, they confirmed
the effectiveness-success of the proposed approach and the high similarity coefficient,
sensitivity and discrimination rate [76] (Fig. 15.7).

Fig. 15.7 An example for DA model [74]
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Pyman et al. investigated the microRNA regulation of cancer with a context-
sensitive deep cancer class. At this point, they proposed a new class of miRNA-
based deep cancer that includes genomic and hierarchical tissue detailing, which
can accurately predict the presence of cancer in a wide range of human tissues.
They have created a deep learning architecture by leveraging stacked auto-codecs
and a multi-layered sensor. Four-fold cross-validation is used to evaluate the perfor-
mance of this model. As a result, DA networks have been found to be a powerful
tool for modeling complex miRNA-phenotype relationships in cancer and increase
classification accuracy [77].

15.4 Conclusion and Suggestions

In this study, deep learning techniques used for cancer diagnosis are examined.
It has been observed that these techniques primarily lead to a method change in
cancer diagnosis, are an auxiliary tool for doctors, increase efficiency, standardize
quality processes and achieve highly effective results with successful predictions.
To date, deep learning technology applications have been tested and substantially
validated in subjects such as reproducibility and generalizability in cancer treatment.
Because, in order to reveal the effect or contribution of this technique, versatile
feasibility studies have been conducted and applied in different clinical settings,
thus increasing the efficiency levels of doctors. So much so that, by using these
techniques, cancer diagnosis was made in the early stages and contributions such as
survival of many patients or prolonging their life were provided. In particular, in the
field of medicine, it can be said that the technological change based on deep learning
technology has started to improve the regional and national health sector. For this
reason, it is beneficial to reachmore theoretical knowledge by applying deep learning
technology in cancer diagnosis and medicine in general. In addition, deep learning
techniques should be supported by hybrid approaches, using different methods such
as statistical methods to achieve higher levels of performance.

Although these techniques or methods have serious contributions to cancer diag-
nosis, these developments are still at an early stage. More effective and advanced
deep learning approaches will be used in the near future and important steps will
be taken in the diagnosis and treatment of a vital disease such as cancer disease.
As a result, at least until today, deep learning technology has been used in the field
of national and international medicine and it has been found that it provides very
successful improvements in a vital issue such as cancer treatment. At this point,
another important issue is to ensure that deep learning techniques used in the diag-
nosis and treatment of cancer are more involved in theoretical and academic studies
and that this issue is developed.
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Çalışması. Uluslararası Yönetim Bilişim Sistemleri ve Bilgisayar Bilimleri Dergisi 2(2), 76–86
(2018)

35. N. Sompairac, P.V. Nazarov, U. Czerwinska, L. Cantini, A. Biton, A. Molkenov, U. Kairov,
Independent component analysis for unraveling the complexity of cancer omics datasets. Int.
J. Mol. Sci. 20(18), 4414 (2019)

36. M.EmreCelebi,H.A.Kingravi,H. Iyatomi,Y.AlpAslandogan,W.V.Stoecker,R.H.Moss, J.M.
Malters, J.M. Grichnik, A.A. Marghoob, H.S. Rabinovitz, S.W. Menzies, Border detection in
dermoscopy images using statistical regionmerging. Skin Res. Technol. 14(3), 347–353 (2008)

37. N. Tong, H. Lu, X. Ruan, M.H. Yang, Salient object detection via bootstrap learning, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015),
pp. 1884–1892

38. M. Garbaj, A.S. Deshpande, Detection and analysis of skin cancer in skin lesions by using
segmentation. IJARCCE (2015)

39. R.H. Johr, Dermoscopy: alternativemelanocytic algorithms—the ABCD rule of dermatoscopy,
menzies scoring method, and 7-point checklist. Clin. Dermatol. 20(3), 240–247 (2002)

40. A.A Cruz-Roa, J.E.A. Ovalle, A. Madabhushi, F.A.G. Osorio, A deep learning architecture
for image representation, visual interpretability and automated basal-cell carcinoma cancer
detection, in International Conference on Medical Image Computing and Computer-Assisted
Intervention (Springer, Berlin, Heidelberg, 2013), pp. 403–410

41. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives.
IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)
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Chapter 16
Deep Learning for Magnetic Resonance
Images of Gliomas

John J. Healy, Kathleen M. Curran, and Amira Serifovic Trbalic

Abstract Gliomas are tumors that arise in the glial cells of the brain and spine.
Gliomas are one of the most common brain cancers, and comprise 80% of all malig-
nant brain tumours. Gliomas are classified by cell type, grade, and location. Prognosis
of patients presenting with high grade gliomas remains poor. The gold standard for
grading of gliomas remains histopathology, but a working radiological diagnosis can
be established from amagnetic resonance imaging (MRI) scan.MRI is typically used
throughout the patient pathway because routine structural imaging provides detailed
anatomical and pathological information. In addition, advanced techniques can pro-
vide additional physiological detail. Traditionally, MRIs were read exclusively by
radiologists, but improvements in machine learning has sparked considerable inter-
est in its application to enhanced and automated diagnostic tools. Machine learning
approaches are also of interest in monitoring the progression of low grade gliomas,
and in monitoring of patients undergoing treatment. Convolutional neural networks
(CNNs), especially when trained using transfer learning, have been shown to grade
gliomas with up to 94% accuracy. Given an MR image of a brain tumour, we wish
to manually segment the various tissues to aid diagnoisis and other assessments.
This manual process is difficult and laborious; hence there is demand for automatic
image segmentation of brain tumors. Public datasets and theBRATS benchmark have
enabled clearer andmore objective comparison of segmentation techniques. State-of-
the art automated segmentation of gliomas is currently represented by deep learning
methods. Deep learning is also now on the rise for prediction of molecular biomark-
ers. Novel approaches to explainable artificial intelligence are now required to aid
the extraction of novel useful features from machine learning approaches. Finally,
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CNNs have been developed to make predictions of patient survival times. There are
many exciting new directions for this field, from novel CNN architectures, to the
integration of information from advanced MRI and complementary imaging modal-
ities and spectroscopic techniques. In time, this may lead to clinically acceptable
automation of a variety of radiological determinations, with positive consequences
for patient outcomes. In this chapter, we will give an overview for engineers and
computer scientists of the deep learning applications used in glioma detection, char-
acterization/grading and overall survival prognosis of the patients. We will highlight
the limitations and challenges of deep learning techniques as well as the potential
future of these methods in prognosis, clinical diagnostics, and decision making.

16.1 Introduction

Gliomas are tumors that arise in neuroglial stem or progenitor cells—the glial cells
of the brain and spine. Gliomas are one of the most common brain cancers. They
comprise 80% of all malignant brain tumours, and cost patients more lost years of
life than any other tumor. Gliomas may be classified by location, grade, and cell
type. Prognosis of patients presenting with high grade gliomas remains poor. Risk
factors are not well established for gliomas, with just two – high dosage exposure to
ionizing radiation, and inherited mutations that are associated with certain rare syn-
dromes. Therefore gliomas are a problem that can strike almost equally in male vs.
female. The gold standard for the grading of gliomas remains histopathology, but a
working radiological diagnosis can be established from a magnetic resonance imag-
ing (MRI) scan. MR imaging is generally used through the entire patient pathway
because routine structural imaging provides detailed information about the anatomy
and pathology of the disease. In addition, advanced techniques can provide additional
physiological detail. Traditionally, MRIs were read exclusively by radiologists, but
improvements in machine learning has sparked considerable interest in its applica-
tion to enhanced and automated diagnostic tools. Machine learning approaches are
also of interest in monitoring the progression of low grade gliomas, and in moni-
toring of patients undergoing treatment. Radiotherapy, surgery, and alkylating agent
chemotherapy remain themain treatments, but personalised strategiesmay ultimately
improve outcome [91], and image processing has a role to play in helping rapidly
and repeatably categorising tumours.

The chapter is structured as follows. We begin in Sect. 16.2 with the acquisition
and processing of aMR images. In addition to image formation from the raw data col-
lected, this traditionally includes such techniques as stripping the images of the skull,
normalization and correction of intensity bias, and image denoising. Deep learning
techniques may replace traditional approaches in many of these topics, and indeed
may finally unify them into a single pre-processing step for computational efficiency.
In Sect. 16.3, we consider processing problems related to the interpretation of med-
ical images, including medical image registration and segmentation. Medical image
registration finds an optimal spatial transformation that best aligns the underlying
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anatomical structures in two or more images, and thus enables population analyses
as well as comparison of structures across different scans and modalities. Medical
image segmentation partitions an image, separating it into multiple regions based on
similarity of different attributes. This enables the localization and quantification of
organs or lesions. We also consider content-based image retrieval, which attempts to
make features of medical images, such as anatomic regions or similar pathological
category, searchable in order to assist clinicians in making decisions. In Sect. 16.4,
we consider diagnosis and prediction. MRI is routinely used in the management of
patients with glioma in the diagnosis, in the prediction of ultimate patient outcome,
and in the assessment of the patient’s response to treatment. MRI allows us to extract
different kinds of information about a glioblastoma, including information about
its structure and physiology, as well as functional information. This permits MRI
multidimensional, in-vivo characterization of the tumour. The limitation of these
noninvasive descriptors is that they are molecularly unspecific. Radiogenomics, that
is the prediction of genomic properties of tissue using radiological imaging, has
recently been established to study the relationships between the imaging features
we can extract noninvasively and the corresponding molecular characteristics. We
consider machine learning approaches to all of these problems, architectures, results,
and challenges.

16.2 Image Acquisition and Processing

In this section, we will discuss image pre-processing steps, from skull stripping
[34], to normalisation and the correction of intensity bias [89], to denoising of the
MR images [15]. These defects directly affect the quality of segmentation results.
It seems likely that deep learning techniques will replace traditional approaches in
many of these topics, and indeed may finally unify them into a single pre-processing
step for computational efficiency. Image registration is the transformation of dif-
ferent datasets into a common, unified coordinate system. If we want to directly
and quantitatively compare or synthesise (fuse) the data obtained from different
measurements, we turn to image registration techniques. As image registration is a
particularly important topic, and as it is feature-specific, we will address it separately
in Sect. 16.3.

We will then turn to artefact detection, focussing mainly on Gibbs ringing. Ulti-
mately, that discussion is entangled with the question of super-resolution, which is
the name for a broad category of techniques for obtaining an improved resolution
image.
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16.2.1 Pre-processing

The presence of the skull, along with other non-brain tissues such as the eyes and the
dura, complicates registration and normalisation steps. As such, the crucial first step
for many neuroimaging workflows is the removal of those non-brain tissues. This
is referred to as skull stripping. Skull stripping can be integrated into segmentation
algorithms, but is usually performed separately by specialised brain extraction algo-
rithms such as Statistical Parametric Mapping, Brain Extraction Tool, Brain Surface
Extractor, or Robex. The gold standard remains manual extraction, but this is time-
consuming and (as in so many applications) it is desirable to automate it in order
to (1) reduce inter-observer variance, (2) to facilitate analysis and reproducibility
of large clinical studies. Automated extraction of the brain tissue is complicated by
contrast and intensity variations arising from imaging protocol, imaging artifacts,
and scanner platform variations. Age and other factors affect anatomical variability
[23]. Tumours and changes arising from treatment can also alter the brain structure
in a fashion that confounds algorithms. The border of the brain can be defined his-
tologically as the transition of myelination from oligodendroglia to Schwann cells,
which unfortunately is not visible on present-day MR scans. Finally, ground truth
labels may themselves be ill defined for a variety of reasons. Kleesiek et al. (2016)
proposed a CNN-based approach for skull stripping. They claim that their approach
matches or betters state-of-the-art performance, which they demonstrate on a trio of
public data sets [45].

Inconsistencies in the grayscale distribution of MRIs arising from variations in
hardware and acquisition protocol complicates training of deep learing algorithms.
Therefore, a pre-processing stage that normalises all images to have similar intensity
distributions is a useful step before training or using a deep learning network. It
is important that every modality to be weighted equally in training, so we want
them all to have the same range. We refer to this step as intensity bias correction and
normalization.Havaei et al. reported that themost popular pre-processing approaches
reported by researchers in this area are as follows [32]:

• Application of N4/N3 bias field correction. (Alternatively, normalization of inten-
sity using the mean cerebral spinal fluid value.)

• Removing outliers by truncating data in the lowest 1 or 0.1% of the histogram.
• Histogram normalization.
• Subtracting the mean, and normalising to have unit variance on all modalities, or
at least on the selected training patches.

Bias correction and intensity normalization may be replaced with some success
by the z-score computation [41, 88], but Pereira et al. have shown improved results
when applying normalization prior to deep learning based segmentation procedures
[67].

MR image acquisition corrupts the raw MRI data with statistical noise. The most
suitable noise model depends on how many coils are in the system [29]. If the
system is single-coil, the measured noise presents as a Rician distribution, whereas
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multi-coil systems give rise to a non-central chi-distribution noise term. The k-space
representation of theMRI data is a complex function of spatial frequency coordinates
x f and y f , D(x f , y f ). d(x, y), the inverse DFT of D(x f , y f ) contains real and
imaginary components.

�(d) = s(x, y)cos(θ(x, y)) + nRe(x, y) (16.1)

�(d) = s(x, y)sin(θ(x, y)) + nIm(x, y) (16.2)

where the signal is s(x, y), and nRe(x, y) and nIm(x, y) are the additive white Gaus-
sian noise (AGWN) present in the real and imaginary components of the signal
respectively. Finally, we see that the MR image is given by the absolute value of
d(x, y).

|d(x, y)| =
√

�(d)2 + �(d)2 (16.3)

Such a function, and hence any MR image, is corrupted by the presence of Rician
noise. It is important to use the correct noise model here. An old technique estimated
the noise power from the σ of the pixel intensity in a region of the image that did
not contain any features, and that retain cause one to underestimate the true power
of the noise by as much as 60% [29]. The Rician noise distribution approximates a
Rayleigh distribution in low intensity regions, and a Gaussian distribution in high
intensity regions. The noise sources in MRI acquisition include thermal noise in the
receiving coils and inductive losses in the sample (depending on B0 and the sample
volume size), the dimensions of the voxels, the bandwidth of the receiver and how
many averages were used in the acquisition of the image.

Tumor classification is less accurate in the presence of noise. Hence, denoising
of MR images has been studied extensively. Many authors have attempted denoising
directly using deep learning techniques, e.g. Jain et al. proposed image denoising
using CNNs and claimed to obtain performance similar to or improving on state-
of-the-art approaches based on wavelets and Markov random fields even if the set
of training images is small [37]. Latif et al. proposed a novel technique to denoise
gliomaMRIswith a deepCNNand anisotropic diffusion, and demonstrated improved
segmentation based on a watershed transform [51].

Classical approaches to denoising are also still under investigation, not least
because of the positive impact denoising can have on learning, e.g. the wavelet
transform [10].

16.2.2 Artefact Detection and Superresolution

An MRI scan produces a series of samples of the k−space representation of the
MR image, related to the image by means of the Fourier transform. That Fourier
relationship results inevitably in an artefact called Gibbs ringing. Gibbs ringing
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Fig. 16.1 Suppression of Gibbs ringing. We began with an image from “Axial post-contrast T1
(top) and T2 (bottom) weighted MRI showing an IDH1 mutant frontal lobe glioblastoma with
sparse enhancement despite large size”, by Jpoozler, licensed under CC BY-SA 4.0 (https://
creativecommons.org/licenses/by-sa/4.0/). We cropped it to produce a. Truncation (which causes
Gibbs ringing and loss of resolution) and zero padding in the Fourier domain (which causes upsam-
pling) produces b. Image c is made using filtered Fourier reconstruction to suppress Gibbs ringing.
The red lines indicate the rows of pixels which are then plotted on the corresponding lower row of
plots. Note the additional lobes in b, which are suppressed by the filtered Fourier reconstruction.
Deep learning approaches have been shown to improve on filtered Fourier reconstruction in this
problem

arises from a limitation in the physics of image formation inMRI, and is exacerbated
by the truncation of the k−space representation that inevitably arises from a finite
series of measurements. Gibbs ringing is an oscillation that occurs around sharp
edges—tissue boundaries in this case—in a function reconstructed from a truncated
Fourier series. The ringing is a mathematical property of the Fourier transform. It
reflects the inherent difficulty in approximating a discontinuous function by a finite
sum of continuous functions (Fig.16.1).

Traditionally, Gibbs ringing is suppressed by a mixture of filtering methods and
reprojection methods such as the Gegenbauer polynomials [77]. Hybrid methods
have also shown promise, retaining the speed of the filtering methods and the accu-
racy of the reprojection methods [24]. Older machine learning methods, including
autoregressive modeling and multilayer neural networks, have been used to reduce
the ringing artifact. That reduction is achieved by estimating the missing high fre-
quency components from the low frequency data acquired by the MRI [4, 80, 98].
Deep learning approaches have been investigated extensively over the past four years
for suppression of Gibbs ringing [62, 84, 90, 100, 103].

Wang et al. is the earliest paper on this topic that we are aware of [90]. The
authors reduce the k-space of an MRI by 70% in one direction only, replacing the
values with zeros. Signals reconstructed from this reduced k-space exhibit Gibbs

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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ringing. The authors compare a deep learning approach with two filtered Fourier
approaches, using Hamming and Tukey window functions. They assess the quality
of the reconstructions using peak SNR, the high-frequency error norm, and structural
similarity. Their results show that they gain a few dB improvement in PSNR over
the filtered Fourier results.

Muckley et al. examine a deep learning approach for suppressing Gibbs ringing
and other noise in a diffusion weighted MRI [62]. The authors observe that diffu-
sion MRI is a particularly suitable test for Gibbs ringing suppression as it can have
drastic effects on diffusion parameter maps. The calculation of higher order diffu-
sion parameters can require high b-values, “which, coupled with strong diffusion
gradients and long echo times, leads to low signal-to-noise ratio (SNR)” and sig-
nificant errors in kurtosis maps. The proposed model is a modified U-net with over
31 million parameters, incorporating wavelet transforms for downsampling and up
sampling. The authors train their model entirely on simulations of MRI acquisitions
with images from the ImageNet data set, claiming that this mitigates the risk of
overfitting. They compare the output of their network with the MP-PCA method for
denoising followed by subvoxel shifting, and with other CNNs of their own devising.
They test their networks on rotations of an edge spread function (knife edge), using
the full width half maximum of the linespread function at various contrast-to-noise
ratios. They further tested the network on 40,000 images from the imagenet test data
using the power spectral ratio, and on a measurement of the diffusion weighted MRI
of a volunteer’s in-vivo head. In spite of this commendable array of tests, the results
are largely qualitative. The details of and motivations behind the noise model used
are also unclear.

Zhang et al. [100] proposed a 4-layer convolutional network for Gibbs suppres-
sion. Their training data consisted of over seventeen thousand T2-weighted images
of the brains of 136 healthy adult subjects, which were collected as part of The
Human Connectome Project. The test data included T2-weighted images of normal
and pathological brains, diffusion-weighted brain images, and T2-weighted images
of knees. The final image with suppressed ringing is found by subtracting the output
of the network (which estimates the error) from the input. The image is then Fourier
transformed, and the low-frequency data are replaced by the Fourier transform of the
input. Both of these ideas are recurring in this field. Praxis has shown that training
on the error introduced by Gibbs ringing is easier than training on the desired image.
Several authors have also treated the low-frequency data as strictly correct, which
better preserves mid-band frequencies but calls into question whether they are sup-
pressing Gibbs ringing or simply upsampling the image. Zhang et al. use a number
of metrics to evaluate their results, including RMSE, peak SNR, and the structural
similarity index. They compare the images resulting from their proposed method
with the images produced using a filtered Fourier reconstruction using a Hamming
filter. They also compare with the LSS method. Their results show PSNR gains of
just a few dB.

Zhao et al. [103] propose an end-to-end model which they derive from the EDSR
model. EDSR was originally designed for super-resolution of a single natural image.
They used transfer learning to train on 600 images from the div2k dataset before
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turning to the IXI dataset forMRI images, which has 577 subjects scanned to produce
T1- and T2-weighted and proton density images. They argue that if you compare
medical images with natural images, the former are simpler in terms of structure and
details of texture. Hence transfer learning should be effective in this context. They
simulated Gibbs-ringing artifacts by means of a truncating the image in k-space by
75%.We can compare this idea with the results of Zhang et al. [100], who trained on
T2-weighted images only, but successfully validated on several other types. Muckley
et al. [62] also trained on natural images, arguing it limits the risk of overfitting. Zhao
et al. compared the results of their network with bilateral filtering, non-local MRI
upsampling, and the CNN architecture of Wang et al. [90], using average PSNR and
the structural similarity index. Zhao et al. report only an ≈ 3 dB improvement over
filtering, although the results in their Fig. 16.2 seem promising. This only serves
to highlight the difficulty in comparing different results in this field. Authors use
different metrics on very different test data.

In general, authors test and train their networks for Gibbs ringing on truncated
k-space data. Many authors imply that somehow the problem is simply truncation,
e.g.

• “In Magnetic Resonance Imaging (MRI), the K-space data is often under-sampled
and truncated to shorten the scan time. However, the truncation of K-space also

Fig. 16.2 The structure of a CNN
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causes Gibbs ringing artifacts in the image, which seriously deteriorates the image
quality” [90].

• “Gibbs- ringing artifact in MR images is caused by insufficient sampling of the
high frequency data” [100].

Gibbs ringing is inevitable. No matter how many measurements we take in k-space,
a Fourier reconstruction does not converge correctly at a discontinuity, exhibiting an
≈ 9% error in the limit. Does a truncated k-space truly simulate Gibbs ringing? To
what degree are we simply seeing a deep learning based superresolution rather than
true suppression of Gibbs ringing? Zhao et al. [103] specifically use a model from
the super-resolution literature, further blurring these lines. Some authors implicitly
assume a fixed amount of truncation in their images, e.g. [90, 103]. Zhang et al. [100]
noted that, in clinical practice, it may not be possible to establish the real degree of
truncation and the extent of Gibbs ringing in MRIs. They trained and successfully
validated a model using mixed data with truncation levels from 30 to 50%. This only
solves part of the problem, but it does appear to be an important consideration.

ModernMRI systems practice super-resolution bymeans of compressive sensing.
A random or pseudo-random subset of the k-space measurements is fed into a com-
pressive sensing algorithm that then produces an MR image of normal resolution.
The advantage of this process is a large reduction in how many measurements are
required, which reduces scan times, improving patient throughput, reducing costs,
reducing motion blur, and improving patient comfort. To date, none of the investi-
gations of deep learning for Gibbs’ ringing suppression in MRI has investigated the
effects of compressive sensing. Muckley et al. claimed that “with CNN processing,
high-quality parameter maps can be calculated from abbreviated acquisitions with a
little more than half of the encoding time required for traditional full acquisitions”
[62], but this must be demonstrated to outperform compressive sensing if we are to
consider deep learning a truly cutting edge tool for reconstruction of MRI images.
Recent developments in dynamicMRI reconstructionmay lead the way in this regard
[73].

16.3 Contextual Processing Prior to Diagnosis
and Prediction

16.3.1 Image Registration

Medical image registration is a basic technique in many medical imaging problems.
The goal is to find a best spatial transformation to align the underlying anatomical
structures, and in doing so to simplify tasks like comparing different scans of the same
structure, or to analyse similar structures in a large pool of patient data. The former
kind of analysis helps us to understand how the brain anatomy of a patient evolves
over time or to overlay multiple modalities simultaneously or to monitor tumour
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growth, and the latter helps us understand inter-patient variability by normalizing
the brain scan to a brain atlas [81].

Several studies have applied deep learning (DL) techniques to improve medical
image registration. In this section, wewill summarize cutting edge developments and
challenges in registration of brainMRIs. In general, there are two prevalent strategies
are in the literature: either using DL networks to estimate a similarity measure for
two images and hence to drive iterative optimization strategies, or to use the networks
to directly predict transformation parameters.

16.3.1.1 Deep Learning Similarity Based Methods

Some DL-based approaches to registration of brain MRIs attempted to replace the
traditional image similarity measures with deep learning based similarity measures,
reporting promising results. These similarity measures are inserted into a classical
deformable registration framework with a defined interpolation strategy or output
from transformation model, and optimization algorithm. The multimodal 3D case
was considered in [78], the authors of which proposed a suitable similarity metric
based on a CNN. The network could be trained without transfer learning or output
from just a handful of aligned image pairs. They then incorporated this metric into
first-order continuous optimization frameworks. The network output replacedmutual
information in a deformable image registration for brain T1-T2 registration.

As with so many other applications of deep learning, the quality of the training
data is critical to supervised learning. Accurate image alignment of training images
is necessary, but very difficult to obtain.

Therefore, some researchers applied theDL in an unsupervisedmanner. For exam-
ple, the authors of [93] presented an unsupervised DL approach. They combined
convolutional layers with independent subspace analysis to extract features from
various image patches in the brain MRI, and hence they learnt basis filters adaptive
to local and global features. Rather than handcrafted features, their feature maps
were used in the HAMMER registration algorithm. Stacked autoencoders (SAE) can
be used similarly to learn feature maps without supervision [94]. Low-dimensional
feature maps from the SAE are then used for calculating the similarity of images,
and the learnt representations drive the HAMMER and Demons deformable image
registration algorithms.

16.3.1.2 Deep Learning Transformation Estimation

In the previously described approaches, DL-based similarity metrics have shown
potential to outperform traditional metrics for the same task, but the estimation of
the transformation in these methods is still iterative; this slows the process of reg-
istration (particularly in high-dimensional cases, e.g. when the registration may be
deformable). The optimization algorithms also require a smooth derivative, which
can be tricky to difficult to guarantee. This observation prompted the exploration
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of new deep learning approaches that estimate the parameters of the registration
transformation in a single step. In [99], a patch-based deep encoder-decoder net-
work was designed that learns the necessary mapping, using the large deformation
diffeomorphic metric mapping registration methodology. In [6], a patch-based CNN
regressionmodel is designed to learn themapping. A strategy called equalized active-
points guided sampling mitigates the problems associated with a limited training set.
Auxiliary contextual cues guide the learning more directly. A CNN was used also
for implementation of parametrized registration function learnt from a collection of
volumes in a unsupervised way [3]. A non-rigid image registration algorithm that
uses fully convolutional networks is presented in [52]. Authors reported that their
method estimated the registration transformation directly by maximizing an image-
wise similarity metric between fixed and deformed moving images, which is similar
to conventional image registration algorithms.

16.3.1.3 Challenges

Image registration of MR images of gliomas, as a pre-processing step, has close
associations with the accuracy of the consequent quantification steps such as MR
image segmentation of the subregionswithin brain tumors, computer-aided diagnosis
and longitudinal studies for treatment response follow-upwhich are highly dependent
on it.

Also, it is an essential step in analyzing brain tumor MR imaging data from
multiple images, because it ensures the spatial correspondence of anatomy across
different modalities for diagnosis and treatment. Many commercially available brain
MR image analysis software have some implementation of image registration, and
description and evaluation of such techniques can be found in the literature [46].

Supervised methods have allowed the robust registration for several applications.
For supervised methods, there is a problem of lack of training datasets with known
transformations for network training. The quality of the registrations that can be
achieved using this kind of framework is ultimately dependent on the quality of
the ground truth registrations. Some published works propose, as a solution, an
application of data augmentation techniques for artificial transformations generation.
Compared to supervised transformation estimation, unsupervised methods do not
suffer from this lack of suitable training datasets, but it remains challenging to define
a suitable loss function for the CNNwithout ground truth transformations. Therefore,
a variety of regularization terms have been discussed in the literature. The problems
that may occur in brain tumor image registration are much more observable when
effects of surgery have to be considered, for example the registration of pre-operative
images to intra-operative or post-resection tumor images.

In contrast to brain tumor classification and segmentation fromMR images, there
are few papers on DL techniques in brain MRI registration and there is little sign of
convergence towards a best approach.We foreseemore andmore research publication
on this topic before long.
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16.3.2 Image Segmentation

Segmentation is the technique of isolating the regions of an image that contain distinct
parts, anatomical or pathological regions as an organ, legion, or tumour. This step
localises and quantifies the segmented objects from the background, and is a key step
in many algorithms for further processing. This is a very well studied problem, but
even herewe see deep learning approaches beginning to displace traditionalmethods.

Our main focus in this section is on segmenting gliomas in brain MR images, a
key step for initial treatment planning and determining disease progression. There
are a number of standard MRI acquisition protocols used in brain tumour patients;
these include T1-weighted (with or without gadolinium enhancement), T2-weighted,
and T2-weighted with fluid attenuated inversion recovery (FLAIR) sequences. This
particular segmentation problem is very challenging: the tissue within the region
is heterogeneous, the intensity values of MRIs are nonuniform (especially across
protocols), and the borders of the tumors are unclear, diffuse, and discontinuous.
Brain tumor MRI data are inherently complex 3D data the characteristics of which
can vary greatly between patients. Effective segmentation requires the use ofmultiple
acquisition protocols, which introduces registration error to the problem.

The range of different brain MRI segmentation methods is extensive; comprehen-
sive reviews have been carried out [19, 35, 39, 81]. The methods can be cagtegorised
as: manual, semi-automatic, or fully automatic, depending on the amount of inter-
action required from the operator. Manual segmentation of the many MR images
generated in the standard clinical routine is tedious and time consuming, and sub-
ject the user to intra- and inter-observer variability. Hence, automatic methods are
desirable.

Semi-automatic methods can require user interaction for an initialization in which
(s)he defines a region of interest;, or they may require an intervention or feedback
response, in which the operator steers the automated algorithms towards the desired
results. While generally less time consuming than the manual methods, the semi-
automatic methods are also prone to intra- and inter-observer variability.

Therefore, current segmentation research in this field is intensely focused on the
third class of methods: fully automatic methods. In these methods, there is no need
for user interaction, instead, a prior knowledge and AI are used in combination to
segment the images. Recently deep learning techniques have shown a great deal of
promise and have become a leading light in the area.

16.3.2.1 Deep Learning Network Architecture

Many deep learning approaches are used by scientists for segmenting brain tumours.
The main focus of the literature on this topic is on network architecture design to
perform feature extraction; less attention is paid to image processing approaches
that can work in tandem with the neural networks to improve performance. We
can identify three approaches applied specifically to brain tumour segmentation:
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patch-wise, semantic-wise, or cascaded architectures. We will now introduce the
most significant network architectures used for glioma segmentation, and discuss
the advantages and disadvantages of each one.

Convolutional Neural Networks (CNN): Inmedical image processing, the interest
in DLmostly revolves around CNNs. CNNs are a type of neural network that are able
to extract and learn typical complex features from training data. They consist of a
sequence of layers, each of which performs a specific operation; common examples
include convolution, and pooling. Each layer takes the output of the previous layer
as its own input, and in turn its own output becomes the input to the subsequent
layer. An input layer will hold the pixel values of the image. This is followed by a set
of convolutional layers composed of a certain number of filters, also called kernels,
that are convolved with the input data to obtain feature maps. Convolutional layers
are typically followed by pooling layers to introduce nonlinearity to the activations.
There are many possible activation functions; among the most common are the recti-
fied linear unit (ReLu) and derived types such as Leaky ReLU. ReLU is very simple
and computationally inexpensive, in addition to being highly non-linear: all negative
inputs are zeroed. It depends on the design, but convolutional layers are frequently
followed by a pooling layer. The aim of a pooling layer is to gradually reduce the
dimensionality of the network while retaining the most salient feature information.
There are two popular approaches to pooling: averaging and max-pooling. The last
part of the network consists of fully connected layers, which endeavour to extract
high-level abstractions of the data. The weights and biases of the network are opti-
mized by the training phase. The structure shown in Fig. 16.2 is an example of a
CNN. A diverse collection of approaches presented in the literature utilize CNNs for
brain segmentation. Many of the currently popular CNNs used in the segmentation
problems take a patch-wise approach.

In [104], a standardCNN implementation basedonmulti-channel 2Dconvolutions
has beenused, and itwas adapted such that it operates onmultichannel 3Ddata usually
available for the brain tumor segmentation task. Another 2D CNN architecture was
presented in [67], exploring the use of small (3 × 3) convolutional kernels. This
approach mitigated against overfitting by assigning fewer weights in the network.
They also examined patch intensity normalization as a preprocessing step together
with the training data augmetation. A similar approach, using a 2D patch-wise CNN
architecturewas presented in [20, 101]. Later,Haveaei et al. proposed a two-pathway-
based segmentation method [31]. The two pathways consist of a small convolution
filter for local segmentation and large filter for global segmentation. Later, the the
two pathways are reunited to produce the segmented image. They found that they
could achieve better results if they cascading their pathways, feeding the output
probabilities of one CNN as additional inputs to a second network. Training is split
into two phases in order to deal with difficulties arising from imbalanced tumor
labels (i.e., the scans contain far more ‘normal’ voxels than tumor voxels). One of
the first 3D CNNmodels was introduced in [86]. MRI is inherently 3D data, and it is
natural to consider that a 3D model may be advantageous. Their idea was followed
by the DeepMedic model, a multiscale, dual-path 3D CNN, presented in [40]. The
second pathway received patches from a decimated version of the image. 3-D CNNs
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are computationally expensive, having a very large number of parameters to tune.
Milletari et al. proposed an approach that combines a CNN with Hough voting on
feature extracted by the network [60].

Fully Convolutional Network (FCN): In semantic-wise approaches, entire images
are divided into regions; the outputs of different regions are then stitched together
using additional convolutional filters. One example of such a structure is the fully
convolutional network (FCN) [54], which replaces the later fully connected layers
with a convolutional layer. This permits the network to arrive at a dense prediction,
pixel-wise, and it produces excellent results. Higher resolution activation maps are
used to achieve better localization by means of pixel-rather than patch-wise pre-
dictions. FCN has been used for brain tumor segmentation in research presented in
[9].

U-Net: U-Net is a widely known and applied architecture for medical image seg-
mentation (Fig. 16.3). It builds on FCN, employing some modifications avoid having
to trade context off for localization. Big patches require more pooling which reduces
localization accuracy, but small patches lack context. U-Nets therefore consist of
two paths, called analysis and synthesis. The analysis path (left side of the network)
captures context; the synthesis path (right side of the network) enables precision in
the localization. The contracting path is fairly comparable to a regular CNN and the
expansion path consists of upsampling and deconvolution layers. In both pathways,
convolutional layers with dropout are followed by ReLU layers and pooling. The
two pathways are linked by skip-connections. These skip-connections are necessary
to provide high resolution features to the deconvolution layers.

Dong et al. [17] developed an automatic segmentation technique for brain tumours
based on the U-Net, and validated it with five-fold cross-validation. This architec-
ture was also successfully applied in [43], where a Jaccard loss function was used to
handle imbalances in the training data. In [36], a modified U-Net was implemented
which uses a Dice loss function for the same purpose, along with extensive data
augmentation to prevent overfitting. A 3D U-Net architecture for both brain extrac-
tion and tumor segmentation was presented in [7]. Also, a U-Net-like network was
proposed that introduces a new loss function, generalizing binary cross-entropy [59].
This handles label uncertainty well.

Fig. 16.3 The structure of a U-Net. Violet boxes represent feature maps. The number of channels
is denoted above each feature map
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Fig. 16.4 A residual block
of a RN

Residual Networks (RN): Residual networks are characterized by the use of batch
normalization and the introduction of residual blocks periodically stacked throughout
the network. A typical RN consists of multiple residual blocks and batch normal-
ization between every convolutional layer and ReLU layer. These stacked residual
blocks greatly improve training efficiency and largely resolve the degradation prob-
lem by employing batch normalization. The RN architecture and residual blocks
are shown in Fig. 16.4.The 2D RNs have been demonstrated convinvingly in many
2D segmentation tasks, but so far insufficient studies have applied residual learning
on volumetric data. Among the few is the voxelwise residual network (VoxResNet),
proposed in [12], a 3D deep residual network. Residual learning reduces the degrada-
tion problems that arise when training a deep network; hence increasing the network
depth can be used without qualm. VoxResNet has no fewer than 25 layers, and so it
can generate feature maps of great generality. The network inputs are multi-modal
to exploit as much data as possible.

Recurrent Neural Networks (RNN): The RNNs are networks empowered with
recurrent connections which enables the network processing of sequences with long
termdependencies. Since theROIs inMRimages are usually distributedovermultiple
adjacent slices, there are correlations between successive slices. Accordingly, RNNs
can extract context by treating the slices as sequential data. The structure of an RNN
extracts intra-slice information in two sections (which are any type of CNN), and
the RNN itself which combines that information. In [28], the BraTS-17 dataset was
selected to test the architecture on high grade glioma segmentation.
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Long short-term memory networks (LSTM) are the most famous type of RNN.
LSTM is an upgrade on the RNN, designed for sequential data. This is clearly a
disadvantage for medical image segmentation as it discards the spatial information,
which is undesirable, so LSTMs were modified to perform convolution in place
of multiplication. Pyramidal Multi-Dimensional LSTM (PyraMiD-LSTM) systems
[82] use a remarkable topology for tumour segmentation. The strategy is easily
parallelizable, and less computationally intense overall [96].

Generative Adversarial Networks (GAN): GAN is a fascinating variation on the
CNN that produces great results even with limited training data. It models a min-max
game between which two neural networks, the generator and the discriminator. The
discriminator is trained to classify inputs into two classes: ground-truth, and synthetic
examples generated by the generator network. The generator is trained to produce
new images from a noise input. Both networks are trained in an alternating manner;
both gradually improve at their tasks. In [26, 97] a novel pair of adversarial network
architectures called SegAN and SegAN-CAT were proposed. One is a segmentation
network and the other is a discriminator network. The segmentation network takes
as an input an MRI slice and generates a probability label map. The discriminator
network takes as an input an MRI slice and its probability label map, that can be
either the one computed by the segmentation network or the ground-truth one.

Auto Encoders (AE): An autoencoder is a simple neural network which can be
divided into two parts: an encoder and a decoder. The encoder is used to generate a
reduced representation of the image, and the decoder reconstructs the input from the
encoder’s output. Different AE variants have been used by researchers to segment
brain tumours [1, 63]. Stacked denoising autoencoders using limited training data
are deployed in [87]. Other works that feature autoencoders include: [48, 95].

Ensemble of Deep Learning Methods: Ensemble DL methods combine several
baseline DL models, and use some combination of their prediction to segment the
brain tumor from MRIs. Examples of ensemble methods can be found in numerous
research papers, such as [16, 42, 102].

16.3.2.2 Network Training Techniques

Training of the deep learning networks can be: supervised, transfer learning or unsu-
pervised training. Supervised training uses an expert-annotated dataset to allow the
network to learn how to map input data based on a pixel- or voxel-level annota-
tion. The training data consists of examples for which there is a pair: input data
and a desired corresponding label or labels. Supervised training can be done by just
doing the supervision at the output layer, or by deep supervision, where the direct
supervision of the hidden layers is provided and propagated to lower layers. As dis-
cussed elsewhere in this chapter, annotated datasets have associated problems, and
are difficult to come by for many problems.

Transfer learning is an approach to address the lack of available annotated medi-
cal image data. In transfer learning, a system reuses an previously trained model for
a related task as the starting point for training on its task. These pretrained models
reduce training time, but also provide a first approximation to boost performance
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when the training data is limited. Naturally, transfer learning works better the more
alike the two tasks are, but some research has shown that transferring the knowl-
edge from far distant tasks is better than the random initialization. There are many
pretrained models provided by major AI companies (e.g., GoogLeNet and AlexNet)
which can be used to develop new AI applications.

Unsupervised training algorithms are those algorithms that can learn image fea-
tures from an unlabelled dataset. They are an important tool for addressing the lim-
itations of medical datasets. In recent years, generative models such as GANs and
AEs have become dominant techniques for unsupervised deep learning.

16.3.2.3 Challenges

DL methods use a great deal of training data for segmentation of gliomas and other
brain tumors on MR images. It is non-trivial to acquire suitable data for training DL
models. Therefore, one of themajor limitations inmedical image segmentation is data
scarcity. Data scarcity can lead to over-fitting, when a model has a good performance
on training data but cannot perform well on unseen test data. Usually, a sufficiently
large number of annotated medical images for is not available for training segmen-
tation algorithms for multiple reasons which have been discussed elsewhere in this
chapter. In addition, sharing patient medical data has many implications, legally, and
in terms of privacy, data-ownership and technical issues. It is even more complicated
at the international level. One can shrink the network in terms of complexity, but
the preferred solution is data augmentation, which is used to produce new synthetic
images by minor transformations of the data and the corresponding ground truth.
Examples of data augmentation approaches include rotations, translations, horizon-
tal and vertical flips, scaling, brightness variation, and elastic deformations [65]. The
complexity of the network architecture is directly related to the computational cost
of DL networks.

Another challenge in medical image segmentation is imbalanced data. We have
seen that this arises for the case of gliomas too, as the pathological tissue is much
smaller than the healthy tissue. Training with the imbalanced data can result in
an unstable network, biased towards the larger class. A potential solution for this
problem is to apply weighting to samples during training, where a higher weight will
be assigned to the less extensive ROI.

Different DL techniques, presented in this section, can segment tumours from
edema and fromnormal tissue. These techniques are promisingwith at leastmoderate
accuracy.

The performance of many segmentation algorithms for MRI brain tumour is com-
pared with the ground truth images of MIC-CAI Brain Tumor Segmentation Chal-
lenge (BRATS) dataset 2012–2018. In this dataset, four types of tumor are annotated
by radiologists. The metric of choice to define accuracy of algorithm for automatic
image segmentation is the Dice coefficient, that measures the overlap between the
manual delineated brain tumor regions and the segmentation results of an automatic
method. Table16.1 gives the summary of some deep learning approaches used to
segment MR image with glioma.
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Table 16.1 Asummary of some deep learning architectures and approaches used to segment glioma
MR images

Publication Approach Database Results (dice scores)

Zikic et al. [104] CNN in a
sliding-window
fashion in the 3D
space

MICCAI-BRATS
2013 dataset

0.84 whole tumor,
0.74 core, 0.69
enhancing tumor

Urban et al. [86] 3D CNN with 3D
convolutional kernels

MICCAI-BRATS
2013 dataset

0.87 whole tumor,
0.77 core, 0.73
enhancing tumor

Pereira et al. [67] CNN with small 3 × 3
convolutional kernels

MICCAI-BRATS
2013 dataset

0.88 whole tumor,
0.83 core, 0.77
enhancing tumor

Havaei et al. [31] A cascade neural
network architecture
in which the output of
a basic CNN has been
treated as an additional
source of information
for a subsequent CNN

MICCAI-BRATS
2013 dataset

0.88 whole tumor,
0.79 core, 0.73
enhancing tumor

Kamnitsas et al. [40] The DeepMedic
model, a multiscale,
dual-path 3D CNN

MICCAI-BRATS
2015 dataset

0.85 whole tumor,
0.67 core, 0.63
enhancing tumor

Cui et al. [16] Tumor localization
network (TLN)—a
fully convolutional
network (FCN) in
conjunction with the
transfer learning
technology

MICCAI-BRATS
2015 dataset

0.90 whole tumor,
0.81 core, 0.81
enhancing tumor

Myronenko et al. [63] Semantic
segmentation network
for tumor subregion
segmentation from 3D
MRIs based on
encoder-decoder
architecture

MICCAI-BRATS
2018 dataset

0.88 whole tumor,
0.81 core, 0.76
enhancing tumor

Isensee et al. [36] A modified U-Net was
implemented which
uses a Dice loss
function to cope with
class imbalances and
extensive data
augmentation to
address overfitting

MICCAI-BRATS
2017 dataset

0.9 whole tumor, 0.8
core, 0.73 enhancing
tumor
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Much research has been carried out in this particular segmentation field, but
application of the segmentation methods in the clinics is still limited. In many cases,
a manual tumor delineations are preferred clinically, probably due to the lack of
communication between the relevant researchers and clinicians [81], and to the lack
of interpretability of results which fails to inspire confidence. There are many factors
that stand between this research and its widespread clinical adoption, including user-
friendliness, demonstrably robust and interpretable results, and yet higher accuracy.

16.3.3 Content-Based Image Retrieval

With widespread use of digital imaging and Picture Archiving and Communication
Systems (PACS) in the hospitals, the size of medical image collections are increasing
rapidly. PACS is used to manage a vast library of medical image data compatible
with the DICOM file format. However, the search capabilities provided by PACS
are limited to the textual information stored in the DICOM header such as a textual
keywords, including patient name, identifiers, date, modality, body parts examined
and image device. Therefore, there is a need to develop an effective medical image
retrieval system to aid the clinicians in browsing and analysing these large image
repositories. The goal of content-based image retrieval (CBIR) in a medical setting
is to retrieve similar medical cases given an image. This might involve retrieving the
same anatomic regions, or retrieving lesions of clinical relevance (e.g., lesions with
the same pathology) in order to assist clinicians in the decision-making process. The
performance of a CBIR system depends largely on the representation of images in
terms of their features and selected similarity measures.

A number of studies have developed CBIR systems in contexts relevant to this
chapter, e.g. [18, 33, 49, 61]. Application of CBIR for brain tumors inMRI is difficult
because of the complex appearances of tumors. Defining the similarity between two
images of brain tumors is an ill-posed and very challenging goal, because there
are multiple characteristics that must be taken into account, like type, shape and
localization in the brain. Brain tumors of the same type may present very different
appearances in different patients, and indeed different types of brain tumours may
have share visual similarity. In addition, there is a problem of the “semantic gap”,
i.e. the information we lose when we convert a low level representation such as an
image into a high-level representation such as its visual features.

In order to overcome these problems, some medical CBIRs found in the recent
literature are implemented by DL algorithms. For example, in [69], a CNN-based
DL CBIR algorithm was developed to infer the contrast of MRIs based on the image
intensity of a number of slices. DL methods have recently also been used to gen-
erate radiology reports incorporating LSTM models. In [83], a CBIR system for
brain tumors on T1-weighted CE-MRI was presented. To overcome the semantic
gap between the MR image and the high-level information perceived by the medical
expert, a deep CNNVGG19-based novel feature extraction framework was proposed
to quantify the similarity between the query and database images. Experiments were
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performed on a publicly available CE-MRI dataset consisting of glioma, menin-
gioma, and pituitary tumours; the results they obtained are promising. In [68], they
added multitask learning, and implemented a corresponding tumor image retrieval
system. Validation of their solution was carried out on annotated brain tumor data.

16.3.3.1 Challenges

Content-based medical image retrieval is a very difficult task, with a large potential
in the medical field. It has a significant role in a domains of diagnostics, teaching
and research. To be used as an aid in diagnosis, CBIR algorithms for brain tumor
MR images need to prove their performance and they need to be integrated into
daily clinical practice. One of the inherent problems in CBIR is the semantic gap
due to the inconsistency between the features extracted and the user interpretation
of an medical image. But, as a CBIR application becomes more specialized for a
limited domain, the semantic gap canbemade shrinkusing expert domain knowledge.
An additional problem with the CBIR application is the annotation is inherently
subjective, depending largely on the annotator. Annotations vary not only between
people, but also in time for the same person depending on their specific task at hand.
User interaction and use of high-dimensional data are further important issues. To
obtain best possible results, all types of interaction need to be exploited.

16.4 Diagnosis and Prediction

16.4.1 The Role of Radiogenomic Imaging in Diagnosing
and Predicting Glioma

MRI is routinely used in the management of patients with glioma in diagnosis, out-
come prediction and assessment of treatment response. We can provide a rich char-
acterization of a glioblastoma non-invasively and in-vivo usingMRI, as it can extract
physiological, structural, and functional information. Unfortunately, that characteri-
sation remains unspecific at themolecular level. Radiogenomics, that is the prediction
of the genomic properties of given tissue using only the non-invasive modalities of
radiological imaging, has recently developed. Radiogenomics studies the relation-
ships between imaging features and molecular characteristics [25, 44]. Studies have
demonstrated the value of using these molecular biomarkers: they allow us to group
gliomas with similar clinical behaviours, similar therapy responses, and even similar
patient outcomes. If we can identify these biomarkers, it may enable us to target
specific treatments to each patient, to their benefit [38].

We use the term “molecular” instead of “genomic” because many important find-
ings are not technically genomic, but theymay be epigenomic (such asmethylation of
some portion of a genome, which then typically acts to deactivate the gene) or molec-
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ular level or chromosomal, without representing any true alteration of the gene. The
WorldHealthOrganisation announced new classifications in 2016 [55], inwhich they
recognized five molecular subtypes of diffuse gliomas. These subtypes were based
on isocitrate dehydrogenase (IDH) and 1p/19q genotypes as well as histologic phe-
notypes. Traditionally, the job of radiological imaging has been to image a patient’s
phenotype, i.e., to assess quantitatively the product of the genotype, the impacts of
environment (such as trauma) or habit (including diet and exercise) on that particular
individual.

16.4.1.1 Stratification of Molecular Sub-types in Glioma

There is an urgent clinical need to find out whether clinical MRI is capable of strat-
ifing these molecular sub-types to support the diagnosis, monitoring, and treatment
monitoring of brain tumours. Several studies to date have show that there are asso-
ciations between observable imaging features and molecular characteristics. These
include the location of the tumor [21], its volume [64], enhancement [72], invasive-
ness [14], edema [105], and diffusion restriction [70]). There are studies that suggest
that simple volumetrics may be able to predict when low grade glioma (LGG) are
likely to convert to glioblastoma multiforme (GBM) [105]. We should note that this
result is controversial [71], but more sophisticated quantitative/DL methods may
improve our knowledge about of this problem. Improvements in molecular classi-
fication of tumors have the potential to make personalized medicine and targeted
therapies a clinical reality.

In order to predict the prognosis of a patient, or to make preoperative treatment
plans, it is critically important to successfully grade glioma. In particular, it is of the
utmost importance that we reliably differentiate between LGG (grades II and III)
and higher grade glioma (HGG, grade IV) [53, 92].

16.4.2 Traditional Machine Learning Methods

Researchers have applied many machine learning methods, mostly supervised learn-
ing methods, to MRI data of brain tumors. As discussed earlier in the chapter, super-
vised learning occurs when there exists a known ground truth to each data point,
which is typically labeled by experts. We split the data into training, validation, and
testing datasets. We use the training set to develop our models, testing the accuracy
by cross-validation on an internal subset of the data. We hold-out the testing set in
order to be able to ultimately evaluate if the the model we have trained generalises
to unseen data. E.g., if a project were to classify gliomas into IDH wild-type versus
IDH mutated, the label would be the specific genomic subtype, the IDH mutation
status. The training algorithm attempts to find those network weights and biases that
minimize the error using some cost function between themachine learning algorithm
output and the ground truth of genomic sub-type.
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Tian et al. [85] use a Support VectorMachine (SVM)model, texture and histogram
MRI features to attempt to classify grade III and grade IV gliomas. They report high
accuracy of 96.8% for classifying low-grade from high-grade gliomas and 98.1%
for classifying grades III from IV. Crucially, evidence suggests that histologic grade
may not be a good predictor on its own of patient outcome, as outcomes are more
closely tied to molecular sub-types rather than histologic grade [66]. Furthermore,
imaging features have been found that relate to these molecular sub-types better than
they relate to histologic grade [75].

K-means clustering is an example of an unsupervised machine learning method.
Tumors in the training data are unlabeled. The algorithm discovers clusters of tumors
it deems similar, taking into consideration, e.g., shape, volume, and texture features.
Rathore et al. (2018) [74] applied k-means clustering and found three distinct sub-
types of IDH-1wild-type glioblastomaswith unique imaging,molecular, and clinical,
characteristics.

16.4.3 Machine Learning Based Radiomics for Gliomas

Feature discovery and extraction is a critical task in radiomics, the field that extracts
quantitative features from radiographic images. To date, most radiomics studies on
brain tumors extracted features typically including tumor shape, location, intensity,
texture, and wavelet features. In the study of gliomas, various radiomics features
have been discovered to be useful for genotype classification [74], grading [5], and
outcome prediction [75].

Hand-engineered features are used extensively in machine learning-based
radiomics. This is justified because those features are based on prior research that
may mechanistically point toward specific pathophysiology; they also limit the fea-
ture space. The majority of studies use small data-sets of approximately 100 image
volumes. In these situations, overfitting is potentially a problem. Unlike segmenta-
tion problemwe discussed above, inmachine learning radiomics, each image volume
is associated with just one classification, which acts to limit the number of available
training inputs.

16.4.4 Ground-Truth Data-Sets

In medical imaging, curating high-quality, ground truth data-sets that are repre-
sentative of the population is challenging. We have already discussed the issue of
overfitting in a previous section, and will not repeat it here.

16.4.4.1 Benchmark Data-Sets for Glioma

There are several benchmark open-source glioma data-sets available. The Medical
Image Computing and Computer Assisted Intervention Society 2017 Brain Tumor
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Segmentation challenge training data-set contains the annotated brain MRI scans
of 210 patients who have HGGs and 75 patients who have LGGs. There are a fur-
ther 46 separate scans from other patients which act as the validation set. Multiple
neuroradiologists have manually segmented all of the cases.

A 2nd public data-set is a multi-institutional glioma collection of The Cancer
Genome Atlas, which is available through The Cancer Imaging Archive [13]. It con-
tains preoperative MRIs of 135 patients with glioblastoma and 108 patients who
have LGGs [30]. Additionally, a panel of radiomic features of morphologic, inten-
sity, histogram-based, volumetric, and textural parameters, spatial information, and
parameters extracted from glioma growth models, are also included [30].

The limited brain tumour datasets with known molecular markers continues to
impede research. A typical DL architecture consists of very many parameters, which
demands a larger data-set than traditional ML methods to prevent overfitting. For
DL methods, there are several approaches to deal with smaller data-sets, including
drop-out [22], data augmentation [57], patch-based histogram analyses [58], and
generative adversarial networks [2]. The reader is referred generally to the discussion
in the section of this chapter on segmentation.

16.4.5 Deep Learning as a Tool for Molecular Biomarker
Prediction

The emergence of novel machine learning methods (DL) to predict molecular prop-
erties of tissues has the potential to be a game changer for medical imaging in that
the technology has the potential to achieve a performance exceeding that of humans
in identifying the content of images.

DL can learn intricate and highly abstract patterns frommedical imaging data that
may not be apparent to clinicians. As discussed in previous section large data-sets
can be difficult to curate.

CNNs are particularly useful inmedical image analysis because the central idea—
convolutions—preserves the spatial relationships of data. Compared with traditional
machine learning methods, there is no need to compute features as a first step. The
CNN finds the critical features as a natural part of its own search process. Figure16.2
depicts a simple CNN architecture.

16.4.5.1 Deep Learning-Based Radiomics for Gliomas

In glioma, DL has shown promise in the task of predicting important molecular
markers such as 1p19q codeletion and MGMT promoter methylation from MRI
images alone [47]. Recent studies have attempted to assess deeper- and higher-order
features using DL that may improve on the predictive performance of radiomics
models for brain tumors.
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Li et al. [53] used DL-based radiomics to extract characteristics frommulti-modal
MRI to predict IDH-1 mutation status in 151 patients with low-grade glioma. Their
results show an AUC for IDH-1 estimation of 0.95, which compares with 0.86 for
features extracted using traditional machine learning methods [74].

DL-based radiomics models for brain tumors have been proposed for molecular
characteristics classification [8] and for prediction of patient survival [50]. Lao et al.
[50] developed a CNN-based radiomicsmodel usingMRI to estimate overall survival
in patients with glioblastoma. After selection of six deep features from pre-trained
CNN, the established model predicted overall survival better than conventional mod-
els that relied on hand-engineered features, with a C-index of 0.71 (representing a
good fit of a logistic regressionmodel), that increased to 0.739 when it was combined
with clinical risk factors [50].

Though the reported accuracies, C-indexes, and AUCs of some of these studies
were favorable, many used small numbers of training datasets, with an imbalance of
classes, and used validation datasets without separate datasets for testing [8, 50, 53],
potentially limiting generalizability.

Machine learning-based radiomics have been reported as insufficient for reliable
clinical usage [44], but advances in CNN architectures for tumor segmentation are
now paving the way toward progress in radiomics [8, 50]. Previously, segmentation
was often a significant bottleneck affecting radiomics [27]. DL algorithms can be
stacked to achieve end-to-end training from image segmentation to classification to
outcome prediction.

In addition, specialized regularization methods, which include adversarial train-
ing, extensive data augmentation, combining classification with segmentation during
training, and semi-supervised learningmethods via combining autoencoder and clas-
sifier architectures together, may further improve the quality of the learned hierarchic
classifier features [2].

16.4.6 Explainable Artificial Intelligence

Early DL efforts were often criticised users could not understand the basis the algo-
rithm used for a particular prediction. The field of “explainable AI” has arisen in
direct response to those criticism, and attempts to address them. If we can under-
stand the basis for a CNN’s prediction, here are potentially several benefits for us:
(1) it may increase clinician, patient, and public confidence in, and acceptance of,
the decision or prediction; (2) it may allow us to better understand of the underlying
physical basis for the decision or prediction; and (3) it may allow us to satisfy other
statutory requirements to establish the basis for decision [e.g. General Data Protec-
tion Regulations (GDPR)]. For example, in the molecular prediction of biomarkers,
it is vitally important to know if the algorithm’s decision is based on areas of the
image with enhancement or hyper-intensities, or if it makes a decision based on the
background of the MRI.
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Recent work in visualization of deep learning models is helping to bridge the gap
in visualizing these biomarkers. While research in this area is at an early stage and
has not been objectively and fully evaluated there is sufficient evidence to suggest
that emerging explainable AI methods could pave the way to discovering entirely
new ways of evaluating images.

A number of methods have been proposed to aid the interpretation of an algo-
rithm’s predictions. Local interpretable model-agnostic explanations (LIME), pro-
posed byRibeiroet al. [76], interpretsmodel predictions based on locally approximat-
ing the model around a given prediction. SHAP (SHapley Additive exPlanations),
proposed by Lundberg et al. [56], assigns each feature an importance value for a
particular prediction. Their method introduces three tools, GradientExplainer, Deep-
Explainer (DEEPSHAP), andKernelExplainer (Kernel SHAP) forDL interpretation.

Visual explanations such asGradCAM [11] and saliencymaps [79] have also been
proposed as ways to understand and justify DL network decisions. The prediction
of molecular markers is highly valued in clinical practice. If we can capturing the
decision with high accuracy and also visualise the areas of the image that contributed
to this decision, we can build trust and understanding with clinicians.

It may be that more comprehensive datasets will allow us to more accurately
predict the treatment or treatments that will be most effective for a given patient,
and to predicat the prognosis for patients from imaging alone. This could make MR
imaging more valuable in the care of patients with brain tumours.

16.5 Conclusion

We have seen that every pre-processing step forMRI, from skull stripping, to denois-
ing, to bias correction and normalisation, indeed the whole reconstruction pipeline,
has seen deep learning approaches applied to good effect. The suppression of Gibbs
and other artefacts, and image superresolution generally, has also been investigated
using deep learning approaches. These problems may be unified into a single neural
network in future work. Furthermore, we have seen that deep learning approaches to
in brainMRI registration is a new field, with no consensus yet on the best approaches.
Segmentation is better studied, but suffers from lack of sufficient training data, and
imbalanced data. In spite of that, we have seen that deep learning approaches can
segment different brain tumor tissues from edema and from healthy brain tissue and
these approaches show promise, with accuracy beginning to approach that of human
experts. Lack of interpretability remains a challenge for clinical acceptance. Content-
based image retrieval has huge potential for diagnostics, teaching, and research. We
have outlined the extensive challenges involved in this topic. Radiomics suffer from
small datasets even more so than segmentation, as each image volume corresponds
with a single output or classification; this acts to limit the number of available train-
ing inputs. We have outlined the publicly available datasets for this field, and the
approaches to mitigating the effects of small training datasets. Radiomics is not
ready for clinical use yet, but recent advances show the promise of deep learning



294 J. J. Healy et al.

approaches. Finally, we discussed the field of explainable AI, which endeavours to
justify how deep learning and other AI tools arrive at their conclusions, which is crit-
ical for confidence in, and acceptance of, the decision or prediction, establishing new
research direction via new knowledge of the underlying physiognomy of the disease,
and satisfaction of all necessary legal and/or regulatory requirements providing the
basis for a decision to the patient or for later scrutiny.

Deep learning approaches have touched every aspect of MRI reconstruction and
interpretation for gliomas, and have generally proven competitive with the state of
the art, though research on this topic is too immature and on too limited data sets to
establish deep learning as the leading approach in these fields yet. That is likely to
change quickly.
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