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Abstract. Matrix vesicles, media vesicles, and plasma mem- 
branes from three well-characterized, osteoblast-like cells 
(ROS 17/2.8, MG-63, and MC-3T3-E1) were evaluated for 
their content of enzymes capable of processing the extracel- 
lular matrix. Matrix vesicles were enriched in alkaline phos- 
phatase specific activity over the plasma membrane and con- 
tained fully active neutral, but not acid, metalloproteinases 
capable of digesting proteoglycans, potential inhibitors of 
matrix calcification. Matrix vesicle enrichment in neutral 
metalloproteinase varied with the cell line, whereas collage- 
nase, lysozyme, hyaluronidase, and tissue inhibitor of me- 
talloproteinases (TIMP) were not found in any of the mem- 
brane fractions examined. MC-3T3-E1 cells were cultured 
for 32 days in the presence of ascorbic acid (100 p.g/ml), 
13-glycerophosphate (5 mM), or a combination of the two, to 
assess changes in matrix vesicle enzymes during calcifica- 
tion. Ascorbate or 13-glycerophosphate alone had no effect, 
but in combination produced significant increases in both 
active and total neutral metalloproteinase in matrix vesicles 
and plasma membranes, with the change seen in matrix ves- 
icles being the most dramatic. This correlated with an in- 
crease in the formation of von Kossa-positive nodules. The 
results of the present study indicate that osteoblast-like cells 
produce matrix vesicles enriched in proteoglycan-degrading 
metalloproteinases. In addition, the observation that matrix 
vesicles contain significantly increased metalloproteinases 
under conditions favorable for mineralization in vitro lends 
support to the hypothesis that matrix vesicles play an im- 
portant role in extracellular matrix processing and calcifica- 
tion in bone. 
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Matrix vesicles are extracellular organelles produced by 
cells that mineralize their matrix [1-3]. It has been hypoth- 
esized that these organelles are either initial sites of calcifi- 
cation in vivo or intimately associated with these sites [4, 5]. 
They have been found to be enriched in alkaline phosphatase 
[6-11], proteolipids [12], and calcium-phospholipid- phos- 
phate complexes [13, 14]. In addition, hormones such as 
vitamin D have been found to regulate matrix vesicle- 
associated enzymes such as alkaline phosphatase and phos- 
pholipase A2 [9-11, 15-19]. In the electron microscope, hy- 
droxyapatite crystals have been observed on the inner leaflet 
of the matrix vesicle membrane [20]. 

It is also likely that matrix vesicles are involved in pre- 
paring the extracellular matrix for mineralization. It has been 
recognized that proteoglycan aggregates are inhibitors of 
mineralization and that they must be removed for mineral- 
ization to begin [21-25]. Hirshman et al. [26] found neutral 
proteases in matrix vesicles and suggested that they may 
participate in matrix processing. Katsura and Yamada [27] 
have made similar observations utilizing matrix vesicles 
from chick growth plates, and Einhorn et al. [28] have pos- 
tulated that matrix vesicle-derived proteases may also be 
involved in fracture callus remodeling. Consistent with these 
observations, we have recently determined that matrix ves- 
icles produced by growth zone chondrocytes in culture are 
enriched in metalloproteinases capable of digesting proteo- 
glycan [29]. 

With these observations in mind, we hypothesized that 
extracellular matrix processing enzymes may also be found 
in osteoblast-like cell-derived matrix vesicles and that the 
stage of osteoblast differentiation might also affect the pro- 
file of enzymes present and/or their activity [30]. In addition, 
if matrix processing is critical for mineralization, then fac- 
tors that increase the amount or rate of mineralization should 
also increase the amount of these enzyme activities found in 
the matrix vesicles. To explore these questions, matrix ves- 
icles and plasma membranes from three well-characterized, 
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osteoblast- l ike cell  lines (ROS 17/2.8, MG-63, and MC-3T3- 
E l )  der ived f rom three different species and stages of  osteo- 
genic differentiat ion were  examined  for their  content  of  ma- 
trix process ing enzymes .  The addit ion of  ascorbic  acid and 
[3-glycerophosphate to the culture medium of  MC-3T3-E1 
cells was also evalua ted  for its effect  on matr ix vesicle  and 
plasma membrane  enzyme  content ,  as both  of  these agents 
are be l ieved  to be invo lved  in matr ix  protein synthesis and/ 
or  calcification in os teogenic  cells. 

M a t e r i a l s  a n d  M e t h o d s  

Culture of Osteoblast-Like Cells 

Three previously characterized osteoblast-like cell lines were used 
in this study. ROS 17/2.8 cells were originally isolated from a rat 
osteosarcoma and are characterized by displaying receptors for 
1,25(OH)zD 3 [31] and glucocorticoids [32], as well as increased 
amounts of bone alkaline phosphatase activity in response to 
1,25(OH)zD3 [33]. The second osteoblast-like cell line is an osteo- 
genic, nontransformed murine cell, MC-3T3-E1, cloned from new- 
born mouse calvaria by Kodama et al. [34]. These cells have low 
levels of alkaline phosphatase when they are subconfluent, but this 
changes rapidly to increased levels at confluence. The cell line has 
retained other osteoblast characteristics such as receptors for 
1,25(OH)2D 3 and parathyroid hormone, ability to synthesize type I 
collagen, production of bone type alkaline phosphatase, and the 
ability to calcify in culture [35-37]. The third osteoblast-like cell line 
is a relatively new isolate called MG-63 which was isolated from a 
human osteosarcoma [38]. Upon treatment with 1,25(OH)zD 3, it 
produces increased amounts of alkaline phosphatase, and cell pro- 
liferation is inhibited [16, 17, 38]. We have previously reported that 
all three cell lines produce matrix vesicles that respond to 
1,25(OH)2D3 by producing increased alkaline phosphatase mRNA, 
protein [16] and/or specific activity [17, 18]. All culture conditions 
outlined below were optimized for production of alkaline phos- 
phatase by each cell line. 

ROS 17/2.8 cells (a gift from Dr. Gideon Rodan at Merck, Sharpe 
and Dohme, West Point, PA) were plated in T-150 flasks at an initial 
cell density of 20,000 cells/cm z in Dulbecco's modified Eagle's me- 
dium (DMEM) (Gibco, Gaithersburg, MD) containing 10% fetal bo- 
vine serum (FBS) (Hyclone, Logan, UT) plus 1% streptomycin- 
fungizone-gentamycin and cultured for 24 hours at 37~ in 5% CO2 
and 100% humidity to allow the cells to attach. Fresh medium con- 
taining 10% FBS was then added, incubation continued for an ad- 
ditional 48 hours, and the cells were harvested as described below. 

MG-63 cells were plated in T-150 flasks at an initial density of 
9300 cells/cm 2 in DMEM containing 10% FBS and antibiotics and 
cultured for 2 days at 37~ in 5% CO2. Fresh medium containing 
10% FBS was then added, incubation continued for an additional 4 
days, and the cells were harvested as described below. The initial 
culture of MG-63 cells was obtained from the American Type Cul- 
ture Collection (Rockville, MD). 

MC-3T3-E1 cells (a gift from Dr. H. Kodama, Ohu University, 
Fukishima, Japan) were plated in T-150 flasks at an initial density of 
20,000 cells/cm z in DMEM containing 10% FBS and antibiotics and 
cultured for 2 days at 37~ in 5% CO2. Fresh medium containing 
10% FBS was then added, incubation was continued for an addi- 
tional 10 days, and the cells were harvested as described below. 

As a model for mineralization, MC-3T3-EI cells were plated as 
before. The medium was then removed and four different types of 
fresh medium was added containing (1) a-MEM (Gibco) containing 
10% FBS (= control medium); (2) control medium plus 100 p~g/ml 
ascorbic acid; (3) control medium plus 5 mM [3-glycerophosphate; 
(4) control medium plus 100 ~g/ml ascorbic acid and 5 mM [3-glyc- 
erophosphate. Fresh medium was added two times per week and the 
cells were harvested at 32 days when they had begun to form von 
Kossa-positive nodules. The concentration of ascorbic acid and 
[3-glycerophosphate were chosen based on the work of others (see 
Discussion) and our experience with this cell line and induction of 
calcification. In addition, we decided upon this experimental design 
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so that we could separate the effect of each addition in relation to the 
control and combination treatment. 

Nodules were assessed with respect to number, total area, and 
mean size using an automated imaging system consisting of a Jandel 
Video Analysis (JAVA) program (Jandel Scientific, San Rafael, CA) 
of images produced using a videoscreen (Sony Trinitron), camera 
(Sony CCD/RGB), and Olympus BH2 microscope equipped with 
metallurgical lenses. 

Preparation of Media Vesicle, Plasma Membrane, and 
Matrix Vesicle Fractions 

At the end of incubation, the conditioned media were removed and 
centrifuged at 500 x g for 5 minutes to pellet ceils. The supernatant 
was recentrifuged at 21,000 • g for 10 minutes to pellet cell debris, 
including any mitochondria and endoplasmic reticulum. The result- 
ing supernatant was centrifuged at 100,000 x g for 1 hour to pellet 
media vesicles which were then resuspended in 1 ml 0.9% NaC1. 
Following assay for protein content [39] and alkaline phosphatase 
specific activity [40], the remaining membranes were stored at 
- 70oc. 

The cell layer, including extracellular matrix and cells, was 
washed twice with serum-free DMEM and then trypsinized (0.25% 
in Hank's balanced salt solution, HBSS). Following addition of FBS 
to inhibit trypsin, cells were separated from the trypsin digest by 
centrifugation for 10 minutes at 500 x g; pelleted cells were resus- 
pended in HBSS and counted. Plasma membranes were then pre- 
pared from this resuspended cell pellet by the method of Fitzpatrick 
et al. [41]. Following resuspension of the plasma membranes in 1 ml 
0.9% NaC1, protein content [39] and alkaline phosphatase specific 
activity [40] were determined. The remaining membrane fractions 
were stored at -70~ 

The supernatant of the 500 • g centrifugation of the trypsinized 
cell layer was centrifuged again at 21,000 • g for 10 minutes to pellet 
cell debris, including any mitochondria and endoplasmic reticulum. 
The resulting supernatant was recentrifuged at 100,000 • g for 1 
hour to pellet matrix vesicles [42]. After resuspending the matrix 
vesicles in 1 ml 0.9% NaCI, protein content and alkaline phos- 
phatase were assayed as described above and the remaining matrix 
vesicles were stored at -70~ 

Previous studies have shown that matrix vesicles produced by 
osteoblast-like cells in culture [17] exhibit a morphology typical of 
classic matrix vesicles isolated from cartilage and chondrocyte cul- 
tures. Nonetheless, to assure that reliable membrane preparations 
were obtained, only matrix vesicle preparations having an alkaline 
phosphatase specific activity greater than twofold higher than their 
respective plasma membranes and free of INT-reductase activity, 
a marker for mitochondrial contamination, were used for these 
studies. 

Extraction of Enzymes and Tissue Inhibitor of 
Metalloproteinases (TIMP) 

The choice of conditions under which the enzymes and TIMP were 
to be extracted was determined by using the procedure previously 
utilized for optimizing extraction of these same macromolecules 
from chondrocyte-derived media vesicles, plasma membranes, and 
matrix vesicles [29]. Five different extraction buffers were tested on 
the osteoblast-like cell-derived membrane fractions. In all cases, the 
extraction buffers and method, previously found to be optimal for 
chondrocyte membrane fractions, also performed well with the os- 
teoblast-like cell membranes. 

The final method consists of dividing 1-ml samples of matrix 
vesicles or plasma membranes (~1 T-150 flask) into three aliquots. 
The first aliquot (100 p~l) was left in 0.9% NaC1 and assayed for 
protein [39] and alkaline phosphatase [40], as described above. A 
second aliquot (200 ~1) was mixed with an equal volume of 0.2 M 
sodium acetate buffer, pH 4.5, containing 0.6 M NaC1 and 0.4% 
Triton X-100. The membrane suspension was briefly mixed for 20- 
30 seconds with a ground glass homogenizer (Duall #20, Kontes 
Co., Vineland, NJ) and then gently stirred for 2 hours at 4~ The 
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extract was then centrifuged at 106,000 • g for 1 hour and the 
supernatant was dialyzed into [~-D-glucuronidase assay buffer (see 
below). The third aliquot (700 ~1) was extracted in a similar fashion, 
but using 0.1 M Tris buffer, pH 7.5, containing 4 M guanidine HC1, 
0.02 M CaC12, and 0.4% Triton X-100. Supernatants were dialyzed 
into metalloproteinase or plasminogen activator assay buffer (see 
below). 

Specific Biochemical Analyses 

Neutral and Acid Metalloproteinase. Neutral and acid metallopro- 
teinase activities were assayed on proteoglycan-containing beads as 
described by Dean et al. [43]. The assays are based on the digestion 
of 3H-proteoglycan monomer which is entrapped in polyacrylamide 
beads. The pore size of the beads is adjusted so that the undigested 
monomers are retained inside the beads, whereas digestion frag- 
ments of 200,000 daltons or less are allowed to diffuse out. The 
assay measures the digestion of proteoglycan core protein and can 
detect approximately 0.3 ng trypsin in 2 hours at 37~ 

Samples were dialyzed into 0.05 M Tris, pH 7.5, buffer contain- 
ing 0.01 M CaC12, 0.2 M NaC1, and 0.05% Brij 35, for assay of 
neutral metalloproteinase or into 0.1 M Tris-maleate buffer, pH 5.5, 
containing 0.01 M CaCI2 and 0.05% Brij 35, for assay of acid me- 
taUoproteinase. Each sample (10-30 ~1) was added to a 7-ml scintil- 
lation vial containing 2 mg 3H-proteoglycan beads (12,000 cpm/mg; 
150 ~g proteoglycan/mg beads) and made up to a total volume of 200 
~l. Active enzyme was measured without any other addition to the 
vial, whereas total enzyme (latent + active forms) was measured in 
the presence of 1.0 mM aminophenylmercuric acetate (APMA). 
Blanks contained 1.0 mM 1,10-phenanthroline, a zinc chelator, to 
inhibit all metalloproteinase activity. All acid metalloproteinase vi- 
als contained 1 txg pepstatin to inhibit cathepsin D. Incubation was 
continued for 18 hours at 37~ At the end of incubation, 6.0 ml 
Aquasol (New England Nuclear, Boston, MA) scintillation fluid was 
added and the vials were counted. Enzyme activity was expressed 
as U/mg protein,  where one enzyme unit released 1 ixg 3H- 
proteoglycan/minute at 37~ from 2-mg beads. 

Table 1. Enzyme content of media vesicles and matrix vesicles iso- 
lated from cultures of MG-63 osteoblast-like cells a 

Matrix Media 
vesicles vesicles 

Alkaline phosphatase 
(Ixmol Pi/mg protein/min) 17.8 --- 2.8 b 3.5 +-- 0.5 

Neutral metaUoproteinase 
(enzyme U/mg protein) Active 1.5 -+ 0.4 

Total 1.4 +- 0.4 

Active 2.5 _+ 1.1 
Total 4.0 -+ 1.6 

2.0 -+ 0.8 

Acid metalloproteinase 
(enzyme U/mg protein) 

Plasminogen activator 
(enzyme U/mg protein) 

7.4 -+ 3.1 b 
3.8 -+ 1.1 b 

2.4 -+ 1.2 
4.0 +- 2.3 

0.8 + 0.3 b 

a All values are the mean • SEM for n = 6 samples where each 
sample represents the membranes isolated from a single culture (T- 
150 flask). Data are from one of two replicate experiments. A similar 
distribution of enzymes between matrix vesicles and media vesicles 
was also found in cultures of ROS 17/2.8 and MC-3T3-E1 cells. The 
only exception to this generalization was found in MC-3T3-E1 cells 
where no enrichment in plasminogen activator was observed in the 
media vesicles 
b Differences between media vesicles and matrix vesicles were sig- 
nificant at P < 0.05 

f3-D-Glueuronidase. Assay of I~-D-glucuronidase was performed by 
a modification of the method of Himeno et al. [48]. Extracts were 
dialyzed against 0.2 M sodium acetate buffer, pH 4.5, overnight at 
4~ The extract (40 ~1) was added to 210 ixl 0.2 M sodium acetate 
buffer, pH 4.5, containing 0.1% bovine serum albumin and 10 mM 
p-nitrophenyl [3-D-glucosiduronic acid (Sigma, St. Louis, MO) and 
incubated for 2 hours at 37~ The reaction was terminated by the 
addition of 0.9 ml 0.1 M NaOH, and the p-nitrophenol generated was 
quantitated spectrophotometrically at 400 nm. One unit of activity 
generated 1 nmol p-nitrophenol/hour. 13-glucuronidase (Type B-l ;  
Sigma) was used as a standard. 

Collagenase. Collagenase was assayed on telopeptide-free 3H- 
acetylated type I collagen by the method of Dean and Woessner 
[44], as modified in Dean et al. [45]. The method is sensitive and 
specific for collagenase and only detects hydrolysis of the helix. 

Tissue Inhibitor ofMetalloproteinases. TIMP was measured using 
active collagenase extracted from the growth plate of rachitic rats 
[45] because the high level of neutral metalloproteinase found in 
matrix vesicles and plasma membrane samples interfered with the 
Azocoll assay used in earlier studies [46]. Collagenase was activated 
by treatment with 0.5 mM APMA for 1 hour at 37~ and then ex- 
haustively dialyzed against neutral metalloproteinase assay buffer. 

For assay, active collagenase [9 enzyme units (1 enzyme unit 
equals 1 ng collagen digested/minute at 30~ inhibitor (0-20 ~1), 
and neutral metalloproteinase assay buffer to a final volume of 50-60 
~1 were mixed together and preincubated for 1 hour at 37~ to allow 
enzyme and inhibitor to react. After preincubation, 32 Ixg 3H- 
collagen (see above) and buffer sufficient to make a final volume of 
110 ~1 were added, and the incubation was continued at 30~ for 22 
hours. Enzyme blanks contained 1 mM 1,10-phenanthroline. At the 
end of incubation, the standard collagenase assay was performed as 
described above. One unit of inhibitor blocked one unit of enzyme. 

Plasminogen Activator. Assay of the serine proteinase, plasmino- 
gen activator, was conducted according to the method of Coleman 
and Green [47], with urokinase (#672081, Calbiochem, LaJolla, CA) 
as a standard. The assay consists of two discrete steps. In the first 
step, plasminogen is converted to plasmin by any plasminogen ac- 
tivators present in the sample. Plasmin is then measured by its abil- 
ity to hydrolyze thiobenzylbenzyloxycarbonyl-L-lysinate (Z-Lys- 
SBzl), which reacts with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) 
to form a chromogen that can be read spectrophotometrically at 412 
nm. The second step is maximized for plasmin activity and mini- 
mized for plasminogen activator activity. 

Hyaluronidase. Hyaluronidase activity was measured by a simple 
electronic capillary microviscometer, as described by Muller and 
Pita [49]. Human umbilical cord hyaluronic acid (200 p~g; Sigma) was 
mixed with 0.1 M sodium acetate buffer, pH 4.5, containing 0.15 M 
NaCI and sample in a final volume of 0.2 ml and incubated for 22 
hours at 37~ 

Lysozyme. Lysozyme was measured according to the method of 
Sorgente et al. [50] using Micrococcus lysodeikticus agar diffusion 
plates with egg white lysozyme (Sigma) as a standard. Samples were 
tested directly in the presence of 2 M guanidine buffer. Plates were 
incubated for as long as 41 hours at 37~ before measuring zones of 
clearing. The assay was capable of detecting 3.6 ~g/ml lysozyme. 

Statistical Analyses 

For media vesicle, matrix vesicle, or plasma membrane enzyme 
activity, each data point represents the mean --- SEM for six sam- 
pies, where each sample is equivalent to the amount of membrane(s) 
obtained from one T-150 flask. Statistical significance was deter- 
mined by comparing each data point to the control using the Bon- 
ferroni t-test. Differences were considered significant at P < 0.05. 

Results 

Enzyme Content of  Membrane Fractions Produced by 
ROS17/2.8, MG-63, and MC-3T3-EI Osteoblast-Like Cells 
in Culture 

Comparison of  Media Vesicle and Matrix Vesicle Enzyme 
Content. B o t h  med ia  ves ic les  and  ma t r ix  ves ic les  were  iso- 
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Fig. 1. Alkaline phosphatase specific activity of matrix vesicles 
(MV) and plasma membranes (PM) isolated from confluent cultures 
of ROS 17/2.8, MG-63, and MC-3T3-EI cells. Data represent the 
mean -+ SEM for n = 6 samples where each sample is from a single 
culture. Data are from one of two replicate experiments. *P < 0.05 
for MV versus PM. 

lated from confluent cultures of  all three osteoblast-like cell 
lines. Enzyme content for each type of  vesicle produced by 
MG-63 osteoblast-like cells is shown in Table 1. It was found 
that  alkal ine phospha tase  specific act ivi ty  was fivefold 
higher in matrix vesicles than in media vesicles. Active and 
total neutral metalloproteinase specific activity was also sig- 
nificantly enriched in matrix vesicles compared with media 
vesicles. Of particular importance was the finding that all 
neutral metalloproteinase in the matrix vesicles was fully 
active. Total  enzyme appeared to be present  at lower levels 
than active enzyme in MG-63 osteoblast-like cells and may 
be the result of APMA-induced destruction of fully active 
enzyme during the assay,  but this was not statistically sig- 
nificant. In contrast  to the neutral enzyme, both forms of 
acid metalloproteinase were found in equal amounts in both 
types of vesicles, whereas media vesicles were enriched 2.6- 
fold in plasminogen activator content. 

A similar distribution of enzyme specific activity into me- 
dia vesicles and matrix vesicles was observed for mem- 
branes isolated from ROS 17/2.8 and MC-3T3-E1 osteoblast- 
like cell cultures. The only inconsistency observed was that 
plasminogen activator levels were similar in both media ves- 
icles and matrix vesicles produced by MC-3T3-E1 cells. 

Enzyme Content of  Matrix Vesicles and Plasma Membranes 
Produced by ROS 17/2.8, MG-63, and MC-3T3-E10steo- 
blast-Like Cells in Culture. All three cell lines produced ma- 
trix vesicles enriched in alkaline phosphatase specific activ- 
ity (Fig. 1). Matrix vesicles isolated from cultures of ROS 
17/2.8 cells displayed eighffold enrichment in alkaline phos- 
phatase specific activity over the plasma membrane. Matrix 
vesicles produced by MG-63 and MC-3T3-E1 cells also con- 
tained increased amounts of  alkaline phosphatase,  but their 
specific activity was four times that found in the plasma 
membrane. Interestingly, the plasma membranes from each 
type of osteoblast-like cell contained different amounts of 
alkaline phosphatase specific activity, with those isolated 
from ROS 17/2.8 cells containing seven times the amount 
found in either MG-63 or MC-3T3-E1 cells. These results 
were similar to those previously reported by us [17] and 
demonstrate that the membrane preparations used for met- 
alloproteinase assays were typical of matrix vesicles and 
plasma membranes used in other studies. 

Active and total neutral metalloproteinase activity was 
found at higher specific act ivi ty in matrix vesicles than 
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Fig. 2. Neutral metalloproteinase activity extracted from osteo- 
blast-like cell-derived matrix vesicles (MV) and plasma membranes 
(PM) and assayed using proteoglycan-containing polyacrylamide gel 
beads. (A) Content of active enzyme found in each membrane frac- 
tion for ROS 17/2.8, MG-63, and MC-3T3-E1 cells. (B) Content of 
total (active + latent) enzyme found in each membrane fraction for 
ROS 17/2.8, MG-63, and MC-3T3-EI cells. In both panels, osteo- 
blast-like cells were grown to confluence and membranes were iso- 
lated as described in Materials and Methods. Activity is shown as 
enzyme U/rag protein. All data represent the mean + SEM for n = 
6 samples where each sample is from a single culture. Data are from 
one of two replicate experiments. *P < 0.05 for MV versus PM. 

plasma membranes (Fig. 2). Matrix vesicles from ROS 17/2.8 
cells contained 4.6-fold more active (Fig. 2A) and 21-fold 
more total (Fig. 2B) neutral metalloproteinase specific activ- 
ity than their respective plasma membranes.  Active enzyme 
was also enriched in matrix vesicles from MG-63 (21-fold) 
and MC-3T3-E1 (10-fold) cells, whereas total enzyme for 
both of these cell lines was only enriched 5-fold. All cells 
produced matrix vesicles containing fully active neutral met- 
alloproteinase, but the level of active enzyme was widely 
variable and dependent on cell type. Similarly, total enzyme 
levels varied and, in the case of MG-63 and ROS 17/2.8, 
osteoblast-like cells were lower than found for the active 
form, probably due to APMA-induced destruction during the 
assay (see above). However ,  no statistically significant dif- 
ferences between total and active enzyme activity were 
noted. 

Matrix vesicles and plasma membranes from the three 
cell lines were also assayed for their content of  active and 
total acid metalloproteinase (Fig. 3). As before, matrix ves- 
icles contained metalloproteinase that was fully active, but 
no enrichment of enzyme specific activity was observed. 
The plasminogen activator content of osteoblast-like, cell- 
derived matrix vesicles and plasma membranes was also 
measured (Fig. 4). No membrane-specific enrichment was 
observed for any of the cell types examined. 
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Fig. 3. Acid metaUoproteinase activity extracted from osteoblast- 
like cell-derived matrix vesicles (MV) and plasma membranes (PM) 
and assayed using proteoglycan-containing polyacrylamide gel 
beads. (A) Content of active enzyme found in each membrane frac- 
tion for ROS 17/2.8, MG-63, and MC-3T3-E1 cells. (B) Content of 
total (active + latent) enzyme found in each membrane fraction for 
ROS 17/2.8, MG-63, and MC-3T3-EI cells. In both panels, osteo- 
blast-like cells were grown to confluence and membranes were iso- 
lated as described in Materials and Methods. Activity is shown as 
enzyme U/rag protein. All data represent the mean -+ SEM for n = 
6 samples where each sample is from a single culture. Data are from 
one of two replicate experiments. *P < 0.05 for MV versus PM. 

Effect of  Ascorbic Acid and ~-Glycerophosphate on 
Calcification in Long-Term Cultures of  MC-3T3-EI Cells 

Effect of  Ascorbic Acid and fS-Glycerophosphate on von 
Kossa-Positive Nodule Formation. Formation of von Ko- 
ssa-positive nodules in long-term cultures of MC-3T3-E1 
cells was dependent on the presence of both ascorbic acid 
and 13-glycerophosphate in the medium (Fig. 5). When MC- 
3T3-E1 cells were cultured for 32 days in either DMEM con- 
taining 10% FBS or DMEM with 10% FBS and 100 p,g/ml 
ascorbic acid, essentially no Von Kossa-positive nodules 
were observed. Addition of 13-glycerophosphate to the se- 
rum-containing medium resulted in nodule formation as 
demonstrated by an increase in nodule number (Fig. 5A) and 
total area occupied by the nodules (Fig. 5B), but this in- 
crease was not statistically different from the control cul- 
tures. When the cells were cultured in medium containing 
both [5-glycerophosphate and ascorbic acid, there was a sig- 
nificant increase in both nodule number and total area of 
nodules formed. Though mean nodule size was comparable 
in cultures with 13-glycerophosphate alone or with [3-glycero- 
phosphate and ascorbate,  the variation in size was more pro- 
nounced in those cells t reated with f3-glycerophosphate 
alone (Fig. 5C). 
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Fig. 4. Plasminogen activator activity extracted from osteoblast-like 
cell-derived matrix vesicles (MV) and plasma membranes (PM). 
Cells were grown to confluence and membranes were isolated as 
described in Materials and Methods. Activity is shown as enzyme 
U/mg protein. All data represent the mean --_ SEM for n = 6 samples 
where each sample is from a single culture. Data are from one of two 
replicate experiments. No significant differences were observed be- 
tween PM and MV for each cell line. 

Effect of Ascorbic Acid and ~-Glycerophosphate on Enzyme 
Content of  Matrix Vesicles and Plasma Membranes Isolated 
From MC-3T3-EI Cell Cultures. Incubation of MC-3T3-EI 
cells with either ascorbic acid, 13-glycerophosphate, or a 
combination of the two increased cell number twofold (Table 
2). As variation in protein content between the treatment 
groups was greater than twofold, enzyme activity was pre- 
sented as specific activity. 

As described before, alkaline phosphatase specific activ- 
ity was enriched in matrix vesicles over that found in the 
plasma membranes (Fig. 6). Ascorbic acid, 13-glycerophos- 
phate, or a combination of the two, however,  did not signif- 
icantly alter the specific activity of the enzyme found in 
either matrix vesicles or plasma membranes.  

Active and total neutral metalloproteinase specific activ- 
ity was found at significantly higher levels in matrix vesicles 
than plasma membranes (Fig. 7). Irrespective of the culture 
conditions, matrix vesicles were always enriched in fully 
activated neutral metalloproteinase. The plasma membrane 
fraction, however+ displayed some variation in the propor- 
tion of active enzyme. Compared with untreated controls, 
the addition of ascorbic acid to the culture medium signifi- 
cantly reduced active and total neutral metalloproteinase 
specific activity in matrix vesicles, but not plasma mem- 
branes. Addition of [3-glycerophosphate, by itself, to the me- 
dium had no effect on metalloproteinase specific activity in 
either membrane fraction compared with control.  When 
added together with ascorbic acid, however,  significant in- 
creases in both active and total metalloproteinase were ob- 
served for both membrane fractions. Matrix vesicles con- 
tained three times more active and total enzyme than matrix 
vesicles produced by the untreated ceils or those treated 
only with [3-glycerophosphate.  Enzyme act ivi ty  of  the 
plasma membrane was increased six- to eightfold, but the 
specific activity was only 25 to 50% of that found in the 
matrix vesicles. 

Active and total acid metalloproteinase specific activities 
were not enriched in matrix vesicles compared with plasma 
membranes (Fig. 8). The only exception to this generaliza- 
tion was the [3-glycerophosphate-treated cultures, where ac- 
tive enzyme was found at significantly higher specific activ- 
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Fig. 5. Effect of ascorbic acid (AA) and f3-glycerophosphate (f3GP) on von Kossa-positive nodule formation in MC-3T3-EI cells after 32 days 
in culture. Cells were cultured as described in Materials and Methods. At the end of culture, the cells were fixed in situ using buffered formalin 
and then stained with yon Kossa. Using an automated imaging system, nodule number (A), total nodule area (B), and mean nodule size (C) 
were determined. All data represent the mean -+ SEM for n = 3 cultures. *P < 0.05 for treatment versus control. 

Table 2. Effect of ascorbic acid and 13-glycerophosphate on cell 
number in cultures of MC-3T3-E 1 osteoblast-like cells ~ 

l MV 
Cell number/ ""  30 
T-150 Flask 
(• 10 6) I~1 ~5 , m  

Untreated 12.9 --- 1.9 ~ 20 
Treated t, 

+ Ascorbic acid (100 t~g/ml) 25.1 -+ 1A b la~ 15 
+ t3-glycerophosphate (5 raM) 22.7 -+ 1.4 b 
+ Ascorbic acid & 13-glycerophosphate !~ 10 

(100 i~g/ml + 5 raM) 22,1 -+ 1A b 

a MC-3T3-E1 cells were cultured in the presence or absence of "~ 5 
ascorbic acid, 13-glycerophosphate, or a combination of the two for ~ 0 
32 days, trypsinized, and counted. All values are the mean -+ SEM =1. 
for n = 6 cultures and are from one of two replicate experiments, 
b Compared with untreated cultures, differences were significant at 
P < 0.05 

ity in matr ix  vesic les  than p lasma membranes .  No  o ther  
changes  ach ieved  stat ist ical  s ignif icance,  but  two t rends  
were  observed:  a c lear  reduc t ion  o f  both  act ive  and total 
enzyme  in the membrane  fract ions was seen with ascorbic  
acid t reatment ,  whereas  [3-glycerophosphate appeared to in- 
crease  the meta l loprote inase  specific act ivi ty  of  matrix ves- 
icles. 

P lasminogen ac t iva tor  levels  were  general ly unaffected 
by changes in culture condi t ions  (Fig. 9). H o w e v e r ,  ascorbic  
acid t rea tment  significantly reduced  matr ix vesicle  plasmin- 
ogen ac t iva tor  specific act ivi ty  compared  with the p lasma 
membrane .  

Matrix Processing Enzymes Not  Found in Osteoblast-Like 
Cell-Derived Matrix Vesicles or Plasma Membranes. Other  
enzymes  that may  have  a role in preparing the matr ix for 
calcification were  also examined.  Collagenase,  lysozyme,  
and hyaluronidase  were  not  de tec ted  in this study. T IMP 
was not  found in e i ther  matr ix vesic les  or  p lasma membranes  

Control AA flGP flGP+AA 
Fig. 6. Effect of ascorbic acid (AA) and 13-glycerophosphate (f3GP) 
on alkaline phosphatase specific activity of matrix vesicles (MV) 
and plasma membranes (PM) isolated from MC-3T3-EI cells after 32 
days in culture. Cells were grown and membranes were isolated as 
described in Materials and Methods. Data represent the mean --- 
SEM for n = 6 samples where each sample is from a single culture. 
Data are from one of two replicate experiments. *P < 0.05 for MV 
versus PM. 

of  any osteoblast- l ike cells examined .  13-D-glucuronidase 
was used to obtain an index of  lysosomal  contaminat ion.  No  
act ivi ty was de tec ted  in any membrane  fract ion tested.  

Discussion 

Although matrix vesicles  have  been  associa ted with miner- 
alization of  the extracel lular  matr ix [1, 2J, their  role is un- 
clear.  In vivo studies of  bone healing have  shown that  in- 
creases  in matr ix ves ic le  enzymes ,  like alkaline phosphatase  
and phosphol ipase  A z, correlate  well  with the format ion  of  
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Fig. 7. Neutral metalloproteinase activity extracted from matrix 
vesicles (MV) and plasma membranes (PM) produced by MC-3T3- 
E1 cells treated with ascorbic acid (AA) and [3-glycerophosphat e 
(t3GP) for 32 days in culture. MV and PM were isolated and then 
extracted and assayed for neutral metalloproteinase activity on pro- 
teoglycan-containing polyacrylamide beads as described in Materi- 
als and Methods. (A) Content of active enzyme found in each mem- 
brane fraction. (B) Content of total (active + latent) enzyme found 
in each membrane fraction. In both panels, activity is shown as 
enzyme U/mg protein. All data represent the mean _+ SEM for n = 
6 samples where each sample is from a single culture. Data are from 
one of two replicate experiments. *P < 0.05 for MV versus PM; #P 
< 0.05 versus Control. 
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Fig. 8. Acid metalloproteinase activity extracted from matrix vesi- 
cles (MV) and plasma membranes (PM) produced by MC-3T3-E1 
cells treated with ascorbic acid (AA) and [3-glycerophosphate (I3GP) 
for 32 days in culture. MV and PM were isolated and then extracted 
and assayed for acid metalloproteinase activity on proteoglycan- 
containing polyacrylamide beads as described in Materials and 
Methods. (A) Content of active enzyme found in each membrane 
fraction. (B) Content of total (active + latent) enzyme found in each 
membrane fraction. In both panels, activity is shown as enzyme 
U/rag protein. All data represent the mean -+ SEM for n = 6 samples 
where each sample is from a single culture. Data are from one of two 
replicate experiments. *P < 0.05 for MV versus PM. 

hydroxyapatite crystals within the matrix vesicle [51-53]. 
Similarly, osteoblast-like cell cultures produce matrix vesi- 
cles that are enriched in alkaline phosphatase specific activ- 
ity [17, 18], regulated by hormones and growth factors 
known to modulate bone formation in vivo [16-19], and as- 
sociated with initial crystal  deposit ion [54]. The present 
study further strengthens the relationship between matrix 
vesicles and mineralization of  bone by showing that these 
extracellular organelles contain enzymes capable of process- 
ing the extracellular matrix and that the amount of these 
enzymes is dramatically increased by culture conditions that 
favor mineralization. 

The results demonstrate that osteoblast-like cells pro- 
duce at least two extracellular membrane-bound vesicles of 
differing type and composition. The first type is called media 
vesicles because they are released into the media during cul- 
ture. They are believed to form when parts of the plasma 
membrane are sloughed off during culture [42], but their 
function is unknown. Media vesicles were enriched in plas- 
minogen activator specific activity in two of the three osteo- 
blast cell lines studied. Majeska et al. [55] have similarly 
reported release of "par t icula te"  alkaline phosphatase ac- 
tivity from ROS 17/2.8 cells stimulated by parathyroid hot- 

mone, suggesting that production and release of "mem-  
brane" vesicles is not a passive effect of culture, but is under 
direct cellular control. 

The second type of  extracellular membrane vesicle, ma- 
trix vesicles, is produced by osteoblasts in culture and must 
be released from the matrix for isolation. Matrix vesicles 
appear intimately involved in calcification and capable of 
processing the extracellular matrix, based on their enzyme 
content. A potential role for these vesicles in calcification is 
suggested by their metalloproteinase content as specific deg- 
radation of noncollagenous proteins such as proteoglycans is 
required for bulk phase mineral deposition [24, 25, 29, 56, 
57]. The fact that neutral metalloproteinase activity in the 
matrix vesicle is completely masked until the membrane is 
disrupted and that after the membrane is disrupted the en- 
zyme is released in fully active form suggests that one role 
for the organelle may be to convey enzyme to the extracel- 
lular matrix. According to this hypothesis,  control of crystal 
formation would depend on breakdown of the matrix vesicle 
membrane, potentially via metabolism of membrane phos- 
pholipids [10, 58-60]. Thus, initial crystal formation may be 
more important for regulating the time of vesicle breakdown 
and release of  active matrix processing proteinases than for 
nucleating bulk phase calcification. 
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Fig. 9. Plasminogen activator activity extracted from matrix vesi- 
cles (MV) and plasma membranes (PM) produced by MC-3T3-E1 
cells treated with ascorbic acid (AA) and 13-glycerophosphate (13GP) 
for 32 days in culture. Cells were grown and membranes were iso- 
lated as described in Materials and Methods. Activity is shown as 
enzyme U/mg protein. All data represent the mean +- SEM for n = 
6 samples where each sample is from a single culture. Data are from 
one of two replicate experiments. *P < 0.05 for MV versus PM. 

Prior studies have demonstrated that matrix vesicle 
structure and function can be determined by the cells pro- 
ducing them. As a result, it is likely that matrix vesicles can 
be "pr imed" or "programmed" to respond in a particular 
way in the extracellular matrix based on factors incorporated 
into them at the time of  biosynthesis. Changes in membrane 
composition or enzyme content could be accomplished dur- 
ing biogenesis; in addition, direct regulation of matrix vesicle 
activity after release into the matrix could also occur. There 
is ample evidence to suggest that all of these mechanisms 
may operate in vivo. Previous studies have shown that alka- 
line phosphatase in MG-63 cells (mRNA, protein, and activ- 
ity) and isolated plasma membranes and matrix vesicles 
(protein and activity) is regulated by 1,25(OH)2D3 and 
TGF-13 [161. Furthermore, incubation of isolated osteoblast- 
derived matrix vesicles with 1,25(OH)2D3 in vitro results in a 
dose-dependent stimulation of alkaline phosphatase specific 
activity [18]. Taken together, these results suggest that os- 
teoblast-like cells may use matrix vesicles to regulate events 
at sites distant from the cell. 

In the present study, matrix vesicle alkaline phosphatase 
specific activity was unaffected by addition of  ascorbic acid, 
[3-glycerophosphate, or a combination of the two to the me- 
dium of MC-3T3-E1 cells. This corroborates the results of 
Lee et al. [611 who showed that [3-glycerophosphate had no 
effect on a number of parameters associated with calcifica- 
tion, but is in contrast to the observations of Boskey et al. 
[62], who have shown that cultures incubated with [3-glyc- 
erophosphate form larger crystals than normally found in 
vitro. We found significant increases in active and total neu- 
tral metalloproteinase in matrix vesicles isolated from cul- 
tures treated with both ascorbic acid and [3-glycerophos- 
phate whereas in untreated cultures or those treated with 
ascorbic acid or [3-glycerophosphate alone, isolated matrix 
vesicles only contained one-third the amount of active and 
total enzyme. We interpret these results to indicate that 
ascorbic acid is necessary for matrix synthesis. 13-glycero- 
phosphate increases calcification of  the matrix once it is 
formed, partly by serving as a phosphate source and partly 
by stimulating matrix degradation, facilitating crystal forma- 
tion and growth. This hypothesis is further strengthened by 
our morphologic-observations demonstrating a synergistic 
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increase in von Kossa-positive nodule formation in cultures 
treated with both ascorbic acid and 13-glycerophosphate. A 
study by Franceschi and Iyer [63], using MC-3T3-E1 cells, 
demonstrated that ascorbic acid was essential for proper ma- 
trix synthesis (i.e., type I collagen). In our studies, no effect 
on either von Kossa-positive nodule formation or matrix 
vesicle or plasma membrane enzymes was observed with 
ascorbate alone. The addition of [3-glycerophosphate alone 
in Franceschi and Iyer 's  study, as well as our own, was 
without effect. The combination of ascorbic acid and ~-glyc- 
erophosphate, however, resulted in an augmentation of min- 
eralization in their study and dramatic increases in the for- 
mation of yon Kossa-positive nodules and hydroxyapatite 
and matrix vesicle neutral metalloproteinase content in ours. 
Taken together, these results suggest that matrix vesicle 
maturation and subsequent maturation of the matrix can be 
regulated extracellularly when matrix and ionic (calcium and 
phosphate) conditions are conducive to calcification. 

MC-3T3-E1 cells have also been used to examine other 
aspects of mineralization including the effects of  hormones, 
such as 1,25(OH)2D 3. Matsumoto et al. [64] have shown that 
MC-3T3-E1 cells begin to deposit large amounts of calci- 
um into both cell and matrix layers after 2 weeks in culture 
and that 1,25(OH)zD 3 stimulates this process in a dose- 
dependent manner. It is also noteworthy that 1,25(OH)zD 3 
reduces the synthesis and enhances the degradation of  pro- 
teoglycans in MC-3T3-E1 cells [65, 66]. This is particularly 
relevant to the current study because two major classes of 
proteoglycan are remodeled during mineralization of bone 
[65, 67-69]. The first class is composed of aggrecan, the large 
aggregating proteoglycan. This proteoglycan endows carti- 
lage and bone with its compressive properties, but is also an 
inhibitor of mineralization in vitro [24, 25, 29, 56, 57]. The 
second class is composed of decorin and biglycan, so-called 
small proteoglycans. Decorin is believed to regulate collagen 
fibrillogenesis and inhibit mineralization [70-73]. In our 
study we used aggrecan as the substrate in our enzyme assay 
and as a result we have confidence in our conclusion that 
these proteoglycans, which inhibit mineralization, are de- 
graded by the matrix vesicle enzymes. In contrast, we do not 
have proof that decorin is degraded by any of the matrix 
vesicle enzymes, but the substrate specificity of metallopro- 
teinases for leucine, isoleucine, or valine residues in the P I '  
site and glycine or hydrophobic residues in the P1 site [74], 
coupled with a sequence of leucine-rich repeats in the 
decorin core protein amino acid sequence [68, 71], suggest 
that both large and small proteoglycans may be susceptible 
to the same or similar proteinases. 

In summary, we have shown that osteoblast-like cells 
produce matrix vesicles containing metalloproteinases capa- 
ble of digesting proteoglycan. We hypothesize that these 
proteinases are sequestered from the matrix until the mem- 
brane ruptures. In addition, the current study has shown that 
conditions favoring calcification in vitro produce matrix ves- 
icles significantly enriched in metalloproteinases over those 
produced by cells without stimulation. Together these ob- 
servations suggest that matrix vesicles may represent a 
novel mechanism whereby the cell can regulate mineraliza- 
tion, extracellular matrix remodeling, and possible protein- 
ase-mediated activation of growth factors at sites distant 
from the cell surface. 
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