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Abstract: Malaria remains one of the most burdensome human infectious diseases, with a high rate of resistance 
outbreaks and a constant need for the discovery of novel antimalarials and drug targets. For several reasons, Plasmodial 
proteins are difficult to characterise structurally using traditional physical approaches. However, these problems can be 
partially overcome using a number of in silico approaches. This review describes the peculiarities of malaria proteins and 
then details various in silico strategies to select and allow descriptions of the molecular structures of drug target 
candidates as well as subsequent rational approaches for drug design. Chiefly, homology modelling with specific focus on 
unique aspects of malaria proteins including low homology, large protein size and the presence of parasite-specific inserts 
is addressed and alternative strategies including multiple sequence and structure-based prediction methods, sampling-
based approaches that aim to reveal likely global or shared features of a Plasmodial structure and the value of molecular 
dynamics understanding of unique features of Plasmodial proteins are discussed. Once a detailed description of the drug 
target is available, in silico approaches to the specific design of an inhibitory drug thereof becomes invaluable as an 
economic and rational alternative to chemical library screening.  
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1. BACKGROUND 

 More than 2 billion people are at risk of malaria and 
current clinical episodes are estimated to be as high as 500 
million cases and nearly 3 million deaths per year, mainly 
children and pregnant women in resource-poor environments 
[1]. The scale of the malaria problem emphasises the fragile 
nature of prevailing control programmes and the importance 
of developing more effective methods for the prevention, 
treatment and ultimately, the eradication of malaria [2]. 
Combating malaria (caused by Plasmodium species) requires 
significant financial and organizational resources, yet 
malaria itself restrains economic development, creating a 
vicious cycle in developing countries [3-5].The devastating 
socio-economic and public health impact of malaria is 
mostly experienced in sub-Saharan Africa and is galvanized 
by the emergence and rapid spread of drug-resistant parasites 
and the lack of a licensed vaccine. Even if and when 
effective vaccines do become available, chemotherapy will 
still be required. The discovery of new and robust anti-
malarial drugs, preferably acting on new targets that have not 
mutated yet into resistant forms, is therefore urgently 
needed. However, because malaria is considered a disease of 
poverty, there is very little incentive for pharmaceutical 
companies to partake in a global antimalarial effort except 
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for provision of funds for selected projects and research 
institutes [6]. The onus therefore falls predominantly on 
publicly funded research groups, academic institutions and 
public-private partnerships established since 2000, to 
identify and develop novel antimalarial strategies [7].  

 In general, there has been a steady decline in the number 
of new molecular entities entering clinical development and 
reaching the market over the past 10-15 years due to high 
levels of drug attrition mainly attributed to unanticipated 
efficacy and toxicity problems [8]. Part of the blame seems 
to reside in the extensive use of High-Throughput Screening 
(HTS) against ambiguous or single targets which in effect 
reduces the biological context by separating the target from 
other cellular proteins and processes that might impact its 
function [9] and lack of diversity in existing chemical 
libraries [10]. The phenotypic robustness of biological 
systems often reduces the effectiveness of a single-target 
compound [11]. One compound-one target strategies 
therefore need to be adapted and it is suggested that the 
focus should be on promiscuous compounds that modulate 
multiple target proteins to achieve the desired results [12]. 
Cell-based high content screening (HCS) circumvents this 
problem, since it allows the detection of small molecules 
acting in the cellular context [13], but it leaves the question 
of the actual target unresolved. HTS technology is often 
limited to big pharmaceutical companies due to the high cost 
involved in screening of targets but is also limited by high 
attrition, with a hit-rate of between 0.01-1% of compounds 
screened [14]. The process is sequential, with ADMET 
(Absorption, Distribution, Metabolism, Excretion and 
Toxicology) properties determined later on in the discovery 
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process. Many molecules that look promising in early stages 
of the process fail later on because of weak ADMET 
properties [15]. A common view is that disease or biology 
relevant screens should be introduced much earlier into the 
drug discovery process [15-17]. Strategies to improve the 
drug discovery process include models to globally map 
pharmacological space, the introduction of functional and 
structural genomics for target validation and MOA predic-
tion [18], and in silico approaches at the very early stages of 
the discovery pipeline [19-21]. 

 Current medium to longer-term strategies in antimalarial 
drug discovery programs have been extensively reviewed 
and include “piggy-backing” strategies (screening of existing 
drugs for novel antiparasite activity or screening of lead 
series already applied to orthologous targets in other disease 
settings), de novo drug discovery involving target-based 
HTS or medium throughput screening (MTS) against 
parasite cultures, use of reformulated combinations of 
existing antimalarial drugs and information on established 
networks for compound screening and medicinal chemistry 
and pharmacokinetics/metabolism [5-8, 22]. Additional 
recent approaches include chemical scaffold alterations, the 
use of bioprecursors, double drugs, multiple targets or 
natural products [23]. The same concerns referred to above 
with respect to the quality of the chemical libraries and 
chosen molecular targets, are equally applicable to anti-
malarial drug discovery. However, carefully defined 
chemical compound libraries are being established (see e.g. 
http://www.drugdiscovery.dundee.ac.uk [24]) and state-of-
the-art criteria for target assessment for antiparasitic drug 
discovery has been reviewed [25].  

 Drug discovery strategies, defined as the investigative 
work leading up to the selection of drug candidates, have 
been extensively described. As in other organisms, the same 
iterative process focussing around target identification, lead 
identification and lead optimisation applies to antiparasitic 
drug discovery (Fig. (1)). The proposed drug discovery 
pipeline as applied to parasitic diseases including malaria has 

been reviewed [5, 26-31]. The inherent challenges of 
organizing and mining of malaria genomic and post-genomic 
data, in silico applications of the embedded information and 
the necessity of integration of in vivo and in vitro data has 
been comprehensively described [22]. This review will focus 
on the use of in silico approaches to antimalarial drug 
discovery and discuss each component of this highly 
iterative process. The potential and caveats associated with 
the in silico discovery of antimalarial drug targets have been 
highlighted [21] and only new developments related to this 
will be described. Detailed descriptions of the application of 
in silico structure-based drug discovery (SBDD) in 
antimalarial lead identification and lead optimisation steps 
have not been comprehensively reviewed elsewhere and are 
therefore the major focus of this review (Fig. (1)).  

2. IN SILICO DRUG AND DRUG TARGET 
DISCOVERY IN MALARIA 

 Anti-parasitic drug and drug target discovery has mostly 
benefited from prior knowledge of beneficial or effective 
herbal extracts or compounds (e.g. quinine and artemisinin) 
with the targets of these compounds initially unknown. To 
our knowledge, none of the currently-used pharmaceuticals 
has originated from a de novo approach based on rationally-
selected targets and most recent antimalarial drugs are 
principally based on compounds derived from plant extracts. 
Breaking with this modern exploitation of traditional 
pharmacopoeia, the next generation of drugs is expected to 
be derived from diversity-oriented synthetic chemistry and 
screening programs on characterized new targets. 

 The completed sequencing of the P. falciparum genome 
sparked great hopes regarding the use of genomic infor-
mation in the identification of new drug target proteins and 
the development of new drugs. This has been complicated by 
the relatively poor annotation of the malaria parasite 
genome, and thus it should be emphasized that absence of a 
protein from the genome annotation does not necessarily 
imply its absence from the organism. One of the first papers 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The drug discovery pipeline with a focus on in silico strategies. These strategies are used in an integrated and iterative manner. 
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on the specific impact and value of the sequencing of the 
malaria genome on drug discovery was by Joachimiak et al. 
in 2001, where the analysis of different falcipains and the 
impact thereof was discussed [32]. In another well-known 
example, a series of plant-like genes were identified as 
possible new drug targets by the group of McFadden et al. 
[33]. A case in point in which the genome information 
contributed to a drug currently in clinical trials is that of 
fosmidomycin, which inhibits 1-deoxy-D-xylulose 5-phos-
phate (DXP) reductoisomerase, a key enzyme in the non-
mevalonate pathway. In this case, a legacy drug was used to 
target a protein which was targeted from malaria genome 
data, based on information available in bacteria [34]. Api-
coplast-related targets include proteins of the transcrip-
tional/translational machinery (targets for lincosamides, e.g. 
clindamycin; macrolides, e.g. azithromycin, thiopeptides, 
e.g. thiostrepon, micrococcin), proteins involved in DNA 
replication (quinolones and fluoroquinolones), the fatty acid 
synthase of type II (target for aryloxyphenoxypropionate -
fop- herbicides, e.g. haloxyfop, clodinafop, quizlofop, diclo-
fop; fenoxaprop; tralkoxymid; thiolactomycin and analo-
gues), the peptide deformylase (target for actinomycin) [35]. 
All these targets and compounds are currently investigated 
for the development of optimized drug candidates by various 
groups worldwide. 

 Some of the main criteria used in the in silico identi-
fication of putative parasite drug targets may include, but is 
not limited to, selecting the aspect of the parasite's biology to 
be interfered with; finding proteins or protein orthologues 
with sequence, functional and structural properties of 
interest; determining the level of conservation with host 
orthologues which may affect cross-reactivity; defining the 
classes of compounds that the proteins interact with; 
analyzing the druggability of the protein active site and 
validating the protein as a suitable target or choosing targets 
that have been clinically validated in other species [25]. 
Various types of antimalarial drug targets including proteins 
may be investigated but the role of rational criteria 
(including well-organised Boolean criteria) in the discovery 
of targets should not be underestimated [21, 36]. The sparse 
annotation of the malaria genomes, and the relatively poor 
performance of existing approaches and analysis methods on 
malaria data is still currently limiting and necessitates the 
need for more attention on the “druggability” of proteins 
[37]. This information provides the basis for drug target 
databases including the TDR Targets Database (http:// 
tdrtargets.org) [38]. Systems level understanding of the 
malaria parasite is highly challenging but remains of critical 
importance in drug discovery endeavours [18, 39, 40]. This 
could be particularly evident in the case of the, as yet, 
unannotated or ‘hypothetical’ proteins of P. falciparum.  

 Experimental and in silico interactome data has revealed 
unique protein-protein networks within the malaria parasite 
with controlling nodes indicating a ‘rich-club phenomenon’ 
of interconnectivity [41]. Computational prioritization of 
drug targets is utilised in PlasmoCyc containing an integ-
rated pathway/genome database and resulted in the 
identification of 216 chokepoint enzymes [42]. More 
recently, the P. falciparum metabolic pathways [43] have 
been used to identify an additional 22 potential new targets 
using in silico knock-out approaches [44]. Particular prob-

lems in malaria includes the limited efficiency of homology-
based methods (like BLAST and HMMER) to assign 
functionality to the more than 60% of the malaria proteome. 
Innovative new approaches resulted in the creation of GO-
databases, i.e. the Plasmodium OPI Databases [21, 45] or 
PlasmoDRAFT, containing annotated predictions based on 
guilt-by-association methods using post-genomic data inclu-
ding that from the transcriptome, proteome and interactome 
[46]. Alternative resources aim at utilising structural, 
functional and interaction features to allow druggability 
descriptions of malaria proteins. The Structural Annotation 
of Malaria Proteins (SAMP) project attempts to additionally 
provide information regarding possible ligands as established 
by the Small Molecule Interaction Database (SMID) 
software suite (Unleashed Informatics) [47]. 

 However, for effective target identification, the integ-
ration of protein annotation information with existing 
chemoinformatics resources is of critical importance. There 
is little ligand information available in PlasmoDB (http:// 
www.plasmodb.org), and while the TDR database contains 
some ligand information, it is not focused at enabling 
searches based on chemical compounds. The mapping of 
existing drugs to targets together with the related beneficial 
drug and target characteristics is of paramount importance, 
as the elucidation of as many key characteristics as possible 
will be advantageous in the selection of new targets as well 
as leads [48]. The development of a system integrating 
detailed structural and functional information for malaria 
proteins with information for chemical compounds, provi-
ding at least a basic chemoinformatics environment, would 
prove to be a huge asset to antimalarial drug development 
[49]. A selection of some key in silico resources is provided 
in Table 1. A recent review provides comprehensive lists of 
free web resources [50]. 

Table 1. Selected In Silico Resources for Malaria Drug 

Discovery 

Resource URL Reference 

PlasmoDB http://www.plasmodb.org [161] 

TDR Targets Database  http://tdrtargets.org [38] 

Malaria Parasite 
Metabolic Pathways 

http://sites.huji.ac.il/malaria [43] 

PlasmoCyc http://plasmocyc.stanford.edu [42] 

PlasmoDRAFT http://atgc.lirmm.fr/plasmo_draft [46] 

Structural Genomics 
Consortium 

http://sgc.utoronto.ca [162] 

Structural Genomics of 

Pathogenic Protozoa 

http://www.sgpp.org [118] 

SAMP http://malport.bi.up.ac.za [47] 

PubChem http://pubchem.ncbi.nlm.nih.gov [163] 

Super Drug DataBase http://bioinf.charite.de/superdrug [97] 

DrugBank http://www.drugbank.ca [98] 

ZINC http://zinc.docking.org [96] 

WISDOM http://wisdom.eu-egee.fr [104] 
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3. IN SILICO STRUCTURE-BASED DRUG 

DISCOVERY IN MALARIA  

 In silico structure-based drug design (SBDD) aims at 
rational or knowledge-driven descriptions of new inhibitory 
compounds and can be classified into receptor-based design 
and ligand-based design (Fig. (2)). In particular, receptor-
based design exploits the three-dimensional structural 
description of a drug target to predict the in silico binding of 
hypothetical ligands to the target. These hypothetical ligands 
can be obtained from the modification of a ligand known to 
bind to the target and include fragment-based inhibitor 
design (scaffold structures or de novo design), receptor-
based pharmacophore design and virtual screening of in 
silico compound libraries against the target (Fig. (2)).  

 Ligand-based design aims to predict the effect of new 
compounds based on the properties of compounds known to 
affect the target. This may be pursued in the absence of a 
target structure. Various virtual screening methodologies 
exist for lead identification and include receptor-based 
pharmacophores, HTS and fragment-based design. Structure-
activity relationships (SAR and quantitative SAR), chemo-
informatics and toxicity predictions (ADMET) should be 
evaluated, in addition to screening procedures and fragment 
assemblies based on medicinal chemistry principles. Three 
questions which are pivotal in deciding on a particular 
methodology to be followed include: 1) are molecules 
available which can be modified to become inhibitors, 2) is 
there a means for synthesizing novel molecules and 3) what 
is the degree of accuracy required at a particular stage of the 
design process versus the time needed for the calculations 
[51]? The latter include factors such as either protein or 
ligand flexibility or both, the inclusion of solvent effects, etc. 
[51]. These questions are not stage-specific but should be 
asked continuously during the drug discovery process. 

 Both of the abovementioned design avenues are highly 
integrated, iterative and knowledge-based and all sub-
strategies should be investigated. The knowledge available 
on both the structure and inhibitors of a specific target 
largely determines the approach to be followed. Identified 
compounds are scored and ranked based on their physio-
chemical interactions with the target structure and the best 
scoring compounds are biochemically tested for inhibitory 
activity. Promising lead compounds with low micromolar 
activities are then optimized by solving the structure of the 
target-lead complexes to confirm predicted data. This is 
followed by in silico optimization of the lead compound and 
iterative testing.  

3.1. Receptor-Based Drug Design 

 Receptor-based drug design entails the use of 3D target 
structures to reduce the chemical search space and provides 
the molecular framework representative of the essential 
physiochemical features required for biological activity of 
the inhibitory compound. The advantage this provides has 
made it the preferred approach for in silico drug design and 
has further gained popularity due to the increase in com-
puting power and wide variety of software suites available. 
This strategy starts by describing the 3D structure of the 
target of interest. However, Plasmodial protein structures 
have been difficult to solve experimentally [18] and 

therefore make recent advances in computational techniques 
for the description of protein structures that much more 
enticing to the malaria community. 

3.1.1. Receptor-Based Drug Design: In Silico Approaches 
to Obtaining Plasmodial Protein Structures  

 The majority of malaria drug targets are proteins, as are 
all the potential novel targets currently under investigation, 
but these are notoriously difficult to express in heterologous 
systems [41]. Compounding characteristics of proteins from 
P. falciparum include large protein sizes, greater protein 
disorder, more basic pI than host systems, low-complexity 
containing parasite-specific inserted regions and a marked 
A+T bias of the P. falciparum genome. These factors 
additionally may contribute towards low crystallisation 
efficiencies of Plasmodial proteins. At the time of writing, 
querying the PDB (http://www.pdb.org) for structures of 
Plasmodial proteins and excluding sequences with greater 
than 90% identity, yields 118 entries. A closer inspection of 
all released Plasmodial protein structures reveals 100 
orthologues from multiple Plasmodium species. In contrast, 
querying the PDB for human protein entries (excluding > 
90% sequence identity) reveals more than 4500 structures. 
Even though the number of Plasmodial protein structures is 
still alarmingly sparse, there has been an almost doubling in 
Plasmodial protein structures since 2005, largely due to the 
advent of structural genomics programs including the 
Structural Genomics Consortium, (http://sgc.utoronto.ca) 
and the Structural Genomics of Pathogenic Protozoa (http:// 
www.sgpp.org). The Structural Genomics Consortium 
(SGC) reported 25 distinct Plasmodial protein crystal 
structures from five species. The success rate of this study is 
similar to other structural genomics programs, and demons-
trates the viability of structural genomics for protozoa. This 
was partly due to treating orthologues from multiple species 
as alternative expression constructs [52]. The SGPP 
Consortium has solved 40 structures from the parasitic 
organisms Leishmania, Trypanosoma brucei, T. cruzi and 
Plasmodium of which 16 are Plasmodial proteins. The 
success is attributed to pioneering a number of developments 
such as domain prediction, the use of co-crystallents, 
capillary crystallization and “fragment cocktail crystallo-
graphy”. 

 In lieu of the paucity of crystal structures for Plasmodial 
proteins, many groups have resorted to homology modelling. 
The number of studies employing this technique are too 
numerous to cite, however, reviewing them reveals certain 
trends. The modelling component usually makes a small 
contribution to the overall study and models are typically 
constructed to aid visualisation and rationalisation of 
experimental results. Identification of novel inhibitors using 
these models are often mentioned, however, there seems to 
be little experimental follow-up to pre-clinical phases. In few 
cases, popular targets for homology modelling have been 
superseded by recent experimental structures, notably 
proteases specific to Plasmodium.  

 Successful homology modelling depends critically on the 
alignment of the target sequence with template structures. A 
review of the present literature suggests that targets chosen 
for modelling tend to align unambiguously or easily with 
templates. However, Plasmodial proteins are infamous for 
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Fig. (2). Structure-based drug design as applied to the discovery of antimalarials. Parallel and integrative strategies include receptor-based 
design and ligand-based design. 
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Fig. (3). Problems frequently encountered with modelling of Plasmodial proteins. 
 

having long inserts that, along with low sequence similarity, 
make alignment problematic. Not surprisingly, proteins with 
long inserts appear to be avoided for modelling, and the 
problem of obtaining reliable alignments in their case is 
seldom discussed. The biased nucleotide and amino acid 
composition [53] and Plasmodium-specific inserts make it 
difficult to correctly identify core-conserved regions. The 
presence of inserts often confuses multiple and structural-
alignment programs (Fig. (3)). A number of techniques can 
be used to circumvent this problem. From a first pass 
alignment approximate insert positions can be determined. 
Sequences can then be split according to long inserts and re-
aligned. Inserts can vary considerably across different 
Plasmodium species [54, 55]. Therefore, while adjusting an 
alignment for modelling, it is useful to refer to phylo-
genetically diverse multiple alignments including as many 

Plasmodium protein sequences as possible [56]. Multiple 
alignments can be further improved by employing software 
that incorporates environment specific structural infor-
mation, like FUGUE which combines profile and Hidden 
Markov Model (HMM) methods using both sequence and 
structural information. Such approaches have been success-
fully used for modelling of PfEMP-1 as well as for 
constructing reference alignments (Wells et al., unpublished; 
[57]). Refined alignments might benefit from species-
specific matrices that take into account the differences of 
amino acid distribution between the aligned proteins [58, 
59]. As an adjunct to alignment, independent motif 
identification (e.g. the MEME system, http://meme.sdsc.edu/ 
meme; [60]) can be used to fix mistakes that alignment 
programs frequently make when aligning long Plasmodial 
proteins with homologues [56, 61]. Further improvements 
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can be made by using hydrophobic cluster analysis [62] and 
secondary structure predictions to align homologous regions 
within inserts. Once an alignment has been decided on often 
based on necessary visual assessment, a series of models can 
be built. Because of the high degree of uncertainty that often 
accompanies alignments used for modelling Plasmodial 
proteins, it is usually not feasible to rectify all structural 
anomalies. However, by performing standard quality checks 
on a large sample of models and summarizing the results, it 
is possible to identify parts of the alignment causing most 
problems.  

 Despite the difficulties with homology modelling of 
Plasmodial proteins, there have been some notable successes 
and a diversity of applications. Plasmodial DHFR 
(dihydrofolate reductase) forms part of a bifunctional protein 
that also carries thymidylate synthase. A number of existing 
drugs such as cycloguanil and pyrimethamine targets the 
DHFR domain, and have been used effectively in the past. 
However, drug resistance has evolved that reduces the 
usefulness of this important class of drugs. Hence, Plas-
modial DHFR has been a popular target for homology 
modelling efforts (e.g. [63-68]), which allowed the 
identification of new inhibitors in the nano- and micromolar 
range [63, 64], the rationalization of the antifolate resistance 
mechanisms [64-66, 68], as well as the ability for the drug 
WR99210, to inhibit both pyrimethamine and cycloguanil 
resistant mutants [66]. The impact of molecular modelling 
studies based on docking, pharmacophore mapping, QSAR, 
homology modelling, and quantum chemical studies in the 
design of Plasmodial DHFR and other antimalarial inhibitors 
has been recently reviewed [69]. The high accuracy of the 
alignment used for modelling and dockings of Plasmodial 
DHFR were subsequently confirmed with the crystal 
structure of the complete bifunctional enzyme [70]. Consi-
derable work has also gone into modelling Plasmodial 
proteases essential to the parasite's intra-erythrocytic life 
stage. A number of these models has been used to identify 
new inhibitors [71-74], although the increasing number of 
crystal structures for these proteases is likely to gradually 
replace the need for homology models. 

 Guitérrez-de-Terán et al. [75] demonstrated the advan-
tages of using multiple structures with plasmepsin IV from 
P. falciparum. A homology model and a low resolution 
crystal structure were both used for inhibitor identification. 
The homology model performed better on structural quality 
indicators and was more robust when calculating binding 
energy for an inhibitor series. The enhanced structural qua-
lity of the homology model was put down to the intermediate 
resolution of the X-ray structure (2.8 Å). Further improve-
ments in predicting binding were gained by using a 
combined model employing both structures, as well as using 
molecular dynamics to increase sampling. The improved 
docking performance argues for making use of multiple 
experimental and predicted models instead of relying on a 
single structure (see also [76]).  

 Singh et al. [77] used homology modelling to derive a 
chimeric berghepain-2 that more closely resembled 
falcipain-2 in it’s sensitivity to inhibitors. The motivation 
behind this approach was to create an in vivo rodent model 
of the P. berghei protein that mimics this important human 

drug target in P. falciparum. Homology modelling with 
molecular dynamics was used to predict the structure, 
substrate binding and MOA of histo-aspartic protease from 
P. falciparum [78]. Other noteworthy examples include 
homology models of dihydropteroate synthase (DHPS) from 
P. vivax and P. falciparum to explain the refractoriness of 
the P. vivax enzyme to sulfadoxine [79]. A homology model 
of histone deacetylase 1 from P. falciparum was successfully 
used to identify inhibitors in the nanomolar range with 
significant selectivity compared to mammalian cells [80]. 
Homology models combined with molecular dynamics were 
used to explain sulfadoxine resistance in mutants of P. 
falciparum DHPS [61].  

 A remarkable achievement is exemplified by the 
homology model obtained for P. falciparum farnesyl-
transferase (Ras FTase) based on a rat homologue [81]. The 
sequence identity between the target and template was quite 
low (23%) including a parasite-specific insert of approxi-
mately 100 residues in the Plasmodial protein. Using this 
model in the docking program GOLD, a range of ethylene-
diamine based inhibitors with IC50 < 50nM was identified of 
which two had an IC50 of less than 1 nM. This range of 
inhibitors was subsequently used together with the model for 
further rounds of optimization to derive new structures with 
better selectivity (up to 145 fold) towards the P. falciparum 
enzyme compared to its mammalian counterpart. Preliminary 
pharmacokinetics promisingly indicated that some of the 
compounds were metabolically stable [81-83]. The results of 
this work are encouraging and demonstrate that low 
sequence identity and the presence of inserts need not be a 
barrier to inhibitor discovery. 

 After a reliable structure for a Plasmodial drug target has 
been obtained, whether through modelling, X-ray 
crystallography or NMR, it has to be extensively analysed as 
part of the start of the lead discovery process (Fig. (1)). 
Protein quality assessment should be done to identify the 
limitations of the target structure to be used. The most 
reliable structures to be used are believed to be those from 
X-ray and NMR although one should be mindful of inac-
curacies inherent in some crystal structures. Most deposited 
structures assume isotropic variation of atomic positions and 
do not fully capture the dynamic and anisotropic nature of 
protein crystals [84, 85]. It is essential that the dynamic 
nature of the target should be taken into account for 
successful SBDD and this may necessitate the use of 
multiple structures from crystallography or NMR. This can 
be further supplemented with various in silico methods such 
as molecular dynamics or Monte Carlo sampling. While 
homology models are a valuable tool to help fill the gap of 
undetermined structures, they are expected to be less 
accurate than X-ray or NMR structures due to errors in 
alignment, as well as errors “inherited” from experimental 
structures used as templates [76]. It is generally believed that 
homology models with a 50% sequence similarity can be 
accurately and independently used in SBDD [86, 87].  

3.1.2. Receptor-Based Drug Design: Virtual High-
Throughput Screening  

 Virtual screening is the process whereby a library of 
compounds is screened against a target using computational 
methods such as docking thereby quickly and efficiently 
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eliminating the majority of compounds that will not bind to a 
defined active site and serve as a filter of the chemical search 
space (Fig. (2)).  

 Docking is a computational tool that assesses the fit of a 
ligand into a protein cavity while evaluating protein-ligand 
interactions. These include approaches using genetic 
algorithms (GOLD, [88]), energetic evaluations and flexible 
protein/ligand docking (DOCK, [89]; AutoDock, [90]; 
FlexX, [91]; LigandFit, http://www.accelrys.com; Glide, 
http://www.schrodinger.com; Cdocker, http://www.accelrys. 
com; ICM, http://www.deltahpc.com). Comparisons between 
these programs are difficult due to the use of individual 
algorithms and various ways of evaluating ligand poses 
resulting in the scoring of ligand fits being one of the major 
problems in docking. Consensus scoring resulting from the 
use of different programs to perform the same docking may 
provide alternatives [92]. Whichever program is used, there 
is always a trade-off between docking accuracy and speed 
resulting in the use of a coarse docking in virtual HTS to 
eliminate obvious unsuitable compounds. This is usually 
followed by a more accurate screen with the remaining 
compounds to identify better binders. Alternatively, different 
programs may be used to re-dock a crystallized ligand into 
its receptor to allow the user to identify the program that 
produces the best fit and which could be used in further 
docking studies. 

 Patel et al. [93] used docking partly to validate dihy-
droorotate dehydrogenase in P. falciparum as a viable drug 
target and to provide structural information about the ability 
of a selection of compounds to bind to the active site. 
Docking of known inhibitors has also been used against 
wild-type and quadruple resistant mutant forms of P. falci-
parum DHFR [94] to define a common interaction pattern 
between inhibitors and the different forms of the protein that 
describes selection criteria for further screening strategies. 

 Virtual HTS of compounds to a target structure entails 
selection of either commercially or publicly available 
chemical libraries to be screened. The libraries of ligands to 
be docked are usually constructed using two main methods 
[95] firstly, by designing a library that includes a diversity of 
compounds which samples most of the conformational space 
and secondly, designing a library based on a rational 
structure approach where information from known inter-
acting ligands is used to construct a diverse library based on 
certain functional and structural constraints.  

 Some of the major efforts to generate chemical databases 
include the Zinc Is Not Commercial (ZINC) database [96], 
National Cancer Institute (NCI, http://cactus.nci.nih.gov), 
PubChem (http://pubchem.ncbi.nlm.nih.gov), the Super 
Drug DataBase [97], the Drug Bank [98] and the 
SuperNatural database [99]. These databases are not all 
freely available for download and screening but are available 
on-line for similarity searches. Irwin and Shoichet [96] 
suggested that the "gold standard" for docking databases in 
academia are the commercially available, Available 
Chemical Database (ACD; http://www.mdli.com), ACD-SC 
(screening compound set (http://www.ccdc.cam.ac.uk)), 
Cambridge Structural Database (CSD, http://www.ccdc.cam. 
ac.uk) and the ChemNavigator database (http://www. 
chemnavigator.com). These chemical databases are but a few 

of the most popular ones used in virtual screening and 
contain compounds in the range of between a few hundred 
thousand up to 10 million. However, these databases have 
the drawback that they leave the user with the challenges of 
deciding on the protonation states, charges, tautomeric forms 
and removal of salts [96]. The ZINC database, containing 
over 8 million purchasable compounds, is the first database 
where all of these aspects have been addressed by the 
curators [96] and provides subsets such as lead-like, drug-
like, fragment-like, Verneralis-filtered, etc., which are pre-
filtered using specific criteria such as Lipinski’s rule-of-five 
(http://zinc.docking.org).  

 One of the most remarkable examples of the success that 
can be attained with virtual HTS comes from the Cancer 
Project where a library of 3.5 billion molecules was screened 
against 12 anticancer protein targets [100]. A search of this 
magnitude would have taken about 100, 000 years on a 
desktop computer. The Cancer Project ended 27 April 2007 
and a variety of hits were identified and are in the process of 
being synthesized and tested (http://www.chem.ox.ac.uk/ 
curecancer.html). In one reported case in the Cancer Project, 
over 10% of the predicted molecules were experimentally 
active. This seems to imply that virtual HTS may provide 
rapid identification of compounds against malaria as well, 
potentially even in a ‘piggy-backing’ strategy.  

 Although virtual HTS is mainly achieved through 
clusters of computers physically connected to one another 
that can screen compound sets against the target, recent 
advances in network linking of computers are allowing 
powerful grid-computing strategies to be applied to HTS. 
Grid sites are typically distributed over a large geographical 
area linked via a high speed network [101] with a large 
number of grids recently established, attesting to the power 
of grid computing. These grids include Auvergrid (http:// 
www.auvergrid.fr), E-science grid for Europe and Latin 
America (EELA, http://www.eu-eela.org), Enabling Grids 
for E-sciencE (EGEE) [102], EUChinaGrid (http:// 
www.euchinagrid.org), EUMedGrid (http://www.eumedgrid. 
org), North Carolina BioGrid (http://www.ncbiogrid.org), 
the Canadian BioGrid (http://www.cbr.nrc.ca), the Asia 
Pacific BioGrid (http://www.apbionet.org/grid) and the 
Cancer Biomedical Informatics Grid [103]. These grids 
focus on different problems ranging from genetic linkage 
analysis [101] to molecular docking [104, 105] and 
metabolic pathway modelling [106]. 

 Malaria presents various problems which can benefit 
from a grid-based approach and includes searching the 
Plasmodium genome and proteome for new drug targets, 
identification of single nucleotide polymorphisms (SNPs) on 
human as well as Plasmodium genomes relating to drug 
sensitivity, drug resistance mechanism elucidations as well 
as epidemiological monitoring of outbreaks [107]. Of these, 
drug discovery against malaria was identified as a key area. 
Various projects were initiated to use grids for large-scale 
docking of ligands in target proteins to assist in the discovery 
of new drugs against malaria. WISDOM-1 (World-wide In 
Silico Docking On Malaria) used EGEE to screen a filtered 
ZINC library against two P. falciparum plasmepsin proteins, 
(plasmepsin II and IV) with FlexX [108] and Autodock [90]. 
Around 1 million compounds were docked into each of the 
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targets and ultimately 41 million dockings were achieved in 
6 weeks (the equivalent of 80 years of CPU power). 
WISDOM-I correctly identified known inhibitors as well as 
a new group of guanidino-based compounds, which are 
being investigated further [104]. Subsequently, in 
WISDOM-II, four different Plasmodial proteins (gluta-
thione-S transferase, tubulin and DHFR from both P. vivax 
and P. falciparum) were targeted [104]. EGEE, Auvergrid, 
EELA, EUChinaGrid, EUMedGrid and FlexX was used to 
dock the same library used in WISDOM-I into the four 
selected proteins but re-docking against the co-crystallized 
compounds was performed to evaluate the docking 
parameters. During the 76 days duration of the project, 
nearly 140 million dockings were performed at a rate of 
almost 80 000 dockings per hour (equivalent to 413 years on 
a single PC). The outcome of these applications needs to be 
experimentally validated but illustrates the power of virtual 
HTS in substantially reducing search time as well as 
providing a coarse filtering of large libraries. Libraries can 
be further reduced using more accurate docking or screened 
using more stringent approaches. The use of grids as an 
initial screening tool will contribute significantly in the fight 
against malaria as more grids become available that can be 
applied to the search for new compounds. 

3.1.3. Receptor-Based Drug Design: Pharmacophore 

Models  

 Receptor-based pharmacophore approaches use resolved 
structures to derive pharmacophore features and subse-
quently, pharmacophore models, which are a set of structural 
features in a molecule that is recognized at a receptor site 
and is responsible for the molecule’s biological activity 
[109]. Preference should be given to structures resolved in 
complex with ligands due to conformational changes 
associated with ligand binding and the direct inference of 
protein-ligand interactions from the complexes. From these 
structures, a negative image of the active site can be 
constructed, which complements the interactions between 
the receptor and ligand described by pharmacophore models. 
These pharmacophore models are subsequently used to 
screen chemical libraries to find compounds matching the 
desired features. Hits identified during virtual HTS should 
then be filtered and ranked using docking techniques and the 
best scoring compounds then tested in vitro. Advantages of 
pharmacophore-based methods lie in the generation of 
divergent sets of compounds consisting of different scaffold 
structures and the derivation of the correct geometric orien-
tation of the pharmacophore thereby providing directionality 
during the search for ligands and the identification of novel 
features [110]. The inclusion of dynamic descriptors in 
receptor-based pharmacophore strategies were developed to 
incorporate the inherent flexibility of protein structures in the 
drug design process and to reduce the entropic penalties that 
occur upon ligand binding to a target structure [111]. This 
led to a remarkable improvement in results compared to rigid 
pharmacophore models in a test case on HIV-1 proteases 
where 85-90% of known inhibitors were distinguished from 
drug-like non-inhibitors [112].  

 Due to the difficulty in obtaining 3D structures for 
Plasmodial proteins, very few receptor-based pharmacophore 
studies have been performed. Examples include the screen-

ing of a compound library of 2.6 million compounds against 
a receptor-based pharmacophore of P. falciparum spermidine 
synthase [113]. Seven potential inhibitors were identified 
from a subset of 28 compounds which were confirmed to 
bind to the protein using NMR techniques. Using a dynamic 
receptor-based pharmacophore approach resulted in the 
identification of two unique inhibitors (out of 9 tested in 
vitro) with micromolar Ki values against the protein. These 
inhibitors show great potential for lead optimization and 
further studies are currently underway (Burger et al. 
unpublished).  

3.1.4. Receptor-Based Drug Design: Fragment-Based 

Design  

 Fragment-based drug design is recognised as a viable 
alternative to high-throughput screening [114, 115] and 
relies upon a library of smaller but more diverse ligands 
(molecular weights less than 200-300 Da) that are docked 
into the cavities of a protein. The high scoring hits are then 
used in subsequent steps of the rational drug design process. 
The motivation behind fragment-based screens is that the 
chemical space can be sampled much more efficiently with 
smaller, less complex molecules [115] of which the binding 
affinity per atom that binds to a protein can be just as good 
as an effective drug. Moreover, the resulting molecules are 
likely to have a better ligand-efficiency [116]. With 
structural insights, these fragments can be optimized much 
quicker to a lead compound stage [117] although linking the 
smaller ligands together to form an active compound can be 
a challenge [114]. The contribution of the specified group to 
the overall binding energy or potency can be calculated using 
a Group Efficiency score [115, 118]. This score is based 
upon changes in free energy of binding to a particular group 
of matched pairs of compounds during structure-based 
fragment optimization divided by the number of heavy atoms 
in the added group. Group efficiencies reveal the global 
efficiency or inefficiency of theoretically-derived additions 
and allows inference of which parts of the active site are 
responsible for contributing most to the affinity of the lead 
series by comparison of compounds with known binding 
modes. Currently, fragment optimization or fragment 
growing methods contributes to de novo drug design 
following classical medicinal chemistry strategies. As such, 
most of the work done on this aspect of receptor-based drug 
design is highly exploratory with a few examples encom-
passing integrated medicinal chemistry-like programs. The 
role of in silico fragment-based strategies is currently 
supportive and integrated with virtual screening, creation of 
virtual libraries, docking and experimental methodologies 
including NMR.  

 UCB Celltech proposed a novel strategy for fragment 
optimisation by combining modelling and medicinal 
chemistry resulting in very high ligand efficiencies of the 
resultant inhibitors [116]. Other structure-based approaches 
including the combination of virtual screening with NMR or 
crystallography, have been used by both academia and the 
private sector with Plexxikon, Astex and Abbott Labora-
tories claiming various levels of success [116, 119]. 
However, the exact magnitude of the contribution of these 
strategies to new therapeutics is unclear and evidence of 
applications of fragment-based drug design methods to the 
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malaria parasite is still lacking. There has been some 
criticism against the reductionist approach used in fragment-
based screening but this is mainly towards the type of study 
that relies on smaller molecules that can be detected and 
used in in vitro studies [120].  

3.2. Ligand-Based Drug Design 

 In the absence of a 3D target structure but with access to 
a set of structurally divergent compounds, in silico ligand-
based approaches may be applied (Fig. (2)). All metho-
dologies in this approach aim to reduce the chemical search 
space and may include similarity searching, sub-structure 
searching, SAR/QSAR and ligand-based pharmacophores. 
These methods are usually tightly integrated since this 
approach is based on the assumption that molecules with 
similar physiochemical properties would exert a similar 
biological activity [121].  

3.2.1. Ligand-Based Drug Design: Similarity Searching 

Substructure Searching and QSAR 

 Similarity and substructure searching are some of the 
most diverse and useful tools in the drug design tool kit. 
Similarity searching, substructure searching and QSAR have 
been widely used to explore the chemical space of known 
inhibitors in the absence of a 3D target structure. Although 
this approach is hampered by very large chemical search 
spaces, it provides valuable information with regards to 
identifying common scaffolds and predicting activity. 

 Similarity searching makes use of molecular fingerprints 
in which are encoded fragment-type descriptors depicting the 
presence or absence of particular chemical features. 
Substructure searches can be defined as a search performed 
on complete structures to identify a specific query sub-
structure. Maximum common substructure approaches are 
often preferred since they are more flexible compared to 
traditional similarity searching, which only considers global 
similarities between structures [122]. Similarity searching 
can be used to complement substructure searching since it 
often returns alternative structures. The predominant use of 
these methods is currently in the design of specific libraries 
to be used in virtual HTS [123]. However, these methods can 
also be used to filter databases and design custom libraries to 
be screened in silico. The use of similarity and substructure 
searching has become readily accessible by projects such as 
PubChem and the DrugBank and it is foreseen that it will 
play an increasingly important role in the drug discovery 
pipeline for malaria.  

 If a set of structurally divergent compounds with known 
inhibition activities is available, a QSAR can be determined 
and used to predict the inhibition potential of new com-
pounds statistically. QSAR can include various levels of 
information that are captured in 2D-QSAR, 3D-QSAR or 
4D-QSAR models. Several QSAR studies have been perfor-
med on malaria with various levels of success [124-129].  

 A linear discriminant-based QSAR model approach was 
used to screen a set of compounds for inhibitors of P. 
falciparum Ras FTase and resulted in two new compounds 
being identified. These compounds were tested in vivo and 
both compounds showed inhibition. One compound, aryl-
aminomethylenemalonate, was the first of its kind to show 

antimalarial activity. In another study by Mahmoudi et al. 
[128] 127 compounds previously identified to act against the 
liver stages of P. yoelii, were used to derive a QSAR model 
which was subsequently used to screen databases for new 
compounds active against the liver stages. Various new 
compounds including known antiretroviral and antifungal 
agents as well as two ionophores that inhibit parasite 
development were identified.  

3.2.2. Ligand-Based Drug Design: Ligand-Based 

Pharmacophore Models and QSAR 

 If a divergent set of compounds active against a specific 
target is available, pharmacophore features can be extracted 
and used in the generation of ligand-based pharmacophore 
models, which in turn can be screened against chemical 
databases to identify new lead compounds [130]. These 
pharmacophore models can additionally be used to identify 
inhibitors with a wide diversity of backbones (scaffold-
hopping) and identify new ligands with different chemotypes 
but which still have a similar biological activity [131]. As 
with the receptor-based pharmacophore approach, the 
advantage lies in the ability to generate a diverse set of 
compounds [110].  

 The use of ligand-based pharmacophore approaches has 
evolved as an important technique in the fight against 
malaria. Parenti and co-workers (2004) successfully used a 
3D-QSAR pharmacophore model to quantitatively predict 
inhibition constants of compounds for P. falciparum DHFR 
[132]. They used multiple methods to validate the model, 
such as Fisher's randomization, and upon testing the 3D 
pharmacophore was able to correctly identify active DHFR 
inhibitors from the MDL Drug Data Report (MDDR) 
database (www.mdli.com). Using this approach, and various 
statistical measures, they showed that the 3D pharmacophore 
with quantitative predictability could be utilized in virtual 
screening of databases and libraries. In another study 
Schormann et al. (2008) used various crystal structures of 
the T. cruzi DHFR-TS complex to derive 3D pharmaco-
phores and a 3D QSAR model [133]. The model was tested 
against a selected compound set and the quality of the 
predictions showed that it could be used in further studies. 
They went on to propose refinements that can be applied to 
the 3D QSAR model. 

 The relationships derived from statistical analyses can 
also be embedded in pharmacophore models and used in 
virtual screening of chemical databases which may lead to 
the discovery of new inhibitors and/or novel scaffold 
structures. In a study by Bhattacharjee et al. [134, 135], it 
was shown that from a set of divergent compounds 
(tryptanthrin derivates) a 3D-QSAR pharmacophore model 
could be derived and were found to be both statistically and 
mechanistically significant in the identification of new-
antimalarial compounds. Five aminoquinazoline derivatives 
were identified showing potent in vivo activity in mouse 
malarial screening tests. The specific target with which 
tryptanthrin derivatives interacts is unknown as for many 
other antimalarial drugs, therefore 3D-QSAR pharmaco-
phore models may hold a key to understanding existing 
antimalarials and finding new antimalarials. 
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 A pharmacophore model derived from 17 antimalarial 
compounds was used to search for new compounds using 
multiconformer libraries [135]. Various new compounds 
were identified and shown to be active in vitro against 
various strains of resistant P. falciparum. Another ligand-
based pharmacophore derived from chalcones, was used to 
identify important features such as an aromatic ring, which 
plays an important role in chalcone activity [134]. Dascombe 
et al. [136] used a metaquinine pharmacophore model to 
identify new compounds based on the proven solubility and 
oral bioavailability of metaquinine. This was followed by 
various in vitro methods that confirmed the results and 
demonstrated the use of pharmacophores to help identify 
possible new 4-aminoquinine antimalarials. Drew et al. 
[137] used in silico quantum mechanical methods to evaluate 
all the known crystal structures of artemisinin from which a 
pharmacophore model for artemisinin was constructed 
consisting of various deoxyartemisinin and deoxyarteether 
derivatives. Subsequent experiments showed that substi-
tution of the O3 atom has the most effect on the generation 
of the carbon-centred radical, which is responsible for the 
antiparasitic action of artemisinins. This study also identified 
the most important bonds in the artemisinin and provided the 
groundwork for the synthesis of new derivatives. 

4. UNIQUE POSSIBILITIES IN EXPLOITING 
PLASMODIAL PROTEIN CHARACTERISTICS 

 Most regulatory proteins are often of a multiprotein or 
multidomain structure although most currently used phar-
maceuticals target monomeric active sites. The complex 
networks of protein-protein interactions that govern 
coordinated cellular responses provide attractive targets for 
therapeutic interventions. In the malaria parasite, several 
Plasmodial proteins that have been described as drug targets 
and are clinically targeted, have the additional distinction of 
also being multidomain or bifunctional proteins including 
DHFR-TS, dihydro-6-hydroxymethylpterin pyrophospho-
kinase-dihydropteroate synthase, S-Adenosylmetionine 
decarboxylase-ornithine decarboxylase and others. It is 
therefore worthwhile exploiting these unique biological 
characteristics in the development of antimalarials. In silico 
methodologies that have been applied in other organisms 
become very attractive and should be tested against 
multidomain proteins in Plasmodia. Programs such as 
DOMINANT [138] allows deconvolution of protein 
structures such that domains and domain boundaries can be 
identified. This obviously depends on the availability of 
multidomain Plasmodial structures, of which there are few. 
Other computational methods for the analysis of protein-
protein interactions have also been reviewed [139]. Our 
group has followed the approach of first generating multiple 
models (from multiple Plasmodium species) of each domain 
of such proteins followed by “each-against-each” docking to 
predict the potential organisation of bifunctional protein 
complexes (Wells G.A., unpublished). Again, in lieu of the 
unique nature of the protein-protein interaction network of P. 
falciparum, this might identify novel characteristics suitable 
for targeting [41].  

 If the multidomain nature of a drug target is essential to 
the activities or regulation of the said protein, non-active site 
inhibitory strategies can be exploited. However, the large 

surface areas of protein interaction sites make inhibitory 
ligand binding predictions problematic. The identification of 
binding ‘hot-spots’, the so-called residues directly respon-
sible for the interaction, is becoming computationally viable 
through applications like normalised interface propensities 
derived from rigid body docking [140]. Moreover, structures 
of proteins may be used to identify epitopes involved in 
protein-protein interactions through protein epitope mapping 
that leads to the design of scaffold structures that bind these 
areas but which have drug-like ADMET properties [141]. 

 Several malaria proteins are also characterised by 
parasite-specific inserts that may be functional and quite 
often contain intrinsically disordered regions [54]. Many of 
the current small molecules that block protein-protein 
interactions lead to an order-to-disorder transition of one of 
the partner proteins and this association is proposed as a 
novel strategy to develop inhibitory small molecules [142, 
143]. 

5. CONCLUDING DISCUSSION AND FUTURE 
PERSPECTIVES 

 The current portfolio of the Malaria Medicine Venture 
(http://www.mmv.org) lists less than 10 discovery projects 
and another eight antimalarial drugs, mostly reformulations 
of drug combinations at pre-clinical or clinical trial stages. 
About 12 drugs or drug combinations are currently available 
for prophylaxis and treatment of P. falciparum and P. vivax 
of which only a few are still clinically useful due to 
widespread drug resistance ([22] and references therein). 
Some of the current drugs in use are already older than 50 
years and have in addition serious limitations such as costs 
and poor safety profiles [27, 31]. The cost of launching new 
drugs have risen sharply in the last three decades and 
consequently only 1% of the drugs launched between 1975 
and 2004 were aimed at tropical diseases [144] representing 
about 0.2% of the budget spent on drug discovery by the 
pharmaceutical industry in 1999 [145]. The traditional drug 
discovery and development process is high-risk, costly and 
time consuming and the implementation of computational 
methods is gaining in popularity in attempts to restructure 
and streamline this process (see e.g. [146] and references 
therein). In one successful study the entire drug discovery 
process, which lasted less than two years before reaching 
clinical trial status, was based on in silico methods integrated 
with medicinal chemistry [147].  

 New developments such as the launching of the genome 
sequences of P. falciparum in 2002 and for P. vivax and P. 
knowlesi in 2008 [148-150] and increased funding by 
governments, public-private partnerships and philanthropic 
organizations have raised expectations for the prompt disco-
very of new antiparasitic drug entities. Although a wealth of 
new knowledge on the basic and distinctive biology of the 
malaria parasite became evident, this scientific knowledge 
has not yet been translated into modern therapeutics [39].  

 In silico antiparasite drug discovery methods are only at 
the initial stages of development and are clearly comple-
mentary to other in silico methods (bioinformatics and 
related disciplines), which need to be integrated with the 
more traditional biology and chemistry disciplines, collec-
tively described as chemogenomics [151]. The formidable 
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challenges facing scientists wanting to explore the 
chemogenomics knowledge space of the malaria parasite for 
discovering new leads from the millions of chemical 
compounds stored in databases, have been reviewed [18]. 
The chemical universe is estimated to contain from 1012 to 
10180 drug-like compounds [152] that are impossible to 
screen with standard biological assays. In silico approaches 
allow screening of up to 1012 molecules in compound 
libraries and thus early identification of potential leads. This 
review largely focused on the application of in silico 
methods for HTS and in solving of the three-dimensional 
structures of potential protein targets, which are either 
difficult to express or to obtain in sufficient quantities for 
more traditional X-ray crystallography or NMR studies [18]. 
Various structure-based drug design strategies were next 
reviewed with special emphasis on receptor-based and 
ligand-based drug design methods applied to malaria 
proteins. The application of these methods reduces the num-
ber of leads to be assayed and to be chemically modified, 
guided by medicinal chemistry principles. It is apparent that 
the quality of the derived homology models is in many cases 
sufficient to study and identify quality leads but it is still too 
early to judge the value of these methods for antiparasite 
drug discovery since in-depth experimental validations are 
currently mostly lacking. This review did not include a 
detailed discussion of the importance of ADMET in the drug 
discovery process, an evolving methodology which in a new 
lead optimization paradigm, draws on information tech-
nology resources such as artificial neural network programs, 
relational databases, and principles of systems biology as 
well as results of toxicoproteomics and toxicogenomics 
experiments (see e.g. [153, 154]) and is rightfully a stand-
alone topic. 

 It is worth noting that in silico-based methodologies for 
drug discovery are still evolving [146] and only now 
emerging as an integral but promising field in antimalarial 
drug discovery research. The required expertise, which is 
knowledge-based and not simply screening, is still being 
developed and informed decisions are dependent on the 
quality of the starting materials including the quality of 3D 
structures of proteins whether derived by X-ray crystallo-
graphy, NMR or homology modelling and the quality of 
chemical libraries. In this context it is worth taking note of 
the criteria that was used in assembling three types of 
chemical libraries for drug discovery for neglected diseases: 
one diverse in silico library for virtual screening, one diverse 
screening compound library, and a focused compound 
library for the discovery of kinase inhibitors [24]. Natural 
products have been used for millennia as medical remedies 
and more recently as starting compounds for modern 
medicines. However, interest in the development of natural 
products by the pharmaceutical industry has declined. Given 
the historic role of plant remedies in the treatment of malaria 
[155] it is noteworthy that there are renewed attempts to 
bring natural products back into use within the lead gene-
ration paradigm. These strategies include the development of 
drug-like natural product libraries and for example, merging 
of ethnopharmacology with virtual screening for lead 
structure discovery [156-159].  

 In silico methods are not stand-alone methodologies and 
need to be closely integrated with bench-type experimental 

studies. Clear evidence of the benefits of such an integrated 
approach is revealed by a report in which the results obtained 
in a malaria high-throughput screening of a library of 1.7 
million compounds were analysed by in silico methods 
[160]. These authors identified a subset of about 17 000 
compounds with potent antimalarial activities, which after 
using several clustering approaches and docking experiments 
revealed significant information on the MOA and/or protein 
targets of selected compounds as well as novel chemical 
scaffolds as leads for further studies. The expediency of 
using 3D protein structures derived from both homology 
modelling and crystallography in antimalarial drug discovery 
is exemplified by the successful identification of new 
compounds with promising antimalarial activity against both 
wild-type and mutant P. falciparum [69].  

 It is apparent from the in silico methods described in this 
review and the examples provided that the embedded 
information in malaria parasite genome sequences has an 
increasing impact on the delivery of new knowledge and 
more importantly, on novel applications of this knowledge in 
the control of the malaria disease. There is thus every reason 
to be optimistic about significant breakthroughs in the next 
few years.  

ACKNOWLEDGEMENTS 

 LMB and AIL are members of the South African Malaria 
Initiative (http://www.acgt.co.za/SAMI) and acknowledge 
the Department of Science and Technology of South Africa 
for funding the SAMI programme. TAPdB and PBB hold 
fellowships from the South African National Bioinformatics 
Network and GAW is the recipient of a South African 
National Research Foundation (NRF) Prestigious bursary. 
Research is funded by South African NRF grants (2047008, 
2053368, FA2006040400011 and FA2007050300003). 
Authors are supported by the French-South African SAFETI 
program. EM is supported by a grant from Agence Nationale 
de la Recherce (ANR-06-MDCA-014). Any opinions, 
findings, and conclusions or recommendations expressed in 
this paper are those of the author(s) and therefore, the NRF 
does not accept any liability in regard thereto. 

ABBREVIATIONS 

SAR = Structure Activity Relationship 
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