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1. Introduction 

Group Decision Support System (GDSS) is 
an interactive computer-based environment 
that supports concerted and coordinated team 
effort towards completion of joint tasks [1]. 
This collaborative environment is made up 
from a collection of highly configurable tools 
(i.e., brainstorming, voting and ranking, 
multi-criteria analysis, action planning, 
agenda setting etc.) which require a high 
level of expertise for an effective use to 
support complex decisions [2]. The strong 
relationship between the GDP outcome and 
the presence of a skilful facilitator to properly 
configure the available tools is thoroughly 
presented in many field studies of GDSS 
research [3]. Nevertheless, the presence of a 
scarce resource, such as a skilful facilitator, 
rapidly becomes the most demanding 
challenge in the wide spread of GDSS 
technology in organizations. To reduce the 
dependence on the facilitator, the participant-
driven GDSS was proposed as a promising 
direction to leverage the skills and abilities of 
each group member [4]. However, this 
approach is highly constrained by the 
cognitive complexity associated with the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

construction, coordination and execution of 
GDP by inexperienced users. 

To overcome the problem of cognitive 
complexity Briggs and de Vreede [5] have 
introduced the thinkLet (TL) concept, defined 
as a discrete decomposition unit that integrates 
a specific software tool, its configuration and a 
script specifying the proper usage of the tool. 
Consequently a TL may be considered a 
predefined interaction protocol among the 
GDSS’s users, an interaction mediated and 
structured by a tool from the GDSS software 
package. As a result, the GDP is structured as 
a flow of discrete interactions, each of them 
being reflected in the specific TL that 
codifies the essential knowledge to execute 
collaborative processes.  

The paper investigates the complexity 
associated with the GDP design in relation 
with some basic contextual factors such us 
the problem complexity, the users’ creativity 
and the problem space complexity. The 
remaining part of the paper is organized as it 
follows. The next section describes the main 
components of an envisioned collaborative 
software tool that act as a collaborative 
working environment for the GDP design. 
These components are implemented and 
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tested in a socio-simulation experiment 
described in Section 3. As in many field 
studies of GDSS research, the experimental 
results show clear self-organizing capabilities 
as regards the longitudinal use of the 
collaborative environment to design the GDP, 
but simultaneously a high dependability of 
performance on the contextual factor. From 
the engineering standpoint of constructing 
purposeful facilitation tools for e-meetings, 
these results are discussed and concluded in 
the last section. 

2. The Simulation Model the 
GDP design 

The socio-simulation model is developed 
from the perspective of envisioning a 
collaborative software tool that is used by the 
GDSS’s users to co-design the GDP. From 
this standpoint, the tool acts as a stigmergic 
environment that integrates and coordinates, 
on a social-scale, the facilitation knowledge 
of the GDSS’s users.  Conceptually this 
perspective is similar with the way in which, 
for instance, a collaborative CAD software is 
used to coordinates and integrates the specific 
engineering knowledge in the field 
architectural design [6]. Consequently, the 
socio-simulation basically mimics the users’ 
conceptual ‘navigation’ over the semantic 
structure of the problem space composed of 
TLs. It implies the design of a population of 
agents and a shared environment where the 
agents are localized and moved over it. For 
the collaborative modelling of GDP the 
stigmergic environment is the software tool 
which support the manipulation of the 
conceptual problem space that comprise all 
the TLs discovered and documented by the 
users community (so far there are over 70 
TLs acknowledged in literature [7]), while 
the agents are the users responsible to define, 
execute and evaluate the GDP (a path through 
the conceptual space of the available TLs). 

 

The semantic environment for the 
GDP design 

According to Parunak [8], a stigmergic 
environment assumes the definition of three 
main components: 1) the topology, 2) the 
states, and 3) the process. Structurally, the 
topology is usually represented as a fully 
connected weighted graph that codifies the 
facilitation knowledge of group decision 
(Figure 1). This knowledge presumes 
correlated information among the users and 
the TLs, reflecting the users’ evaluation of 
the TL’s performance (a node in the graph) 
relative to a problem type. The performances 
are stored for each “problem type” in a 
variable associated with each edge of the 
graph. The “problem type” is simply codified 
through a unique ID to distinguish among 
different performances when they are read, 
during the modelling phase of the GDP, or 
modified, after the GDP has been executed 
and evaluated by the agents. Evaluation of a 
GDP model entails a subjective assessment of 
the model, after its execution, against some 
performance criteria that quantifies the 
efficiency, effectiveness and satisfaction with 
the GDP. Note that for the rationale of our 
simulation the composite criteria to quantify 
the TL’s performance are irrelevant, it just 
serves as a unified denominator to measure 
the GDP outcome. 

The performances from all the graph’s edges 
describe the state of the environment over 
time. Usually, the environment executes a set 
of processes on the variables (as aggregation 
end evaporation in the case of ants [8]). For 
the purpose of our simulation, we apply a 
simple additive rule to simulate the 
aggregation of performances. After the 
evaluation of a GDP model that corresponds to 
a certain problem type, a path through a 
number of n nodes TL1,…,TLn, the aggregation 
rule may takes the following form: 

Pj,k(TLk,t) = Pj,k(TLk,t-1) + Pj,k(TLk)/λ (1) 

 

 

 

 

 

 
 

Figure 1. The simplified topology for the conceptual environment represented in UML.  
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where t represents the temporal component of 
the model which is incremented by one for 
each successive use of the GDSS - it 
practically corresponds to a simulation tick; k 
is the TL’s identification index from the set 
of TLs used to model the GDP; Pj,k(TLk) – is 
the performance of the k-th TL evaluated 
from the side of TL j; Pj,k(TLk,t) and 
Pj,k(TLk,t-1) are the new and previous values 
of the performances stored on the edge 
between the TLs j and k; and λ is a tuning 
parameter, arbitrary chosen, to weight the 
impact of the last evaluation. 

The agents’ behaviour over the 
semantic environment 

The agents are users who interact with the 
collaborative tool to design a GDP. 
Conceptually, at any time an agent is 
“located” in a node (TL) of the conceptual 
problem space, performing one of the 
following basic actions:  

- evaluating the preference for the next 
possible TL (or TLs) that are going to be 
executed given the current context of the 
GDP implementation;  

- selecting the next best TL (or a group    
of TLs) for further completing the     
GDP model;  

- executing the TL (or the group of TLs) 
from the model, and finally;  

- assessing the performance for the 
executed TLs.  

The assessment activity is simulated using 
the formula (1), while the first three actions 
with Luce’s selection axiom [9]: 
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where pjk represents the preference for an 
alternative TL, i.e. the selection probability of 
the TL k from the TL j; i is the index of TLs 
connected from the side of node j (in fact all 
the m TLs available in the problem space as 
long the graph is fully connected); and T is a 
positive subunitary parameter used to define 
the deviation from a pure rational behaviour 
(for T = 1 we have a random selection 
behaviour, while for T = 0 a deterministic one). 

The above formula is the most common 
model of stochastic decisions due to its 

correlation with the psycho-social 
observations of human behaviour in several 
domains. As a result of normalization, the 
preferences for the unexploited TLs are 
diminishing after each performance update. 
This mechanism replicates the pheromone 
evaporation process of the real ants (e.g. even 
if a TL has been positively evaluated after an 
execution of a GDP model, the associated 
preference will decrease once a better 
alternative is discovered and more frequently 
used). Under complex circumstances when 
TL’s selection depends on other users, or the 
performances available on the edges are 
uncertain or incomplete, or there is 
impossible to evaluate the performance of a 
TL due to any real constraint (i.e. temporal, 
cognitive, economic, etc.), we consider the 
user who models the GDP to have limited 
cognitive capacity (bounded rationality). 
Note that Luce’s selection axiom does not 
specify the reasons for the “bounded 
rationality”; instead, it tries to generalize the 
selection behaviour of human decision-
makers through the parameter T which may 
be interpreted as the evaluation costs or 
uncertainty associated with the quantification 
of TLs’ performance (on one side, when T=0, 
there is no uncertainty associated with the TL 
selection, while on the other side, when T=1, 
there is a completely random selection). 

3. Experimental Results 

To evaluate the cognitive complexity for 
modelling the GDP we conducted a virtual 
experiment implemented in the NetLogo multi-
agent simulation environment [10] (Figure 2). 
Note that the NetLogo implementation includes 
some additional variables which are beyond the 
scope of this paper. 

The experiment presumes that users are 
facilitating the e-meeting by trying to co-
define, from a metacognitive stance, the GDP 
model for a problem type. Defining the GDP 
model implies the conceptual navigation in 
the problem space in order to find the best 
sequence of TLs that maximise the model’s 
performance. The model’s performance is 
simply computed by averaging the “Initial 
Utility” values for the TLs that are 
composing the GDP. These values are 
randomly chosen and assigned when the 
simulation is initialized. 
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The section presents the normalized entropy 
for 100 successive explorations (iterations) in 
relation with three factors that potentially 
could impact over the GDP models’ 
performance:  

- problem complexity (PC) – defined as the 
number of distinct TLs that compose a 
GDP model;  

- social temperature (T) – which stands for 
the T parameter as defined in Eq(2); and  

- complexity of the problem space (PS) – 
defined as the total number of TLs that 
compose the GDP modelling problem space.  

An exploration stands for a complete 
execution cycle of a GDP. It includes three 
consecutive phases: 1) finding a suitable 
model through the successive selection (using 
the Eq(2)) of TLs that compose the GDP 
model for a given problem type; 2) executing 
the identified model and assessing its 
performance by reading and averaging the 
predefined performance values of all the TLs 
that compose the GDP model; 3) assessing 
the model by updating the performances 
values (using the Eq(1)).  

The statistics are aggregated from 30 
experiments for a relatively simple set of 
experimental values for the observed parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The auto-organization of relations between 
TLs (i.e. the performance update after 
successive evaluations) entails a decrease of 
freedom due to the emergence of contextual 
constraints that reduce, in time, the 
probability to select some TLs (i.e. the 
preference for the available TL as defined in 
Eq(2)). For a problem type, the degree of 
freedom corresponds to the probabilistic 
distribution of preferences for the available 
alternatives that is equivalent with the 
Shannon normalized entropy [11][12]. The 
Shannon normalized entropy for the selection 
of a TL is given by: 
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where pjk - represents the preference, the 
selection probability of the TL k from the TL 
j; i – is the index for the TLs connected from 
the node j (in fact, all the m TLs available in 
the problem space).  

When the recorded performances are equal 
for all the available modelling alternatives, 
the user is considering the entire problem 
space when he selects a feasible TL (the 
probabilities from the Eq(2) being equally 
distributed entail an entropy equal with 1). 
Contrary, when the recorded performances 

 

Figure 2. The interface of the NetLogo simulation environment for the implemented experiment. 
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favour a single alternative, the user will have 
no freedom in the selection of the best TL (all 
the probabilities from formula (2) being 0 
excepting the best alternative that is 1, entails 
an entropy equal with 0). Thus, the entropy 
associated with TL’s selection is a measure of 
cognitive complexity for modelling the GDP. 
Moreover, it is a local metrics that can be 
computed for each TL’s selection activity for 
modelling the GDP. 

The impact of problem complexity 
experimental variable over the 
cognitive complexity of GDP design  

Figure 3 shows the cognitive complexity 
associated with the GDP modelling for 
different values of the PC experimental 
variable. The data is obtained for a problem 
space composed of 30 TLs and T=0.7. 
Since this measure is computed on the basis  

 

of the local data for each selection action 
(the performances available on the outward 
edges from the current TL), the figure 
corresponds to the average of entropies for 
all the TL selection actions needed to 
complete the GDP model (3, 5 and 7 
successive TLs, depending on the value 
assigned to the PC experimental variable).  

The data from the Figure 3 shows that 
problem complexity has a great impact over 
the entropy (around 190 iterations are 
required to decrease the entropy close to 0 for 
a PC=7, while less than 5 iterations are 
needed for a PC=3). These results prove that 
for complex problems there is an increasing 
need for experimentation, learning and 
creative use of the GDSS. At the same time, 
they contrast with the real use of GDSS in 

organizational settings where the complex 
problems are often less frequent and 
consequently there is not an adequate amount 
of opportunities to explore the GDSS 
functionalities. On the other hand, problem 
complexity concerns the users’ satisfaction in 
the GDP design as well. PC is recognized by 
many authors to often be a subjective factor 
that measures the availability of relevant 
information [13]. The more informed/ 
predictable the GDP design is (i.e. the 
individual entropy smaller) the smaller is the 
subjective users’ perception over the problem 
complexity. Consequently, the cognitive 
complexity for complex problems may be 
lessening by incorporating functionalities that 
provide relevant information that minimize 
the problem space for each discrete activity 
of GDP modelling. As for any design tool, 
these basic activities are the selection and 
elaboration of a model. 

 

 

 

 

 

 

 

 

 

 
The impact of social temperature 

experimental variable over the 
cognitive complexity of GDP design 

Figure 4 shows the cognitive complexity 
associated with the GDP design for 
different values of T. The data is obtained 
for a problem space and a PC composed of 
30 and 5 TLs respectively. The 
performances are better for higher values 
of T as a result of exhaustive exploration 
of the problem space. Consequently, when 
the design problem for a GDP is in the 
learning phase, it is preferably to 
encourage a creative use of the GDSS by 
neglecting the suggestions offered as a 
result of computing the collective 
preferences. Obviously, this issue 
presumes a high frequency of that problem  

 
Figure 3. The normalized entropy of the GDP design for different problem complexities. 
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type and a long-term use of the GDSS in 
organization to compensate the extra time 
required for experimentation purpose as 
depicted in Figure 5. Note that as long the 
T parameter measures the degree in which 
preferences are considered by the users 
during the GDP design, at the same time it 
may be used as a post factum measure to 
quantify the users’ creativity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The impact of problem space complexity 
experimental variable over the 
cognitive complexity of GDP design 

Figure 6 shows the cognitive complexity 
associated with the GDP modelling in a 
problem space with a different number of TLs. 
The data is obtained for a simple problem type 
composed of three TLs with T= 0.7. One can 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 6. The normalized entropy for the GDP design in a problem space of different dimensions. 

 

Figure 5. The transition maps of the GDP performance for different T values.  

 

Figure 4. The normalized entropy of the GDP design for different T values. 
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notice that the complexity of the problem 
space has basically no impact over the 
convergence of the entropy function. This is 
one of the core arguments for employing 
stigmergic coordination mechanisms for 
global optimization problems which remains 
scalable and effective in open, dynamic and 
uncertain environments. On the other hand, 
an increase of available TLs for modelling 
the GDP will automatically result in an 
increase of alternatives to model it. In the 
GDSS research field has been experimentally 
shown that, as the number of decision 
alternatives are growing, the decision makers 
are tempted to consider less of them [14]. 
This implies an accelerated discrimination of 
the possible alternatives through the 
intensification of the GDP model evaluation. 

4. Conclusions  

The work from this paper investigated some of 
the basic contextual factors (such us the 
problem complexity, the users’ creativity and 
the problem space complexity) that have a 
significant impact over the cognitive 
complexity associated with GDP design in e-
meetings. The investigation has been conducted 
by implementing and testing in a socio-
simulation experiment an envisioned 
collaborative software tool that acts as a 
stigmergic environment for modelling the GDP. 

The results extend the conclusions presented in 
[15][16], showing that the dominant factor  for 
the wide adoption of GDSS technology in real 
organizations still remains the problem 
complexity. It may be lessening by 
incorporating functionalities that provide 
relevant information for the GDP design (i.e. 
the knowledge resulted from the subjective 
evaluation of each GDP from a large 
community of users) that entails a greater need 
for experimentation, learning and creative use 
of the GDSS. Moreover, the performances are 
better for higher values of the social 
temperature as a result of exhaustive 
exploration of the problem space. Consequently 
it is preferably to encourage a creative use of 
the GDSS when the GDP modelling problem is 
in the learning phase. Conversely, the 
complexity of the problem space has basically 
no impact over the cognitive complexity 
associated with the GDP design. This shows 
why the emergent functionalities of a 

facilitation tool for the GDP design should be 
engineered around some simple stigmergic 
coordination mechanisms. 
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