About
104
Publications
20,315
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,835
Citations
Introduction
I am a postdoctoral researcher studying a range of space weather and space climate related topics.
Current institution
Additional affiliations
November 2012 - present
Publications
Publications (104)
Solar‐wind forecasting is critical for predicting events which can affect Earth's technological systems. Typically, forecasts combine coronal model outputs with heliospheric models to predict near‐Earth conditions. Ensemble forecasting generates sets of outputs to create probabilistic forecasts which quantify forecast uncertainty, vital for reliabl...
How the solar wind influences the magnetospheres of the outer planets is a fundamentally important question, but is difficult to answer in the absence of consistent, simultaneous monitoring of the upstream solar wind and the large‐scale dynamics internal to the magnetosphere. To compensate for the relative lack of in‐situ solar wind data, propagati...
We present two multipoint interplanetary coronal mass ejections (ICMEs) detected by the Tianwen-1 and Mars Atmosphere and Volatile Evolution spacecraft at Mars and the BepiColombo (0.56 au ∼0.67 au) upstream of Mars from 2021 December 5 to 31. This is the first time that BepiColombo is used as an upstream solar wind monitor ahead of Mars and that T...
We present SIR‐HUXt, the integration of a sequential importance resampling data assimilation scheme with the HUXt solar wind model. SIR‐HUXt assimilates the time‐elongation profiles of Coronal Mass Ejection (CME) fronts in the low heliosphere, like those extracted from heliospheric imager (HI) data. Observing System Simulation Experiments are used...
Earth’s orbit and rotation introduces systematic annual variations in geomagnetic activity, most notably via the changing orientation of the dayside magnetospheric magnetic field with respect to the heliospheric magnetic field (HMF). However, aside from these geometric effects, it is generally assumed that the solar wind is randomly sampled through...
Accurately forecasting the arrival of coronal mass ejections (CMEs) at Earth is important to enabling mitigation of the associated space weather risks to society. This is only possible with accurate modeling of the event. To do so, we must understand the propagation of a CME through the heliosphere and quantify the performance of models through com...
We study Universal Time (UT) variations in the magnetospheric response to Coronal Mass Ejection (CME) impacts, using the example of the two CMEs that led to the destruction of 38 out of 49 Starlink satellites in early February 2022. We employ the Expanding‐Contracting Polar Cap model to analyze the variation in the size of the ionospheric polar cap...
We present the development of SIR-HUXt, the integration of a sequential importance resampling (SIR) data assimilation scheme with the HUXt solar wind model. SIR-HUXt is designed to assimilate the time-elongation profiles of CME fronts in the low heliosphere, such as those typically extracted from heliospheric imager data returned by the STEREO, Par...
HUXt is an open source numerical model of the solar wind written in Python. It is based on the solution of the 1D inviscid Burger's equation. This reduced-physics approach produces solar wind flow simulations that closely emulate the flow produced by 3-D magnetohydrodynamic solar wind models at a small fraction of the computational expense. While n...
HUXt is an open source numerical model of the solar wind written in Python. It is based on the solution of the 1D inviscid Burger’s equation. This reduced-physics approach produces solar wind flow simulations that closely emulate the flow produced by 3-D magnetohydrodynamic (MHD) solar wind models at a small fraction of the computational expense. W...
We updated annual mean reconstructions of near-Earth interplanetary conditions and (signed) open solar flux F S for the past 186 years. Furthermore, we added observations for solar cycle 24 to refine regressions and improved allowance for orthogardenhose and folded (a.k.a., switchback) heliospheric flux from studies using strahl electrons. We also...
Severe geomagnetic storms appear to be ordered by the solar cycle in a number of ways. They occur more frequently close to solar maximum and the declining phase, are more common in larger solar cycles, and show different patterns of occurrence in odd- and even-numbered solar cycles. Our knowledge of the most extreme space-weather events, however, c...
Quantifying the rate at which the large-scale solar-wind structure evolves is important for both understanding the physical processes occurring in the corona and for space-weather forecast improvement. Models of the global corona and heliosphere typically assume that the ambient solar-wind structure is steady and corotates with the Sun, which is ge...
Severe geomagnetic storms appear to be ordered by the solar cycle in a number of ways: They occur more frequently close to solar maximum and declining phase, are more common in larger solar cycles and show different patterns of occurrence in odd-and even-numbered solar cycles. Our knowledge of the most extreme space weather events, however, comes f...
Geomagnetically induced currents (GICs) are an impact of space weather that can occur during periods of enhanced geomagnetic activity. GICs can enter into electrical power grids through earthed conductors, potentially causing network collapse through voltage instability or damaging transformers. It would be beneficial for power grid operators to ha...
Geometric modeling of Coronal Mass Ejections (CMEs) is a widely used tool for assessing their kinematic evolution. Furthermore, techniques based on geometric modeling, such as ELEvoHI, are being developed into forecast tools for space weather prediction. These models assume that solar wind structure does not affect the evolution of the CME, which i...
The evolution and propagation of coronal mass ejections (CMEs) in interplanetary space is still not well understood. As a consequence, accurate arrival time and arrival speed forecasts are an unsolved problem in space weather research. In this study, we present the ELlipse Evolution model based on HI observations (ELEvoHI) and introduce a deformabl...
The evolution and propagation of coronal mass ejections (CMEs) in interplanetary space is still not well understood. As a consequence, accurate arrival time and arrival speed forecasts are an unsolved problem in space weather research. In this study, we present the ELlipse Evolution model based on HI observations (ELEvoHI) and introduce a deformabl...
In this work we have, for the first time, applied the interpretation of multiple “ghost-fronts” to two synthetic coronal mass ejections (CMEs) propagating within a structured solar wind using the Heliospheric Upwind eXtrapolation time (HUXt) solar wind model. The two CMEs occurred on 2012 June 13–14 showing multiple fronts in images from Solar Terr...
Geometric modelling of Coronal Mass Ejections (CMEs) is a widely used tool for assessing their kinematic evolution. Furthermore, techniques based on geometric modelling, such as ELEvoHI, are being developed into forecast tools for space weather prediction. These models assume that solar wind structure does not affect the evolution of the CME, which...
Previous solar system advisory panel (SSAP) roadmaps have not addressed the social responsibility we (as publicly-funded researchers) have to undertake outreach and public engagement based around our science, the role such activities can play in generating positive impacts underpinned by our research, and what strategies the UK solar system science...
Variability in near‐Earth solar wind conditions gives rise to space weather, which can have adverse effects on space‐ and ground‐based technologies. Enhanced and sustained solar wind coupling with the Earth's magnetosphere can lead to a geomagnetic storm. The resulting effects can interfere with power transmission grids, potentially affecting today...
Space weather has long been known to approximately follow the solar cycle, with geomagnetic storms occurring more frequently at solar maximum than solar minimum. There is much debate, however, about whether the most hazardous events follow the same pattern. Extreme events – by definition – occur infrequently, and thus establishing their occurrence...
Accurate forecasting of the arrival time and arrival speed of coronal mass ejections (CMEs) is a unsolved problem in space weather research. In this study, a comparison of the predicted arrival times and speeds for each CME based, independently, on the inputs from the two STEREO vantage points is carried out. We perform hindcasts using ELlipse Evol...
We present a method for augmenting spacecraft measurements of thermospheric composition with quantitative estimates of daytime thermospheric composition below 200 km, inferred from ionospheric data, for which there is a global network of ground-based stations. Measurements of thermospheric composition via ground-based instrumentation are challengin...
Accurate forecasting of the arrival time and arrival speed of coronal mass ejections (CMEs) is a unsolved problem in space weather research. In this study, a comparison of the predicted arrival times and speeds for each CME based, independently, on the inputs from the two STEREO vantage points is carried out. We perform hindcasts using ELlipse Evol...
We use the am , an, as and the aσ indices to the explore a previously overlooked factor in magnetospheric electodynamics, namely the inductive effect of diurnal motions of the Earth’s magnetic poles toward and away from the Sun caused by Earth’s rotation. Because the offset of the (eccentric dipole) geomagnetic pole from the rotational axis is roug...
We use the am, an, as and the a-sigma geomagnetic indices to the explore a previously overlooked factor in magnetospheric electrodynamics, namely the inductive effect of diurnal motions of the Earth's magnetic poles toward and away from the Sun caused by Earth's rotation. Because the offset of the (eccentric dipole) geomagnetic pole from the rotati...
This is the third in a series of papers that investigate the semi-annual, annual and Universal Time variations in the magnetosphere. In this paper we use the Lin et al. (2010) empirical model of magnetopause locations, along with the assumption of pressure equilibrium and the Newtonian approximation of magnetosheath pressure. We show that the equin...
The Heliospheric Imagers on board National Aeronautics and Space Administration (NASA)'s twin STEREO spacecraft show that coronal mass ejections (CMEs) can be visually complex structures. To explore this complexity, we created a citizen science project with the U.K. Science Museum, in which participants were shown pairs of CME images and asked to d...
Predicting the arrival of coronal mass ejections (CMEs) is one key objective of space weather forecasting. In operational space weather forecasting, solar wind numerical models are used for this task and ensemble techniques are being increasingly explored as a means to improve these forecasts. Currently, these forecasts are not constrained by the a...
Severe geomagnetic storms are driven by the coronal mass ejections (CMEs). Consequently, there has been a great deal of focus on predicting if and when a CME will arrive in near‐Earth space. However, it is useful to step back and ask, “How valuable is this information, in isolation, for making decisions to mitigate against the adverse effects of sp...
This is the second in a series of papers that investigate the semi-annual, annual and Universal Time ( UT ) variations in the magnetosphere. We present a varied collection of empirical results that can be used to constrain theories and modelling of these variations. An initial study of two years’ data on transpolar voltage shows that there is a sem...
We study the semi-annual variation in geomagnetic activity, as detected in the geomagnetic indices am , aa H , AL , Dst and the four a s indices derived for 6-hour MLT sectors (around noon, dawn, dusk and midnight). For each we compare the amplitude of the semi-annual variation, as a fraction of the overall mean, to that of the corresponding variat...
Near-Earth solar-wind conditions, including disturbances generated by coronal mass ejections (CMEs), are routinely forecast using three-dimensional, numerical magnetohydrodynamic (MHD) models of the heliosphere. The resulting forecast errors are largely the result of uncertainty in the near-Sun boundary conditions, rather than heliospheric model ph...
Variability in the near-Earth solar wind conditions can adversely affect a number of ground- and space-based technologies. Such space-weather impacts on ground infrastructure are expected to increase primarily with geomagnetic storm intensity, but also storm duration, through time-integrated effects. Forecasting storm duration is also necessary for...
We present evidence that variability in the STEREO‐A Heliospheric Imager (HI) data is correlated with in situ solar wind speed estimates from WIND, STEREO‐A, and STEREO‐B. For 2008–2012, we compute the variability in HI differenced images in a plane‐of‐sky shell between 20 to 22.5 solar radii and, for a range of position angles, compare daily means...
Images of coronal mass ejections (CMEs) from the Heliospheric Imager instruments on board the Solar Terrestrial Relations Observatory (STEREO) spacecraft frequently contain rich structure. Here, we present analysis of the Earth-directed CME launched on 12 December 2008 in which we interpret the revealed structure as projections of separate discrete...
Measurements of thermospheric composition via ground-based instrumentation are challenging to make and so details about this important region of the upper atmosphere are currently sparse. We present a technique that deduces quantitative estimates of thermospheric composition from ionospheric data, for which there is a global network of stations. Th...
Different terrestrial space weather indicators (such as geomagnetic indices, transpolar voltage, and ring current particle content) depend on different coupling functions (combinations of near-Earth solar wind parameters), and previous studies also reported a dependence on the averaging timescale, τ. We study the relationships of the am and SME geo...
We study how the probability distribution functions of power input to the magnetosphere Pα and of the geomagnetic ap and Dst indices vary with averaging timescale, τ, between 3 hr and 1 year. From this we develop and present algorithms to empirically model the distributions for a given τ and a given annual mean value. We show that lognormal distrib...
Paper 1 in this series (Lockwood et al., 2018a, https://doi.org/10.1029/2018SW001856) showed that the power input into the magnetosphere Pα is an ideal coupling function for predicting geomagnetic “range” indices that are strongly dependent on the substorm current wedge and that the optimum coupling exponent α is 0.44 for all averaging timescales,...
Aims: To elucidate differences between commonly-used mid-latitude geomagnetic indices and study quantitatively the differences in their responses to solar forcing as a function of Universal Time ( UT ), time-of-year ( F ), and solar-terrestrial activity level. To identify the strengths, weaknesses and applicability of each index and investigate way...
Originally complied for 1868–1967 and subsequently continued so that it now covers 150 years, the aa index has become a vital resource for studying space climate change. However, there have been debates about the inter-calibration of data from the different stations. In addition, the effects of secular change in the geomagnetic field have not previ...
Paper 1 [Lockwood et al., 2018] generated annual means of a new version of the $aa$ geomagnetic activity index which includes corrections for secular drift in the geographic coordinates of the auroral oval, thereby resolving the difference between the centennial-scale change in the northern and southern hemisphere indices, $aa_N$ and $aa_S$. Howeve...
In situ spacecraft observations provide much-needed constraints on theories of solar wind formation and release, particularly the highly variable slow solar wind, which dominates near-Earth space. Previous studies have shown an association between local inversions in the heliospheric magnetic field (HMF) and solar wind released from the vicinity of...
Severe space weather is driven by interplanetary coronal mass ejections (ICMEs), episodic eruptions of solar plasma, and magnetic flux that travel out through the heliosphere and can perturb the Earth's magnetosphere and ionosphere. In order for space-weather forecasts to allow effective mitigating action, forecasts must be made as early as possibl...
Reconstructions of long-term solar variability underpin our understanding of the solar dynamo, potential tropospheric climate implications and future space weather scenarios. Prior to direct spacecraft measurements of the heliospheric magnetic field (HMF) and solar wind, accurate annual reconstructions are possible using geomagnetic and sunspot rec...
Using the reconstruction of power input to the magnetosphere given in Paper 1 (arXiv:1708.04904), we reconstruct annual means of geomagnetic indices over the past 400 years to within a 1-sigma error of +/-20 pc. In addition, we study the behaviour of the lognormal distribution of daily and hourly values about these annual means and show that we can...
Context: Cosmogenic isotopes provide useful estimates of past solar magnetic activity, constraining past space climate with reasonable uncertainty. Much less is known about past space weather conditions. Recent advances in the analysis of 10Be by McCracken & Beer (2015, Sol Phys 290: 305–3069) (MB15) suggest that annually resolved 10Be can be signi...
Using information on geomagnetic activity, sunspot numbers and cosmogenic isotopes, supported by historic eclipse images and in conjunction with models, it has been possible to reconstruct annual means of solar wind speed and number density and heliospheric magnetic field (HMF) intensity since 1611, when telescopic observations of sunspots began. T...
With increasing technological dependence, society is becoming ever more affected by changes in the near-Earth space environment caused by space weather. The primary driver of these hazards are coronal mass ejections (CMEs). Solar Stormwatch is a citizen science project in which volunteers participated in several activities which characterised CMEs...
Coronal mass ejections (CMEs) are episodic eruptions of solar plasma and magnetic flux that travel out through the solar system, driving extreme space weather. Interpretation of CME observations and their interaction with the solar wind typically assumes CMEs are coherent, almost solid-like objects. We show that supersonic radial propagation of CME...
This paper describes the recommended solar forcing dataset for CMIP6 and highlights changes with respect to CMIP5. The solar forcing is provided for radiative properties, namely total solar irradiance (TSI), solar spectral irradiance (SSI), and the F10.7 index as well as particle forcing, including geomagnetic indices Ap and Kp, and ionization rate...
Luke Barnard, Mat Owens and Chris Scott sum up a meeting that focused on ways to stretch the space environment record back into the past.
Predictions of the arrival of four coronal mass ejections (CMEs) in geospace are produced through use of three CME geometric models combined with CME drag modelling, constraining these models with the available Coronagraph and Heliospheric Imager data. The efficacy of these predications is assessed by comparison with the SWPC numerical MHD forecast...
The Maunder minimum (MM) was a period of extremely low solar activity from approximately AD 1650 to 1715. In the solar physics literature, the MM is sometimes associated with a period of cooler global temperatures, referred to as the Little Ice Age (LIA), and thus taken as compelling evidence of a large, direct solar influence on climate. In this s...
We use sunspot group observations from the Royal Greenwich Observatory (RGO)
to investigate the effects of intercalibrating data from observers with
different visual acuities. The tests are made by counting the number of groups
$R_B$ above a variable cut-off threshold of observed total whole-spot area
(uncorrected for foreshortening) to simulate wh...
More than 70 years ago it was recognised that ionospheric F2-layer critical frequencies $foF2$ had a strong relationship to sunspot number. Using historic datasets from the Slough and Washington ionosondes, we evaluate the best statistical fits of $foF2$ to sunspot numbers (at each Universal Time [UT] separately) in order to search for drifts and a...
We compare four sunspot-number data sequences against geomagnetic and terrestrial auroral observations. The comparisons are made for the original SIDC composite of Wolf-Zurich-International sunspot number [$R_{ISNv1}$], the group sunspot number [$R_{G}$] by Hoyt and Schatten (Solar Phys., 1998), the new "backbone" group sunspot number [$R_{BB}$] by...
We use 5 test data series to quantify putative discontinuities around 1946 in 5 annual-mean sunspot number or group number sequences. The series tested are: the original and new versions of the Wolf/Zurich/International sunspot number composite [$R_{ISNv1}$ and $R_{ISNv2}$] ; the corrected version of $R_{ISNv1}$ [$R_C$]; the backbone group number [...
The National Eclipse Weather Experiment (NEWEx) was a citizen science project for atmospheric data collection from the partial solar eclipse of 20 March 20. Its role as a tool for schools outreach is discussed here, in seeking to bridge the gap between self-identification with the role of a scientist and engagement with science, technology, enginee...
The National Eclipse Weather Experiment (NEWEx) was a citizen science project designed to assess the effects of the 20 March 2015 partial solar eclipse on the weather over the United Kingdom (UK). NEWEx had two principal objectives: to provide a spatial network of meteorological observations across the UK to aid the investigation of eclipse-induced...
The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth’s ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of thi...
This paper describes the solar forcing dataset for CMIP6 and highlights in particular changes with respect to the CMIP5 recommendation. The solar forcing is provided for radiative properties, i.e., total solar irradiance (TSI) and solar spectral irradiance (SSI), and F10.7 cm radio flux, as well as particle forcing, i.e., geomagnetic indices Ap and...
Southward interplanetary magnetic field (IMF) in the geocentric solar magnetospheric (GSM) reference frame is the key element that controls the level of space weather disturbance in Earth's magnetosphere, ionosphere, and thermosphere. We discuss the relation of this geoeffective IMF component to the IMF in the geocentric solar ecliptic (GSE) frame,...
This is Part 2 of a study of the near-Earth heliospheric magnetic field strength, B, since 1750. Part 1 produced composite estimates of B from geomagnetic and sunspot data over the period 1750–2013. Sunspot-based reconstructions can be extended back to 1610, but the paleocosmic ray (PCR) record is the only data set capable of providing a record of...
We present two separate time series of the near-Earth heliospheric magnetic field strength (B) based on geomagnetic data and sunspot number (SSN). The geomagnetic-based B series from 1845 to 2013 is a weighted composite of two series that employ the interdiurnal variability index; this series is highly correlated with in situ spacecraft measurement...
New sunspot data composites, some of which are radically different in the character of their long-term variation, are evaluated over the interval 1845-2014. The method commonly used to calibrate historic sunspot data, relative to modern-day data, is "daisy-chaining", whereby calibration is passed from one data subset to the neighbouring one, usuall...
More than 70 years ago it was recognised that ionospheric F2-layer critical frequencies $foF2$ had a strong relationship to sunspot number. Using historic datasets from the Slough and Washington ionosondes, we evaluate the best statistical fits of $foF2$ to sunspot numbers (at each Universal Time [UT] separately) in order to search for drifts and a...
Observations from the Heliospheric Imager (HI) instruments aboard the twin STEREO spacecraft have enabled the compilation of several catalogues of coronal mass ejections (CMEs), each characterising the propagation of CMEs through the inner heliosphere. Three such catalogues are the RAL-HI event list, the Solar Stormwatch CME catalogue, and, present...
A Hale cycle, one complete magnetic cycle of the Sun, spans two complete Schwabe cycles (also referred to as sunspot and, more generally, solar cycles). The approximately 22-year Hale cycle is seen in magnetic polarities of both sunspots and polar fields, as well as in the intensity of galactic cosmic rays reaching Earth, with odd-and even-numbered...
The Solar Stormwatch team reviews progress and prospects for this highly effective citizen-science project focused on the Sun.
B>Mike Lockwood and Luke Barnard report on a new catalogue of auroral observations made in the British Isles and Ireland.
Galactic cosmic ray (GCR) flux is modulated by both particle drift patterns and solar wind structures on a range of timescales. Over solar cycles, GCR flux varies as a function of the total open solar magnetic flux and the latitudinal extent of the heliospheric current sheet. Over hours, drops of a few percent in near-Earth GCR flux (Forbush decrea...
Solar Stormwatch was the first space weather citizen science project, the aim of which was to identify and track coronal mass ejections (CMEs) observed by the Heliospheric Imagers aboard the STEREO satellites. The project has now been running for approximately 4 years, with input from >16000 citizen scientists, resulting in a dataset of >38000 time...
Between December 2010 and March 2013, volunteers for the Solar Stormwatch (SSW) Citizen Science project have identified and analysed Coronal Mass Ejections (CMEs) in the near real-time STEREO HI observations, in order to make “Fearless Forecasts” of CME arrival times and speeds at Earth. Of the 60 predictions of Earth-directed CMEs, 20 resulted in...
Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in...
We investigate the relationship between interdiurnal variation geomagnetic activity indices, IDV and IDV(1d), corrected sunspot number, RC, and the group sunspot number RG. RC uses corrections for both the “Waldmeier discontinuity”, as derived in Paper 1 [Lockwood et al., 2014c], and the “Wolf discontinuity” revealed by Leussu et al. [2013]. We sho...
We analyse the widely-used international/ Zürich sunspot number record, R, with a view to quantifying a suspected calibration discontinuity around 1945 (which has been termed the “Waldmeier discontinuity” [Svalgaard, 2011]). We compare R against the composite sunspot group data from the Royal Greenwich Observatory (RGO) network and the Solar Optica...
The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times ar...
In the concluding paper of this tetralogy, we here use the different
geomagnetic activity indices to reconstruct the near-Earth interplanetary
magnetic field (IMF) and solar wind flow speed, as well as the open solar
flux (OSF) from 1845 to the present day. The differences in how the various
indices vary with near-Earth interplanetary parameters, w...
Svalgaard (2014) has recently pointed out that the calibration of the
Helsinki magnetic observatory's H component variometer was probably in error
in published data for the years 1866–1874.5 and that this makes the
interdiurnal variation index based on daily means, IDV(1d), (Lockwood et al., 2013a), and the interplanetary magnetic field
strength de...
We present a new composite of geomagnetic activity which is designed to be
as homogeneous in its construction as possible. This is done by only combining
data that, by virtue of the locations of the source observatories used, have
similar responses to solar wind and IMF (interplanetary magnetic field) variations. This will enable us (in
Part 2, Loc...
We present a new reconstruction of the interplanetary magnetic field
(IMF, B) for 1846-2012 with a full analysis of errors, based on the
homogeneously constructed IDV(1d) composite of geomagnetic activity
presented in Part 1 (Lockwood et al., 2013a). Analysis of the dependence
of the commonly used geomagnetic indices on solar wind parameters is
pre...
The response of lightning rates in the UK to arrival of high speed solar
wind streams at Earth is investigated using a superposed epoch analysis.
The fast solar wind streams' arrivals are determined from modulation of
the solar wind Vy component, measured by the Advanced Composition
Explorer (ACE) spacecraft. Lightning rate changes around these eve...
Mike Lockwood, Mat Owens, Luke Barnard, Chris Davis and Simon Thomas
take stock of the Sun's behaviour as it becomes more active after a
prolonged minimum of activity.
Society is increasingly reliant on systems which are vulnerable to Space
Weather. Solar energetic particle events are an important aspect of
space weather, being particularly damaging to space-borne systems and
posing a significant health hazard to astronauts and crews and
passengers in aircraft at high latitudes and high altitude. To help
quantify...
[1] The recent low and prolonged minimum of the solar cycle, along with the slow growth in activity of the new cycle, has led to suggestions that the Sun is entering a Grand Solar Minimum (GSMi), potentially as deep as the Maunder Minimum (MM). This raises questions about the persistence and predictability of solar activity. We study the autocorrel...