Lukas Zwirner

Lukas Zwirner
Max Planck Institute for Dynamics and Self-Organization · Department of Fluid Dynamics, Pattern Formation and Biocomplexity

Dr. rer. nat.

About

11
Publications
2,546
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
232
Citations
Citations since 2017
11 Research Items
232 Citations
20172018201920202021202220230204060
20172018201920202021202220230204060
20172018201920202021202220230204060
20172018201920202021202220230204060
Additional affiliations
July 2020 - present
Max Planck Institute for Dynamics and Self-Organization
Position
  • Researcher
April 2016 - June 2020
Max Planck Institute for Dynamics and Self-Organization
Position
  • PhD Student
Education
October 2013 - December 2015
October 2010 - September 2013

Publications

Publications (11)
Article
Full-text available
While the heat transfer and the flow dynamics in a cylindrical Rayleigh-Bénard (RB) cell are rather independent of the aspect ratio Γ (diameter/height) for large Γ, a small-Γ cell considerably stabilizes the flow and thus affects the heat transfer. Here, we first theoretically and numerically show that the critical Rayleigh number for the onset of...
Article
Full-text available
Using complementary experiments and direct numerical simulations, we study turbulent thermal convection of a liquid metal (Prandtl number $\textit {Pr}\approx 0.03$ ) in a box-shaped container, where two opposite square sidewalls are heated/cooled. The global response characteristics like the Nusselt number ${\textit {Nu}}$ and the Reynolds number...
Article
Using a closed set of boundary layer equations [E. S. C. Ching et al., Phys. Rev. Research 1, 033037 (2019)] for turbulent Rayleigh-Bénard convection, we derive analytical results for the dependence of the heat flux, measured by the Nusselt number (Nu), on the Reynolds (Re) and Prandtl (Pr) numbers and two parameters that measure fluctuations in th...
Article
Full-text available
The large-scale circulation (LSC) of fluid is one of the main concepts in turbulent thermal convection as it is known to be important in global heat and mass transport in the system. In turbulent Rayleigh-Bénard convection (RBC) in slender containers, the LSC is formed of several dynamically changing convective rolls that are stacked on top of each...
Article
Full-text available
For rapidly rotating turbulent Rayleigh--B\'enard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there. Although the azimuthal velocity of...
Preprint
Turbulent Rayleigh-B\'enard convection in slender cylindrical cells exhibits rich dynamics of the large-scale circulation (LSC), with several rolls stacked on top of each other. We propose that the elliptical instability is the mechanism which causes the twisting and breaking of the LSC into multiple rolls and that the volume-averaged heat and mome...
Article
Full-text available
The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection - Volume 884 - Lukas Zwirner, Ruslan Khalilov, Ilya Kolesnichenko, Andrey Mamykin, Sergei Mandrykin, Alexander Pavlinov, Alexander Shestakov, Andrei Teimurazov, Peter Frick, Olga Shishkina
Preprint
Full-text available
For rapidly rotating turbulent Rayleigh--B\'enard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there. Although the azimuthal velocity of...
Article
Full-text available
In turbulent Rayleigh-Bénard convection, the boundary layers are nonsteady with fluctuations, the time-averaged large-scale circulating velocity vanishes far away from the top and bottom plates, and the motion arises from buoyancy. In this paper, we derive the full set of boundary layer equations for both the temperature and velocity fields from th...
Preprint
Full-text available
Inclined turbulent thermal convection by large Rayleigh numbers in extremely small-Prandtl-number fluids is studied based on results of both, measurements and high-resolution numerical simulations. The Prandtl number $Pr\approx0.0093$ considered in the experiments and the Large-Eddy Simulations (LES) and $Pr=0.0094$ considered in the Direct Numeric...
Article
Any tilt of a Rayleigh–Bénard convection cell against gravity changes the global flow structure inside the cell, which leads to a change of the heat and momentum transport. Especially sensitive to the inclination angle is the heat transport in low-Prandtl-number fluids and confined geometries. The purpose of the present work is to investigate the g...

Network

Cited By