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Abstract—A justifiably trustworthy provisioning of cloud ser-
vices can only be ensured if reliability, availability, and other
dependability attributes are assessed accordingly.

We present a structured approach for deriving fault injection
campaigns from a failure space model of the system. Fault
injection experiments are selected based on criteria of cover-
age, efficiency and maximality of the faultload. The resulting
campaign is enacted automatically and shows the performance
impact of the tested worst case non-failure scenarios.

We demonstrate the feasibility of our approach with a fault
tolerant deployment of an OpenStack cloud infrastructure.

Index Terms—fault injection, dependability modelling, testing,
fault tolerance, OpenStack

I. INTRODUCTION

Software fault injection (SFI) is a versatile tool for depend-

ability assessment. In this approach, various types of system

failure causes, namely faults or defects [1], are artificially

inserted (“injected”) into a running instance of the system.

An behavioural investigation can show if the fault tolerance

mechanisms of the system reacts in the intended way.

While numerous SFI approaches have been proposed and

implemented in the past decades [2], SFI seems to remain

more of a research topic rather than a commonplace software

development tool. Reasons for SFI’s lack of practical appli-

cation may be usability issues, the challenge of finding an

adequate and representative fault load [3], or the difficulty of

answering the question of when and where to inject faults in

order to achieve meaningful results.

We present a methodology for generating fault injection

campaigns, which comprises multiple steps: First, a depend-

ability model of the system is constructed (see Section II).

Second, a fault injection campaign satisfying desirable criteria

is generated from it (see Section III). Third, the fault injection

campaign is conducted in an automated and orchestrated way.

If the campaign succeeds, this asserts that the system is

as dependable as specified in the initial model. If not, the

experiment results can help to pin-point the weak parts of the

architecture. We demonstrate the applicability of our approach

with an OpenStack-based scenario, which is described in

Section IV.

II. DEPENDABILITY MODELLING FOR FAULT INJECTION

Prior to any type of software evaluation, an understanding

of what behaviour is expected under different circumstances

must be formulated. Since software is so complex [4], there

are manifold ways of creating such a description [5].

We chose to base our approach on the fault tree modelling

language [6], which expresses a systematic deduction of failure

causes starting with an undesired top event. The leaves of the

tree, basic events, represent conceivable failure root causes,

connected hierarchically with Boolean logic gates until the

undesired top event is reached. If the system behaviour under

fault injection and the fault tree model do not fit to each

other, (at least) one of them must be flawed. Therefore, it

is necessary to start with a trustworthy dependability model,

f.e., by deriving it directly from architectural descriptions [7].

For the following sections, we assume that the system under

test is represented in a fault tree model. For distributed cloud

infrastructures, is seems reasonable to model on the level

of machines and network connections. A more fine-grained

investigation, e.g., the level of machine parts or software

packages, is possible as well.

III. GENERATION OF FAULT INJECTION CAMPAIGNS

A fault injection experiment is one execution of the system

with a certain amount of faults being injected.A fault injection
campaign is a set of fault injection experiments. Campaigns

in our approach are designed for:

• High coverage of the space of possible faults;

• Maximality of experiments – the fault tolerance mecha-

nisms should be exercised as intensively as possible;

• Efficiency of the overall campaign – all experiments must

be conductible within a reasonable time frame.

The overall goal is to reduce the number of experiments

within a campaign while still maintaining fault space cov-

erage.The steps described subsequently yield such a fault

injection campaign based on a given model.

A fault injection point (FIP) is an internal state change

or external event which can contribute to fault activation, or

directly causes a detectable error state. FIPs are the smallest

possible target for fault injection, reflecting granularity at
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TABLE I
AVERAGE PERFORMANCE DEGRADATION PER FIP AFTER 10 RUNS OF THE ENTIRE CAMPAIGN ON THE OPENSTACK TEST SYSTEM.

fault injection point controller controller controller storage storage storage storage nw. storage nw. storage nw.
1 2 3 1 2 3 at node 1 at node 2 at node 3

fail-stop 1.74 1.88 2.04 1.78 1.80 1.98 1.99 1.74 2.03
fail-silent 1.98 1.88 1.96 1.92 1.87 1.97 2.10 1.81 1.99
average 1.86 1.88 2.00 1.85 1.83 1.97 2.04 1.78 2.01

which the system is modelled and tested. Extracting all FIPs

from a fault tree model simply means listing all basic events.

An experiment is a set of FIPs. Each experiment is carried

out during exactly one program execution. This may be a test

case or a period of normal system operation, in an artificial or

ideally actual production environment. An experiment needs

to have an externally measurable, binary outcome: It either

succeeds, or it fails. This does not rule out the possibility

of applying metrics at a continuous scale to the results. For

example, performance under fault load can be analyzed by

defining runtime thresholds, which must not be exceeded

for “success”. We assume that larger experiments – i.e.,

experiments containing more FIPs – achieve higher coverage

and efficiency. Our approach therefore maximizes experiment

size, relying on the concept of minimal cut sets (mincuts).

The success of maximal experiments is assumed to imply the

success of contained, smaller experiments.

IV. CASE STUDY: OPENSTACK

We have conducted a case study of our approach on a fault

tolerant setup of the OpenStack cloud management system.

For our purpose, OpenStack provides a suitable example: It

is a complex, distributed, real-world software system, where

fault tolerance is a key aspect and considered in all layers.

The OpenStack community is pushing for frequent releases,

which makes manual integration testing cumbersome.

Based on the description from the last section, we developed

a tool chain automating the approach outlined above. It relies

on scripting languages and the IT configuration management

tool Ansible1, which allows us to automate the entire process.

Our OpenStack setup comprises a master node, three con-

troller instances, three Ceph storage nodes, and two compute

nodes. The fully virtualized setup is distributed across five

physical hosts. In the dependability model of the system, there

are 11 basic events in total, hence 11 FIPs. In the naı̈ve

approach of running all conceivable permutations, this would

amount to 211 = 2048 different possible experiments. We

applied our proposed algorithm on this model and obtained

36 suggested experiments.

We implemented two failure cause types for the injection:

• Fail-Stop: The component either works correctly or de-

tectably crashes. Specifically, a crash is achieved by

terminating a VM (i.e., ”pulling the power cord”) or by

removing the link of a virtual network interface (i.e.,

”pulling the network cable”).

1https://www.ansible.com/, June 2, 2017

• Fail-Silent: The component either works correctly or does

not respond. Specifically, this is achieved by freezing a

VM or by silently dropping outgoing network packets.

Within our test bed, other fault classes are also conceivable:

Byzantine faults can be injected by modifying, and not just

dropping, packet content. To inject timing faults, we could

also artificially delay packet transmission. The second step is

the orchestrated execution of generated campaigns. Our im-

plementation relies on exchangeable executables which inject

particular fault types and prepare their setup.

Our experiments show that the system does not crash or

freeze in any of the experiments – which indicates that the

OpenStack infrastructure works as promised. As expected, we

observed (varying) performance degradation under faultload.

The average performance degradation per FIP is summarized

in table I. Such observations, potentially caused by delays due

to error detection via heartbeats, can be starting points for

further detailed investigations.

V. CONCLUSION

We presented an approach for reproducible and automated

fault injection campaigns in an distributed software environ-

ment. Our case study of an OpenStack deployment demon-

strates the feasibility and real-world applicability of the ap-

proach. Compared to existing fault injection strategies, we see

the capability for scalable automation as a major benefit of

our approach. The presented approach could become part of

continuous integration efforts that automatically run upon each

software modification. The recently trending Infrastructure
as Code paradigm provides the necessary machine-readable

configuration and infrastructure information, which could be

directly exploited for this purpose.
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