Lukas GaborYale University | YU · Department of Ecology and Evolutionary Biology
Lukas Gabor
Doctor of Philosophy
About
22
Publications
8,577
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
417
Citations
Introduction
Lukas is a Ph.D. candidate in Applied Ecology at Czech University of Life Sciences with a focus on species distribution modeling. Specifically, he focuses on how quality of spatial data affects species distribution models. He holds Masters’ degrees in Applied Ecology from the Czech University of Life Sciences.
Skills and Expertise
Publications
Publications (22)
Global mapping of forest height is an extremely important task for estimating habitat quality and modeling biodiversity. Recently, three global canopy height maps have been released, the global forest canopy height map (GFCH), the high‐resolution canopy height model of the Earth (HRCH), and the global map of tree canopy height (GMTCH). Here, we ass...
Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of species occurrences. However, despite their broad applicability, SDMs exhibit critical shortcomings due to limitations in species occurrence data. These limitations include, in particular, issues related to sample size, positional uncertainty, and sampling b...
Species distribution models are widely used in ecology. The selection of environmental variables is a critical step in SDMs, nowadays compounded by the increasing availability of environmental data.
To evaluate the interaction between the grain size and the binary (presence or absence of water) or proportional (proportion of water within the cell)...
Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of species occurrences. However, despite their broad applicability, SDMs exhibit critical shortcomings due to limitations in species occurrence data. These limitations include, in particular, issues related to sample size, positional error, and sampling bias. I...
Aim
Species distribution models (SDMs) are an important tool for predicting species occurrences in geographic space and for understanding the drivers of these occurrences. An effect of environmental variable selection on SDM outcomes has been noted, but how the treatment of variables influences models, including model performance and predicted rang...
Ecological processes are often spatially and temporally structured, potentially leading to autocorrelation either in environmental variables or species distribution data. Because of that, spatially-biased in-situ samples or predictors might affect the outcomes of ecological models used to infer the geographic distribution of species and diversity....
Species distribution models (SDMs) have become a common tool in studies of species–environment relationships but can be negatively affected by positional uncertainty of underlying species occurrence data. Previous work has documented the effect of positional uncertainty on model predictive performance, but its consequences for inference about speci...
Maps represent powerful tools to show the spatial variation of a variable in a straightforward manner. A crucial aspect in map rendering for its interpretation by users is the gamut of colours used for displaying data. One part of this problem is linked to the proportion of the human population that is colour blind and, therefore, highly sensitive...
There is a lack of guidance on the choice of the spatial grain of predictor and response variables in species distribution models (SDM). This review summarizes the current state of the art with regard to the following points: (i) the effects of changing the resolution of predictor and response variables on model performance;
(ii) the effect of cond...
Species distribution models (SDMs) are powerful tools in ecology and conservation. Choosing the right environmental drivers and filtering species' occurrences taking their biases into account are key factors to consider before modeling. In this case study, we address five common problems arising during the selection of input data for presence-only...
Ecosystem structure, especially vertical vegetation structure, is one of the six essential biodiversity variable classes and is an important aspect of habitat heterogeneity, affecting species distributions and diversity by providing shelter, foraging, and nesting sites. Point clouds from airborne laser scanning (ALS) can be used to derive such deta...
Maps represent powerful tools to show the spatial variation of a variable in a straightforward manner. A crucial aspect in map rendering for its interpretation by users is the gamut of colours used for displaying data. One part of this problem is linked to the proportion of the human population that is colour blind and, therefore, highly sensitive...
The performance of species distribution models (SDMs) is known to be affected by analysis grain and positional error of species occurrences. Coarsening of the analysis grain has been suggested to compensate for positional errors. Nevertheless, this way of dealing with positional errors has never been thoroughly tested. With increasing use of fine‐s...
Link (50 days' free access): https://authors.elsevier.com/a/1fFzp7qzSxbjR
The ICESat-2 ATL08 land and vegetation product includes several flags that can be used for the assessment of LiDAR-environment interactions and can help select data of the highest quality. However, the usability of these flags has not been sufficiently studied to date. Here,...
The representation of a land cover type (i.e. habitat) within an area is often used as an explanatory variable in species distribution models. However, it is possible that a simple binary presence/absence of the suitable habitat might be the most important determinant of the presence/absence of some species and, thus, be a better predictor of speci...
Several global digital elevation models (DEMs) have been developed in the last two decades.
The most recent addition to the family of global DEMs is the TanDEM-X DEM. The original
version of the TanDEM-X DEM is, however, a nonedited product (i.e., it contains local artefacts such
as voids, spikes, and holes). Therefore, subsequent identification of...
This case study focuses on the characterization of fine-scale habitats associated with cold-water corals in three areas off Eastern Canada. Remotely operated vehicle (ROV)-based video, oceanographic, and bathymetric data were collected in 13 dives ranging from 200 to 3000 m deep at The Gully, the Flemish Cap, and the Orphan Knoll. Maps of potential...
Species occurrences inherently include positional error. Such error can be problematic for species distribution models (SDMs), especially those based on fine‐resolution environmental data. It has been suggested that there could be a link between the influence of positional error and the width of the species ecological niche. Although positional err...
Terrain attributes (e.g., slope, rugosity) derived in Geographic Information Systems (GIS) from digital terrain
models (DTMs) are widely used in both terrestrial and marine ecological studies due to their potential to act as
surrogates of species distribution. However, the spatial resolution of DTMs is often altered to match the scale at
which spec...
Species distribution models (SDMs) are widely used in ecology and conservation. However, their performance is known to be affected by a variety of factors related to species occurrence characteristics. In this study, we used a virtual species approach to overcome the difficulties associated with testing of combined effects of those factors on perfo...
It is now widely acknowledged that the increasing availability of remotely sensed data facilitates ecological modelling. Digital elevation models (DEMs) are arguably one of the most common remote sensing products used in this context. Topographic indices (e.g. slope, orientation, rugosity) derived from DEMs are widely used as surrogates for field-m...
Background: Active commuting in terms of everyday transport to school or work can have a significant effect on physical activity. Active commuting can be influenced by the environment, and examples from abroad show that current environmental changes tend mostly to promote passive forms of commuting. A similar situation of decreasing active commutin...