Lukas Brunke

Lukas Brunke
University of Toronto | U of T · Institute for Aerospace Studies

About

16
Publications
1,797
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
256
Citations
Citations since 2017
16 Research Items
256 Citations
2017201820192020202120222023020406080100120
2017201820192020202120222023020406080100120
2017201820192020202120222023020406080100120
2017201820192020202120222023020406080100120

Publications

Publications (16)
Preprint
Shared benchmark problems have historically been a fundamental driver of progress for scientific communities. In the context of academic conferences, competitions offer the opportunity to researchers with different origins, backgrounds, and levels of seniority to quantitatively compare their ideas. In robotics, a hot and challenging topic is sim2re...
Preprint
Full-text available
Open-sourcing research publications is a key enabler for the reproducibility of studies and the collective scientific progress of a research community. As all fields of science develop more advanced algorithms, we become more dependent on complex computational toolboxes -- sharing research ideas solely through equations and proofs is no longer suff...
Preprint
In real-world applications, we often require reliable decision making under dynamics uncertainties using noisy high-dimensional sensory data. Recently, we have seen an increasing number of learning-based control algorithms developed to address the challenge of decision making under dynamics uncertainties. These algorithms often make assumptions abo...
Article
In recent years, both reinforcement learning and learning-based control—as well as the study of their safety , which is crucial for deployment in real-world robots—have gained significant traction. However, to adequately gauge the progress and applicability of new results, we need the tools to equitably compare the approaches proposed by the cont...
Article
The last half decade has seen a steep rise in the number of contributions on safe learning methods for real-world robotic deployments from both the control and reinforcement learning communities. This article provides a concise but holistic review of the recent advances made in using machine learning to achieve safe decision-making under uncertaint...
Preprint
Full-text available
In this work, we consider the problem of designing a safety filter for a nonlinear uncertain control system. Our goal is to augment an arbitrary controller with a safety filter such that the overall closed-loop system is guaranteed to stay within a given state constraint set, referred to as being safe. For systems with known dynamics, control barri...
Preprint
Full-text available
In this work we address the problem of performing a repetitive task when we have uncertain observations and dynamics. We formulate this problem as an iterative infinite horizon optimal control problem with output feedback. Previously, this problem was solved for linear time-invariant (LTI) system for the case when noisy full-state measurements are...
Preprint
Full-text available
In recent years, reinforcement learning and learning-based control -- as well as the study of their safety, crucial for deployment in real-world robots -- have gained significant traction. However, to adequately gauge the progress and applicability of new results, we need the tools to equitably compare the approaches proposed by the controls and re...
Preprint
Full-text available
The last half-decade has seen a steep rise in the number of contributions on safe learning methods for real-world robotic deployments from both the control and reinforcement learning communities. This article provides a concise but holistic review of the recent advances made in using machine learning to achieve safe decision making under uncertaint...
Article
Numerous control applications, including robotic systems such as unmanned aerial vehicles or assistive robots, are expected to guarantee high performance despite being deployed in unknown and dynamic environments where they are subject to disturbances, unmodeled dynamics, and parametric uncertainties. The fast feedback of adaptive controllers makes...
Preprint
Full-text available
Input perturbation methods occlude parts of an input to a function and measure the change in the function's output. Recently, input perturbation methods have been applied to generate and evaluate saliency maps from convolutional neural networks. In practice, neutral baseline images are used for the occlusion, such that the baseline image's impact o...
Preprint
Full-text available
The goal of this thesis is to design a learning model predictive controller (LMPC) that allows multiple agents to race competitively on a predefined race track in real-time. This thesis addresses two major shortcomings in the already existing single-agent formulation. Previously, the agent determines a locally optimal trajectory but does not explor...
Chapter
Input perturbation methods occlude parts of an input to a function and measure the change in the function’s output. Recently, input perturbation methods have been applied to generate and evaluate saliency maps from convolutional neural networks. In practice, neutral baseline images are used for the occlusion, such that the baseline image’s impact o...

Network

Cited By