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ABSTRACT 

Synthropic agroforestry systems are agricultural systems designed to reconcile agricultural production with environmental 

conservation. However, the benefits related to soil physical properties of these systems have only been documented for 

the planting rows. Thus, the physical behavior of the soil in the inter-rows remains unknown. The objective of this paper 

was to characterize the physical properties of the soil in the rows and inter-rows of a syntropical agroforestry system - 

SAS. For this, infiltration capacity (mini-disk infiltrometer) and soil resistance to penetration (STOLF Penetrometer) were 

measured in five ramdomly located blocks involving the rows and inter-rows. The results showed that there were no 

significant differences between row and inter-rows for both variables. The high species diversity, continuous addition of 

organic matter to the soil via pruning, the absence of heavy machinery use, and the vigorous growth of exotic grasses in 

the inter-row are the likely factors that explain the absence of differences reported here. We conclude that the rows and 

inter-rows of a SAS behave similarly in relation to the attributes evaluated. This demonstrates that such systems are highly 

beneficial for food production as well as maintaining soil physical properties. 

Key-words: Sustainability; water permeability; agriculture; best management practices. 

  

Propriedades físicas do solo em um latossolo sob um sistema agroflorestal 

sintrópico: linha versus entrelinha 
 
RESUMO 

Os sistemas agroflorestais sintrópicos são sistemas agrícolas criados com o intuito de reconciliar a produção agrícola com 

a conservação ambiental. Entretanto, os benefícios relativos às propriedades físicas do solo desses sistemas só foram 

documentados para as linhas de plantio. Assim, o comportamento físico do solo nas entrelinhas ainda permanece 

desconhecido. O objetivo deste artigo foi caracterizar as propriedades físicas do solo nas linhas e entrelinhas de um 

sistema agroflorestal sintrópico - SAS. Para isso, mediram-se a capacidade de infiltração (mini-disk infiltrometer) e a 

resistência do solo à penetração (STOLF Penetrometer) em blocos envolvendo as linhas e entrelinhas. Os resultados 

demonstraram que não houve diferenças significativas de linhas e entrelinhas para ambas as variáveis. A alta diversidade 

de espécies, adição contínua de matéria orgânica ao solo via podas, a ausência do uso de máquinas pesadas e o crescimento 

de gramíneas exóticas na entrelinha são os prováveis fatores que explicam a ausência de diferenças aqui reportadas. 

Conclui-se que as linhas e entrelinhas de um SAS se comportam de maneira similar em relação aos atributos avaliados. 

Isso demonstra que tais sistemas são altamente benéficos para produção de alimentos assim como manter as propriedades 

físicas do solo. 

Palavras-chave: Sustentabilidade; permeabilidade da água; agricultura; boas práticas de manejo.

Introduction 

 

The challenge of agroecosystems is to increase 

production from ecologically designed agricultural 

systems that can recover traditional practices 

combined with ecological knowledge that enhance 

ecosystem services (Neves & Imperador, 2022). 

The fragmentation of habitats - caused mainly by 

agriculture impacts biogeochemical cycles, 

biodiversity and the production of food and fiber 

(Zilli et al. 2020; Ma et al., 2023) affecting soil 

compaction and, consequently, the water 

infiltration capacity. Such changes alter the 

hydrological cycle locally and bring about serious 

reductions in aquifer recharge (Failache & Zuquete 

2020). 

In this context, it is evident the need to 

develop agricultural systems capable of combining 
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food production with other ecosystem services. 

Some authors present studies that demonstrate 

other forms of food production in which there is the 

possibility of reducing dependence on fertilizers 

and pesticides and, consequently, minimize 

impacts on ecosystems, improving productive 

capacity over time (Sachs et al. 2010; Chen et al. 

2022; Puech & Starkb, 2023). This approach takes 

place, from a sustainable vision, based on food 

security, human health, and the social and 

economic well-being of those who produce, 

consume, and live around these productions 

(Basche & DeLong 2019; Waldron et al. 2020; Das 

et al., 2022). Among these agricultural practices 

are syntropic agroforestry systems (SASs) which 

consist of a combination between several perennial 

plant species of agricultural interest. These systems 

are based on species succession, nutriente cycling, 

plant diversity and management through the use of 

severe pruning (Götsch 1997; Micollis et al. 2016; 

Roseto et al., 2021; Pereira et al. 2021; Mayer et 

al., 2022). Since SASs mimic natural ecosystems 

and their processes, this system is expected to bring 

other benefits beyond food production. For 

example, the high addition of organic matter from 

pruning may benefit soil infiltration capacity.   

Murta et al. (2020) demonstrated that the 

infiltration capacity of a SAS was similar to that of 

a natural ecosystem (Brazilian Tropical Savannah). 

However, that study evaluated the infiltration only 

in the rows. Therefore, it is not yet known whether 

the same pattern would be found inter-row, which 

are generally more subjected to physical 

disturbances due to the transit of heavy machinery. 

In this sense, understanding the SAS in a more 

systemic way, that is, including the row and inter-

row, allows a more holistic assessment regarding 

the effective benefit that the SASs can bring about.  

The objective of this article is to characterize 

the infiltration capacity and soil penetration in the 

rows and inter-rows of a SAS. Given that previous 

studies indicated that rows generally have better 

soil physical properties compared to the inter-rows 

(Silva et al., 2014; Santos et al., 2020; Guillot et al., 

2021; Las Casas et al., 2022), starting from these 

premises, we hypothesized that rows are more 

permeable than inter-rows. 

 

Material and methods 

 

Study areas  

 

The study was carried out at Elo Florestal 

Inkóra Farm, which is located in the Núcleo Rural 

Taquaras, in Planaltina-DF, in the Preto river 

watershed, at UTM coordinates 244,850.00 mE 

and 8,275,995.59 mS (Figure 1). 

 
Figure 1: Location of the study area, Fazenda 

Inkóra Florestal, Planaltina, Federal District, 

Brazil. 

 

The soil is classified as Oxisol. This type 

of soil is characterized as thick, highly weathered, 

with moderate A horizon and latosolic B horizon, 

rich in sesquioxides, highly porous and well 

drained (Santos et al., 2018).  

The mean annual precipitation in the 

Federal District is 1477.4 mm (Instituto Nacional 

de Meteorologia [INMET], 2021) with two well 

defined seasons (rainy season from October to 

April and dry from May to September).  according 

to Köppen-Geiger (Alvares et al. 2013). 

The syntropic agroforestry system (SAS) 

in the study area is characterized as a mature 

system (20 years old) with a 4 m inter- row spacing 

and 1 or 2 m between individuals within the row.  

The area was used for soybean cultivation between 

1985 and 2000. After the 2000s, it underwent a 

fallow period of two years and, in 2002, SAS was 

introduced (Figure 1). SAS is organized in rows 

and inter-rows constituting an agroforestry system 

with high diversity. There are more than 20 species 

including Senna obtusifolia, Leucaena 

leucocephala, Hymenaea courbaril, Ceiba 

pentandra, Swietenia macrophylla, Dipteryx alata, 

Inga marginata, Cajanus cajan, Tephrosia 

candida, Morus nigra, Cosmos sulphureus, 

Hylocereus undatus, Citrus sinensis, Bixa 

orellana, Persea americana, Citrus limon, Ananas 

comosus, Psidium guajava, Annona squamosa, 

Carica papaya and Musa sp (Figure 2A). 
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Figure 2: Syntropic agroforestry system: rows (A) 

and inter-row (B).  

 

Typically, inter-rows serve as transit areas 

for management which can involve both both 

manual and/or mechanized methods. In the current 

SAS, apart from the regular crops, the inter-rows 

exhibit vigorous growth of  exotic grasses 

(Urochloa sp, Pennisetum purpureum) and other 

spontaneous plants. In addition, inter-row are 

subjected to litter deposition (Figure 2B).  

 

Variables and sample design 

Two variables were measured: infiltration 

capacity and soil resistance to penetration in the 

rows and inter-row. In this sense, five randomized 

blocks were established through the use of a 

randomizer. In each block, a total of 6 infiltration 

samples were collected – three from within the row 

and three from the inter-row (Figure 3). The same 

procedure was followed for measuring soil  

penetration resistance. 

     

 
Figure 3: Sampling design employed in the present 

study involved randomly situating five blocks 

(depicted as green rectangles) in the field. Each 

block covered both the rows and inter-rows. Within 

each treatment, three repetitions were collected for 

both infiltration capacity and soil penetration 

resistance. 

 

Infiltration capacity 

We measured infiltration capacity using a 

mini-disc infiltrometer (Decagon devices Inc., 

USA)  which uses the analytical solution proposed 

by Zhang (1997).  

During the collection, we carefully removed 

the leaf litter and performed the tests on horizontal 

surfaces, ensuring the stability of the device. In 

addition, a thin layer (<1 mm) of fine sand was 

used to improve the contact between the 

infiltrometer and the soil surface. To capture the 

widest range of soil pores, we used a suction 

pressure of 0 kPa. Water discharge rates through 

the Mini-Disk, as inferred from changes in water 

levels in the device's storage chamber, were 

recorded until the flow rates reached a steady state. 

In cases where no steady state flow rate was 

achieved, the measurement procedure was repeated 

until steady state flow rates were recorded three 

consecutive times. Therefore, our infiltration 

capacity estimates were similar to the soil saturated 

hydraulic conductivity. After each measurement, 

we inspected the area being measured to verify 

proper (round) contact between the steel disc and 

the ground surface. When no round shape was 

detected, we repeated the measurement until a 

perfect round shape was achieved. 

 

Soil Penetration Resistance  

The soil resistance to penetration was 

measured using the Stolf impact penetrometer 

(Stolf et al. 1983) by KAMAQ. Three 

measurements were taken in the rows and inter-

rows. To minimize the effect of soil moisture on 

soil penetration resistance, measurements were 

carried out in the dry season, when soil moisture is 

negligible. 

 

Data analysis 

The normality of the residuals and the 

homogeneity of variance were evaluated using the 

Shapiro-Wilk and Levene normality tests, 

respectively. Residuals were found to be normally 

distributed for both variables, but homoscedasticity 

was detected. Consequently, Welch analysis of 

variance (Welch-ANOVA) was performed at a 

significance level of α = 5% to assess whether there 

were differences between row and inter-row. The 

analysis was performed using the PAST statistical 

software (Hammer et al. 2001) and the R Program 

software (R Development Core Team 2016). 

 

Results  

 

The average (± standard deviation) of the 

infiltration capacity in the rows was 330.38 (± 

135.48) mm.h-¹ and interrow it was 643,342.42 (± 

342.42) mm.h-¹. There were no significant 

differences between rows and between rows (p < 

0.07) regarding water infiltration (Figure 4). 
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Figura 4: Box-plot showing infiltration in the rows 

and inter-rows of the syntropic agroforest. The 

horizontal lines within the box represent the 

median. The x represents the mean. The horizontal 

boundaries of the boxes represent the first and third 

quartiles. The ends of the vertical lines represent 

the maximum (top) and minimum (bottom) values. 

Different letters indicate that there were no 

significant differences. 

 

The soil resistance to penetration in 

impacts 0, 1 and 2, respectively, showed the 

following means (± standard deviation) in the 

rows, 1.79 (± 0.97), 6.27 (± 1.38) and 10.37 (± 

2.60) cm; and in the inter-rows 1.80 (± 0.61), 5.67 

(± 1.85) and 8.13 (± 1.56) cm. There were no 

significant differences in the rows and inter-rows 

(Figure 5). 

 

     

 
 

Figure 5:   Mean and standard deviation of soil 

depth reached in each impact during penetration 

resistance measurements. Different letters indicate 

significant differences between row and inter-row.  

 

Discussion 

 

We could not find significant differences 

between row and inter-row regarding soil 

penetration resistance and infiltration capacity. 

Thus, our hypothesis that rows would have greater 

permeability compared to inter-row could not be 

accepted. 

Previous studies have already focused on 

the effect of row and inter-row in soil physical 

properties (Silva et al., 2014; Santos et al., 2020; 

Las Casas et al., 2022). For example, Blum et al. 

(2014) documented increases in macroporosity and 

saturated hydraulic conductivity in row compared 

to inter-row after furrowing in a no-tillage soybean 

system. These results are in line with those by Silva 

et al. (2014) and Santos et al. (2020) which showed 

that soil physical properties like soil penetration 

resistance and soil bulk density were greater in the 

inter-row compared to the row. Our study, on the 

other hand, showed a different pattern, that is, no 

significant difference between the row and the 

inter-row for infiltration capacity and penetration 

resistance. The likely cause of such absence of 

difference may reside in the active plant growth of 

exotic grasses (Urochloa sp, Pennisetum 

purpureum)  in the inter-row combined with the 

lack of heavy machinery passage. In other words, 

the inter-row remained under fallow for two years. 

More studies are needed to assess differences 

between row and inter-row when heavy machinery 

is actively used to manage the SASs.  

Pruning management may also have 

contributed to our results. Severe pruning is 

practiced twice a year and usually adds a large 

amount of above ground biomass to the soil (Murta 

et al., 2020). Such organic matter input potentially 

modifies the physical, chemical and 

microbiological structure of the soil (Micollis et al., 

2016; Murta et al., 2020; Pereira et al., 2021). 

Previous studies demonstrated the effect of organic 

matter on aggregate formation promoting increased 

soil porosity which, in turn, enhances the water 

infiltration process (Fransluebbers, 2002; Arévalo-

Gardini et al., 2015; Basche & DeLong, 2019; 

Wang et al., 2021). Through field observations, it 

was noted that the accumulation of litter on the soil 

was greater in the rows compared to the inter-rows.  

A further cause may have also influenced 

our results: plant diversity. A high diversity of 

species generates a greater variation of rooting 

depth (Chen et al., 2022) which affects the soil in 

three interrelated forms: (i) roots expand to the 

inter-rows and, consequently, affect the soil in such 

region, (ii) root turnover may promote pore 

formation which, in turn, may lead to increased in 

infiltration capacity (Shi et al., 2021) and (ii) roots 

exudates and mycorrhizas may increase soil 

aggregates formation and stability which, once 

more, may increase soil infiltration capacity  (Le 

Bissonnais et al., 2018; Zhu et al., 2019). 
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Conclusion  

 

Rows and inter-rows within a syntropic 

agroforestry system exhibited comparable physical 

attributes. This observation highlights the 

significant benefits of SAS in enhancing soil water 

infiltration. The demonstrated improvement is not 

confined to the rows alone, emphasizing the 

broader positive impact of SAS. Thus, SASs play a 

crucial role in contributing to agricultural systems 

that not only yield food production but also 

contribute to essential ecosystem services, 

including water and soil maintenance. 
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