Luiz De Viveiros

Luiz De Viveiros
Pennsylvania State University | Penn State · Department of Physics

PhD

About

181
Publications
21,483
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,018
Citations
Introduction
I am an Assistant Professor of Physics at the Pennsylvania State University. My research is centered on two fields: dark matter and neutrino physics. I am currently working on the LZ experiment, a next ­generation detector that will be at least 50 times more sensitive than its predecessor and presently the most sensitive detector, LUX; and on Project 8, an experiment aiming to determine the neutrino mass by precisely measuring the energy of beta decay electrons.
Additional affiliations
January 2017 - present
Pennsylvania State University
Position
  • Professor (Assistant)
March 2015 - December 2016
University of California, Santa Barbara
Position
  • Assistant Project Scientist
January 2014 - March 2015
University of California, Santa Barbara
Position
  • PostDoc Position
Education
September 2002 - November 2009
Brown University
Field of study
  • Physics

Publications

Publications (181)
Article
Full-text available
It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physi...
Article
Full-text available
The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April...
Article
The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background so...
Article
Full-text available
The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon to discriminate signal from background down to...
Preprint
Full-text available
A calorimetric detector for minimally disruptive measurements of atomic hydrogen beams is described. The calorimeter measures heat released by the recombination of hydrogen atoms into molecules on a thin wire. As a demonstration, the angular distribution of a beam with a peak intensity of $\approx 10^{16} \,{\rm{atoms}}/{(\rm{cm}^2 \rm{s})}$ is mea...
Article
The broad physics reach of the LUX-ZEPLIN (LZ) experiment covers rare phenomena beyond the direct detection of dark matter. We report precise measurements of the extremely rare decay of ¹²⁴ Xe through the process of two-neutrino double electron capture, utilizing a 1.39 kg × yr isotopic exposure from the first LZ science run. A half-life of T 1 / 2...
Preprint
Full-text available
We report on a search for millicharged particles (mCPs) produced in cosmic ray proton atmospheric interactions using data collected during the first science run of the LUX-ZEPLIN experiment. The mCPs produced by two processes -- meson decay and proton bremsstrahlung -- are considered in this study. This search utilized a novel signature unique to l...
Article
Full-text available
The LUX-ZEPLIN (LZ) experiment is a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA. We report on the results of a relativistic extension to the nonrelativistic effective field theory (NREFT) from a 5.5 t fiducial mass and 60 live days of exposure. We present constraints on couplings...
Preprint
Full-text available
The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic...
Preprint
Full-text available
This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time pro...
Preprint
Full-text available
We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A techni...
Article
Full-text available
Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a...
Preprint
Full-text available
The broad physics reach of the LUX-ZEPLIN (LZ) experiment covers rare phenomena beyond the direct detection of dark matter. We report precise measurements of the extremely rare decay of $^{124}$Xe through the process of two-neutrino double electron capture (2$\nu$2EC), utilizing a $1.39\,\mathrm{kg} \times \mathrm{yr}$ isotopic exposure from the fi...
Article
LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting...
Article
Full-text available
Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV / c 2 to a few TeV / c 2 . Models of dark matter with a mass much heavier than this are well motivated by early producti...
Preprint
Full-text available
Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a...
Article
Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measurement of the energies of charged particles, which is being developed by the Project 8 Collaboration to measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES technique to measure the neutrino mass with a sensitivity of 40 me...
Preprint
Full-text available
The Data Acquisition System (DAQ) for the LUX-ZEPLIN (LZ) dark matter detector is described. The signals from 745 PMTs, distributed across three subsystems, are sampled with 100-MHz 32-channel digitizers (DDC-32s). A basic waveform analysis is carried out on the on-board Field Programmable Gate Arrays (FPGAs) to extract information about the observ...
Article
Full-text available
Following the first science results of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time projection chamber operating from the Sanford Underground Research Facility in Lead, South Dakota, USA, we report the initial limits on a model-independent nonrelativistic effective field theory describing the complete set of possible interactions of a we...
Article
Full-text available
The objective of the cyclotron radiation emission spectroscopy (CRES) technology is to build precise particle energy spectra. This is achieved by identifying the start frequencies of charged particle trajectories which, when exposed to an external magnetic field, leave semi-linear profiles (called tracks) in the time–frequency plane. Due to the nee...
Preprint
LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting...
Article
Project 8 has developed a novel technique, cyclotron radiation emission spectroscopy (CRES), for direct neutrino mass measurements. A CRES-based experiment on the beta spectrum of tritium has been carried out in a small-volume apparatus. We provide a detailed account of the experiment, focusing on systematic effects and analysis techniques. In a Ba...
Article
Full-text available
The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment’s first exposure of 60 live days and a fiducial mass of 5.5 t. The data are found to be consistent with a background-only hypothesi...
Article
Full-text available
The absolute scale of the neutrino mass plays a critical role in physics at every scale, from the subatomic to the cosmological. Measurements of the tritium end-point spectrum have provided the most precise direct limit on the neutrino mass scale. In this Letter, we present advances by Project 8 to the cyclotron radiation emission spectroscopy (CRE...
Article
Full-text available
The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN’s first search for weakly interacting massive particles (WIMPs) with an exposure of 60 live days using a fiducial ma...
Preprint
Full-text available
The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment's first exposure of 60 live days and a fiducial mass of 5.5t. The data are found to be consistent with a background-only hypothesis...
Article
Full-text available
The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to 9.2×10−48 cm2 for the spin-independent interaction of a 36 GeV/c2 WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses,...
Preprint
Full-text available
Project 8 has developed a novel technique, Cyclotron Radiation Emission Spectroscopy (CRES), for direct neutrino mass measurements. A CRES-based experiment on the beta spectrum of tritium has been carried out in a small-volume apparatus. We provide a detailed account of the experiment, focusing on systematic effects and analysis techniques. In a Ba...
Article
Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for measuring the kinetic energy of charged particles through a precision measurement of the frequency of the cyclotron radiation generated by the particle's motion in a magnetic field. The Project 8 collaboration is developing a next-generation neutrino mass measurement experiment bas...
Article
Full-text available
The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candi...
Preprint
Full-text available
Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for measuring the kinetic energy of charged particles through a precision measurement of the frequency of the cyclotron radiation generated by the particle's motion in a magnetic field. The Project 8 collaboration is developing a next-generation neutrino mass measurement experiment bas...
Article
Full-text available
The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candi...
Preprint
Full-text available
The absolute scale of the neutrino mass plays a critical role in physics at every scale, from the particle to cosmological. Measurements of the tritium endpoint spectrum have provided the most precise direct limit on the neutrino mass scale. In this Letter, we present advances by Project 8 to the Cyclotron Radiation Emission Spectroscopy (CRES) tec...
Preprint
Full-text available
The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to $6.5\times10^{-48}$ cm$^2$ for the spin-independent interaction of a 30 GeV/c$^2$ WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming p...
Article
We present the results from combining machine learning with the profile likelihood fit procedure, using data from the Large Underground Xenon (LUX) dark matter experiment. This approach demonstrates reduction in computation time by a factor of 30 when compared with the previous approach, without loss of performance on real data. We establish its fl...
Preprint
Dual-phase xenon time projection chamber (TPC) detectors have demonstrated superior search sensitivities to dark matter over a wide range of particle masses. To extend their sensitivity to include low-mass dark matter interactions, it is critical to characterize both the light and charge responses of liquid xenon to sub-keV nuclear recoils. In this...
Preprint
Full-text available
The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LZ's first search for Weakly Interacting Massive Particles (WIMPs) with an exposure of 60 live days using a fiducial mass...
Article
Full-text available
Cyclotron radiation emission spectroscopy (CRES) is a modern approach for determining charged particle energies via high-precision frequency measurements of the emitted cyclotron radiation. For CRES experiments with gas within the fiducial volume, signal and noise dynamics can be modelled by a hidden Markov model. We introduce a novel application o...
Article
Full-text available
We estimate the amount of {37}^Ar produced in natural xenon via cosmic-ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth’s surface. We then calculate the resulting {37}^Ar concentration in a 10-tonne payload (similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of x...
Preprint
Full-text available
Measurements of the $\beta^-$ spectrum of tritium give the most precise direct limits on neutrino mass. Project 8 will investigate neutrino mass using Cyclotron Radiation Emission Spectroscopy (CRES) with an atomic tritium source. CRES is a new experimental technique that has the potential to surmount the systematic and statistical limitations of c...
Preprint
Full-text available
The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matt...
Article
Full-text available
http://deepblue.lib.umich.edu/bitstream/2027.42/173241/1/10052_2022_Article_9991.pdf
Preprint
We present the results from combining machine learning with the profile likelihood fit procedure, using data from the Large Underground Xenon (LUX) dark matter experiment. This approach demonstrates reduction in computation time by a factor of 30 when compared with the previous approach, without loss of performance on real data. We establish its fl...
Preprint
We estimate the amount of $^{37}$Ar produced in natural xenon via cosmic ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth's surface. We then calculate the resulting $^{37}$Ar concentration in a 10-tonne payload~(similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule...
Article
Full-text available
We estimate the amount of 37Ar produced in natural xenon via cosmic ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth's surface. We then calculate the resulting 37Ar concentration in a 10-tonne payload~(similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon p...
Article
The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double β decay of Xe134 is presented. LZ is a 10-tonne xenon time-projection chamber optimized for the detection of dark matter particles and is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xen...
Preprint
Full-text available
Cyclotron Radiation Emission Spectroscopy (CRES) is a modern approach for determining charged particle energies via high-precision frequency measurements of the emitted cyclotron radiation. For CRES experiments with gas within the fiducial volume, signal and noise dynamics can be modelled by a hidden Markov model. We introduce a novel application o...
Article
Full-text available
LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼7-tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic mom...
Article
We report here the results of a nonrelativistic effective field theory (EFT) WIMP search analysis using LUX data. We build upon previous LUX analyses by extending the search window to include nuclear recoil energies up to ∼180 keVnr, requiring a reassessment of data quality criteria and background models. In order to use an unbinned profile likelih...
Article
Full-text available
This paper presents a novel technique for mitigating electrode backgrounds that limit the sensitivity of searches for low-mass dark matter (DM) using xenon time projection chambers. In the Large Underground Xenon (LUX) detector, signatures of low-mass DM interactions would be very low-energy (∼keV) scatters in the active target that ionize only a f...
Article
The Large Underground Xenon (LUX) dark matter search was a 250-kg active mass dual-phase time projection chamber that operated by detecting light and ionization signals from particles incident on a xenon target. In December 2015, LUX reported a minimum 90% upper C.L. of 6×10−46 cm2 on the spin-independent WIMP-nucleon elastic scattering cross secti...
Article
Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by calibrating (or measuring) the consequences incurred when certain results are reported. We present procedures for calibrating predictio...
Preprint
Full-text available
The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double beta decay of $^{134}$Xe is presented. LZ is a 10-tonne xenon time projection chamber optimized for the detection of dark matter particles, that is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of n...
Preprint
Full-text available
LUX-ZEPLIN (LZ) is a dark matter detector expected to obtain world-leading sensitivity to weakly interacting massive particles (WIMPs) interacting via nuclear recoils with a ~7-tonne xenon target mass. This manuscript presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neu...
Preprint
We report here the results of an Effective Field Theory (EFT) WIMP search analysis using LUX data. We build upon previous LUX analyses by extending the search window to include nuclear recoil energies up to $\sim$180 keV$_{nr}$, requiring a reassessment of data quality cuts and background models. In order to use a binned Profile Likelihood statisti...
Preprint
Full-text available
Two-phase xenon detectors, such as that at the core of the forthcoming LZ dark matter experiment, use photomultiplier tubes to sense the primary (S1) and secondary (S2) scintillation signals resulting from particle interactions in their liquid xenon target. This paper describes a simulation study exploring two techniques to lower the energy thresho...
Preprint
Full-text available
Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by calibrating (or measuring) the consequences incurred when certain results are reported. We present procedures for calibrating predictio...
Preprint
This paper presents a novel technique for mitigating electrode backgrounds that limit the sensitivity of searches for low-mass dark matter (DM) using xenon time projection chambers. In the LUX detector, signatures of low-mass DM interactions would be very low energy ($\sim$keV) scatters in the active target that ionize only a few xenon atoms and se...
Article
Dual-phase xenon detectors, as currently used in direct detection dark matter experiments, have observed elevated rates of background electron events in the low energy region. While this background negatively impacts detector performance in various ways, its origins have only been partially studied. In this paper we report a systematic investigatio...
Article
LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above 1.4×10^{-48} cm^{2} for a WIMP mass of 40GeV/c^{2} and a 1000days exposure. LZ achieves this sensitivity through a combination of a large 5.6t fiducial volume, active inner and outer veto systems, and radio-pure const...
Article
Full-text available
LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above $${1.4 \times 10^{-48}}\, {\hbox {cm}}^{2}$$ 1.4 × 10 - 48 cm 2 for a WIMP mass of $${40}\, \hbox {GeV}/{\hbox {c}}^{2}$$ 40 GeV / c 2 and a $${1000}\, \hbox {days}$$ 1000 days exposure. LZ achieves this sensitivity t...
Article
Two-neutrino double electron capture is a process allowed in the standard model of particle physics. This rare decay has been observed in 78Kr, 130Ba and more recently in 124Xe. In this publication we report on the search for this process in 124Xe and 126Xe using the full exposure of the large underground xenon (LUX) experiment, in a total of 27769...
Article
Two-neutrino double electron capture is a process allowed in the standard model of particle physics. This rare decay has been observed in 78Kr, 130Ba and more recently in 124Xe. In this publication we report on the search for this process in 124Xe and 126Xe using the full exposure of the large underground xenon (LUX) experiment, in a total of 27769...
Article
Full-text available
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double β decay, taking advantage of the significant (>600 kg) Xe136 mass contained within the active volume of LZ without i...
Preprint
Full-text available
LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above $1.4 \times 10^{-48}$ cm$^{2}$ for a WIMP mass of 40 GeV/c$^{2}$ and a 1000 d exposure. LZ achieves this sensitivity through a combination of a large 5.6 t fiducial volume, active inner and outer veto systems, and rad...
Article
Full-text available
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c². This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstru...
Preprint
Dual-phase xenon detectors, as currently used in direct detection dark matter experiments, have observed elevated rates of signals from electron emission processes in the low energy region. While this background negatively impacts detector performance in various ways, its origins have only been partially studied. In this paper, we report a systemat...
Preprint
We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe strong charge-to-light discrimination enhancement with increased event energy. For events with S1 =...
Article
We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe strong charge-to-light discrimination enhancement with increased event energy. For events with S1 =...
Preprint
The Large Underground Xenon (LUX) dark matter search was a 250-kg active mass dual-phase time projection chamber that operated by detecting light and ionization signals from particles incident on a xenon target. In December 2015, LUX reported a minimum 90% upper C.L. of 6e-46 cm^2 on the spin-independent WIMP-nucleon elastic scattering cross sectio...