
 

P. Perner (Ed.): ICDM 2012, LNAI 7377, pp. 77–91, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Bus Bunching Detection by Mining Sequences 
of Headway Deviations 

Luís Moreira-Matias1,2, Carlos Ferreira2,3, João Gama2,5,  
João Mendes-Moreira1,2, and Jorge Freire de Sousa4 

1 Departamento de Engenharia Informática, Faculdade de Engenharia,  
Universidade do Porto, Rua Dr. Roberto Frias, s/n 4200-465 Porto – Portugal 

2 LIAAD-INESC Porto L.A. Rua de Ceuta, 118, 6º; 4050-190 Porto – Portugal 
3 Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto,  

Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto 
4 Departamento de Engenharia Industrial e Gestão, Faculdade de Engenharia,  
Universidade do Porto, Rua Dr. Roberto Frias, s/n 4200-465 Porto – Portugal 

5 Faculdade de Economia, Universidade do Porto 
Rua Dr. Roberto Frias, s/n 4200-465 Porto – Portugal 

{luis.matias,jmoreira,jfsousa}@fe.up.pt,  
cgf@isep.ipp.pt, jgama@fep.up.pt 

Abstract. In highly populated urban zones, it is common to notice headway 
deviations (HD) between pairs of buses. When these events occur in a bus stop, 
they often cause bus bunching (BB) in the following bus stops. Several 
proposals have been suggested to mitigate this problem. In this paper, we 
propose to find BBS (Bunching Black Spots) – sequences of bus stops where 
systematic HD events cause the formation of BB. We run a sequence mining 
algorithm, named PrefixSpan, to find interesting events available in time series. 
We prove that we can accurately model the BB trip usual pattern like a frequent 
sequence mining problem. The subsequences proved to be a promising way of 
identify the route’ schedule points to adjust in order to mitigate such events. 

Keywords: Sequence Mining, Bus Bunching, Headway Irregularities. 

1 Introduction 

In highly populated urban zones, it is well known that there is some schedule 
instability, especially in highly frequent routes (10 minutes or less) [1-5]. In this kind 
of routes it is more important the headway (time separation between vehicle arrivals 
or departures) regularity than the fulfillment of the arrival time at the bus stops [4]. 
Due to this high frequency, this kind of situations may force a bus platoon running 
over the same route. In fact, a small delay of a bus provokes the raising of the number 
of passengers in the next stop. This number increases the dwell time (time period 
where the bus is stopped at a bus stop) and obviously also increases the bus’s delay. 
On the other hand, the next bus will have fewer passengers, shorter dwell times with 
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The main results are: the observation that the BB phenomenon starts at the initial 
bus stops; and the existence of high correlation between HD that occurs at a given bus 
stop and the HD detected in the next ones. 

This paper is structured as follows. Section 2 states a brief description of the 
problem we want to solve, the related work, our motivation and a clear definition of 
our approach. Section 3 presents the methodology proposed. Section 4 presents 
summarily the dataset used, its main characteristics and some statistics about it. 
Section 5 presents the results obtained through the application of the PrefixSpan 
algorithm to our dataset and a discussion about those results. Section 6 concludes and 
describes the future work we intend to carry on. 

2 Problem Overview 

Nowadays, the road public transportation (PT) companies face a huge competition of 
other companies or even of other transportation means like the trains, the light trams 
or the private ones. The service reliability is a fundamental metric to win this race 
[12]: if a passenger knows that a bus of a selected company will arrive certainly on 
the schedule on his bus stop, he will probably pick it often. The reverse effect is also 
demonstrated and a BB event forming a visual bus pair is a strong bad reliability 
signal to the passengers’ perception of the service quality, which can lead to 
important profit losses [9, 13]. This tendency to form platoons is usual for urban 
vehicles (specially the PT ones) and arises for the specific and complex characteristics 
of transit service perturbations. Those are mainly related with changes in three key 
factors [8]: the dwell time and the loading time (highly correlated) and the non-casual 
passenger arriving (passengers that, for an unexpected reason – like a soccer match or 
a local holiday - try to board in a specific bus stop distinct from the usual one). 
However, the study of these changes impact on the service reliability is not in our 
current scope. Our goal is to find persistent and frequent headway irregularities which 
will probably provoke, in a short time horizon, a BB event.  

There are two distinct approaches found in the literature to handle the BB events: 
the first one defines the bunching problem as a secondary effect of a traffic system 
malfunction like a traffic/logistic problem (signal priority handling, adaptation of bus 
stops/hubs logistics to the needs, adjustments of the bus routes to the passengers 
demand, etc.). The second one defines the BB problem like a main one that must be 
treated and solved per se (adjust the timetables and the schedule plans to improve 
schedules’ reliability or set live actions to the irregular bus pairs, for instance).  

In this work, we are just focused on the second approach which related work, 
motivation and scope we present along this section. 

2.1 Related Work 

There are two distinct approaches to mitigate BB: (1) the PT planning one, where they 
try to adjust the schedule plans somehow and the control one, where the BB is avoided 
by actions suggested live by the controllers and (2) the real-time approaches, which use 
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streaming data to evaluate the network and to choose some actions to keep the system 
stable. To do so, it is suggested one or more actions to the irregular (i.e. schedule behind 
or ahead) buses. There are four types of actions that can be proposed to avoid BB in real 
time: the change in bus holding time, the stop-skipping, the preplanning deadheading 
(the scheduling of some vehicles to run empty through a number of stations at the 
beginning or the end of their routes) and the change in the bus cruise speed.  

We can split the existing experimental setups to test and evaluate such approaches 
in two big groups: the first one uses simulation models and the newer one’s uses AVL 
historical data to test their approaches. A brief state-of-art on both is presented below. 

 
Simulation Models 

 
Newell et. al presented one of the first known models to reduce BB [14]: an 
optimization framework to control the headway deviation effects. Basically, it 
consists in the simulation of two buses and one control point. The simulation was run 
assuming ideal conditions and it consists in the introduction of delay in one of the 
buses using stochastic variables. The simulation tested control metrics to force the 
headway to remain stable.  

Public transportation companies use slack times in the building of their schedule 
plans in order to avoid that delays in a given trip force delays in the departure of the 
next trip. This is a common practice in order to guarantee passengers’ satisfaction by 
increasing schedules reliability. An important definition is presented by Zhao et al. in 
[11]: “an optimal slack time will correspond to the best schedule plan possible. This 
plan should avoid BB situations”. They present a method to obtain the optimal slack 
times for a given number of vehicles on highly frequent routes. 

One of the first probabilistic model to predict BB [15] defines a distribution along 
a given line to evaluate the tendency of buses to form pairs as they progress down 
their route. Other works present models like this one. One of them [16] uses the 
Monte Carlo theorem to introduce stochastic variations to the traffic conditions, 
namely, the bus speed between stops. Usually these works consider classical variables 
of public transportation planning like the bus speed between bus stops, passengers 
boarding time, headway, among others, to suggest forced actions to detect BB in a 
simulation. These two works suggest one or two types of forced actions to maintain 
stability in the simulation after the launch of a BB trigger. 

Gershenson et. al. presented a model adapted from a metro-like system and 
implemented a multi-agent simulation [1]. To achieve stability, they implemented 
adaptive strategies where the parameters are decided by the system itself, depending 
on the passenger density. As a result, the system puts a restriction to the vehicle 
holding time (it sets a maximum dwell time), negotiating this value for each bus stop 
with the other vehicles.  

 
Real Data (AVL) Models 

 
The introduction of AVL systems changed the research point-of-view on bus 
bunching, in the last ten years, from planning to control. There are several techniques 
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in PT to improve the schedule plans on time tables based on AVL data. An useful 
review on those is presented by Peter Furth in [17]. 

C. Daganzo presents a dynamic holding time formulae based on real time AVL 
data in order to adaptively compensate the headway instability introduced in the 
system [2]. 

There are as well bus cruising speed approaches. In [3] it is presented a model 
allowing the buses to negotiate an ideal cruising speed to avoid potential BB situations.  

 
Headway Irregularities on AVL-Based Models 

 
The relations between the irregularities in the headway sequences and the BB events 
have been recently explored: in [8] is presented a study identifying the headway 
distributions representing service perturbations based on probability density functions 
(p.d.f.). This study was done using a stochastic simulation model for a one-way transit 
line accounting several characteristics like the dwell time or the arrivals during the 
dwell time (which values for each bus stops were calculated using the pre-calculated 
p.d.f.). Despite their useful conclusions, their model had two main disadvantages: 1) 
is not based in real AVL data and 2) it does not present a probability density function 
to represent the pattern of consecutive headways irregularities. We do believe that this 
specific issue can be rather addressed mining frequent sequences on real AVL data, as 
we present here. 

2.2 Motivation and Scope 

We can define the headway irregularities as events that occur in a bus stop of a given 
trip. Those events consist in a large variation (1 for positive or -1 for negative) on the 
headway: Headway Deviation events (HD).  

These are usually correlated in a snowball effect that may occur (or not) in a given 
(straight or spaced) sequence of bus stops. Despite the analysis of the state-of-art 
work on the mitigation of BB events, the authors found no work on systematizing real 
HD patterns that seem to be in the genesis of a BB event.  

An unreliable timetable is one of the main causes of many HD events. Usually, a 
timetable is defined using schedule points: stops for which there is an arriving or 
departing time defined. One of the most well-known PT planning ways to mitigate 
HD events is to add/reduce slack time in these defined timestamps to increase 
schedule plan overall reliability. However, only a small percentage of the bus stops 
served by a given timetable are used as schedule points. This is exemplified in the 
upper part of Fig. 2 (the reader can obtain further details on schedule plan building in 
chapter 1 from [18]). Usually, PT planners easily identify which lines present more 
HD and BB events. However, three questions still remain open: 

 
1) Which should be the schedule points affected?  
2) Which action (increase/decrease slack time) should be applied to these 

schedule points in order to reduce the occurrence probability of BB events? 
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3.1 Mining Time Series Sequences 

There is a wide range of algorithms that can explore sequential data efficiently. To the 
best of our knowledge, Agrawal and Srikant introduced the sequential data mining 
problem in [19].  Let I = {i1, i2,.., in} be a set of items and e an event such that e ك I. 
A sequence is an ordered list of events e1e2…em where each ei ك I.  

Given two sequences α=a1a2…ar and β=b1 b2 …. bs,  sequence α is called a 
subsequence of β if there exists integers 1 ≤  j1 < j2< … <jr ≤ s such that a1 ك bj1, a2 ك 
bj2, … ,ar كbjr. A sequence database is a set of tuples (sid, α) where sid is the 
sequence identification and α is a sequence. The count of a sequence α in D, denoted 
count(α, D), is the number of sequences in D containing the α subsequence. 

The support of a sequence α is the ratio between count(α, D) and the number of 
sequences in D. We denote sequence support as support(α, D). Given a sequence 
database D and a minimum support value λ, the problem of sequence mining is to find 
all subsequences in D having a support value equal or higher than the λ value. Each 
one of the obtained sequences is also known as a frequent sequence. 

In [20] the GSP algorithm, an algorithm that generalizes the original sequential 
pattern mining problem, is introduced. The search procedure of this algorithm is 
inspired by the well-known APRIORI algorithm [21]. GSP uses a candidate-
generation strategy to find all frequent sequences, and uses a lattice to generate all 
candidate sequences. We observe that GSP has limitations when dealing with large 
datasets because candidate generation may require multiple database queries. 

Several approaches have been proposed to address the above mentioned issue. One 
of the most interesting and efficient proposals is PrefixSpan algorithm [22]. This 
algorithm makes use of pattern-growth strategies to efficiently find the complete set 
of frequent sequences. The algorithm starts by finding all frequent items (length one 
sequences). Then, for each one of these frequent items (the prefix) PrefixSpan 
partitions the current database into prefix projections. Each projection database 
contains all the sequences with the given prefix. This procedure runs recursively until 
all frequent sequences are found.  

In this work we run PrefixSpan algorithm to solve our problem due to its 
popularity and efficiency.  

3.2 Methodology 

Firstly we constructed headway sequences based in the AVL historic data for every 
bus pairs in a given route. Then we identified the headway profiles where BB events 
occurred based on the bus service reliability metrics presented in [23] and we 
extracted HD sequences from them. 

Let X = x1x2…xn be a headway sequence measured between a bus pair in a given 
route through ݊ bus stops running with a frequency ݂ (݂ ൌ  ଵ). We identify a BBݔ/1
if there exists a ݔ௜ satisfying the inequality ݔ௜ ൑ (0.25 כ 1/݂)  for at least one ݅ א  ሼ1, … , ݊ሽ. An example of this analysis is shown in Fig. 3 and in Fig. 4, where we 
identified 4 BB events. Based on this headway profiles, we formed a HD sequence as 
follows. Let H = h1h2…hn be the HD sequences based on X. We compute the value of 
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Table 3. Detailed analysis of 
the highlighted sequences 01a 
implication between the bus d
confidence for a possible assoc

ID Route Pea
Con

01 B1 Bot
01a B1 Both
01b B1 Both
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h BS4_B1 = -1 0,2619   

 

n a Tuesday morning: one with BB and other without it. 
e the bus stops’ identifiers. The case II is one of the 28,6% of
equence 01 (see Table 2). The passengers in each stop are
assenger arriving [8]. It is possible to observe the strong effec
f passengers waiting in the following bus stops and, consequen

BS2_A2 were identified as BBS. Additionally, they are 
d in line B – located in the beginning of the route. T
e, probably, the large affluence of passengers in peak ho
ain this with the available data.  
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In the second study, we analyzed whether the BBS identified were coherent in both 
peak hours. In route B1, the BS2_B1 is a BBS for both peak hours.  

BS2_A1 and BS2_A2 are also persistent BBS in both peak hours. Those two bus 
stops correspond to an important bus interface (Sá da Bandeira) in the city and to a 
University Campus (Asprela), respectively. This happens because both routes maintain 
a high frequency and a large number of passengers during the day, being always busy. 

In our opinion, the short lengths of the frequent subsequences mined (1 and 2) are 
not relevant compared with the relevance of the identified patterns. Those lengths will 
always depend on the routes analyzed, so they can be larger when applied to other 
datasets. The achieved patterns demonstrate that the BB patterns can be modeled like 
a frequent sequence mining problem. The results achieved demonstrate the utility of 
our framework to identify the exact schedule points to change in the timetables. 

6 Conclusions and Future Work 

In public transportation planning, it is crucial to maintain the passengers’ satisfaction 
as high as possible. A good way to do so is to prevent the phenomenon known as Bus 
Bunching.  

There are two main approaches to handle this problem: the PT planning one, 
anticipating and identifying the origin of the problem, and a real time one, which tries 
to reduce the problem online (during the network function). 

Our approach is a contribution to solve the PT planning problem: this framework 
can help to identify patterns of bus events from historical data to discover the 
schedule points to be adjusted in the timetables. 

In this paper, we presented a methodology to identify BB events that use headway 
deviations from AVL trips data. We ran a sequence mining algorithm, the PrefixSpan, 
to explore such data.  

The results are promising. We clearly demonstrated the existence of relevant 
patterns in the HD events of the travels with bunching. There were some bus stops 
sequences along the routes identified as BBS - Bunching Black Spots, forming 
regions within the schedule points that should be adjusted. We want to highlight the 
following findings: 
  
• The high correlation between HD in distinct bus stops – one event in a given bus 

stop provoke an event on another one with a regularity sustained by a reasonable 
support and confidence; 

• The detection of BBS in the beginning of the routes demonstrated that HD that 
occurs in the beginning of the trips can have a higher impact into the occurrence 
of BB compared with events occurred in bus stops further. 

 
The main contributions of this work are: 1) to model the BB trip usual pattern like a 
frequent sequence mining problem; 2) to provide the operator the possibility to 
mitigate the BB in a given line by adjusting the timetables, instead of suggesting 
forced actions that can decrease schedule reliability and, consequently, reduce 
passengers’ satisfaction. 
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The identified patterns are no more than alerts that suggest a systematic cause for 
the BB in the studied routes. This information can be used to improve the schedule. 
The goal is not to eliminate those events but just to mitigate them. Our future work 
consists in forecasting BB in a data stream environment based on AVL data. By using 
this approach, the BSS will be identified online as the data arrive in a continuous 
manner [24]. This possibility will allow the use of control actions to avoid BB events 
that can occur even when the timetables are well adjusted, in order to prevent the 
majority of the potential BB occurrences. 
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