Designing GUI components
from UML Use Cases

Jedis M. Almendros-Jiranez and Luis Iribarne
Dpto. de Lenguajes y Computaai. Universidad de Alméa, Spain.
email: {jalmen,liribarne }@ual.es

Abstract
functionality, as an external view of the system. How-

The use case model helps the designers to identifyever, use cases can b@mally specifiecby means of
the requirements of the system and to study its highactivity diagrams, which provide a finer granularity and
level functionality. In this paper we present a method More rigorous semantics. Activity diagrams can spec-
for graphical user interface design using the UML use ify user-system interaction. States represent outputs to
case model. Given a use case diagram representing thethe user which are labelled with UMétereotypesep-
actors and use cases of a system, and a set of activityesenting visual components for data output. Transi-
diagrams describing each use case, our technique al-tions represent user inputs which are labeled with UML
lows us to generate a prototype of each user interface Stereotypes representing visual components for data in-
together with a set of GUI components. Our technique Put and choices.

handles the< <include>> and generalization relation- This finer description allows a mapping with the

Ships on use cases, in such a way that they are inter-graphic user interface deSign. The refinement of uses

preted from the point of view of the GUI design. cases by means of activity diagrams achieves more pre-
] cise specifications, enabling to deteckinclude>>

1 Introduction and generalization relationships between use cases

[Ste01, OP99]. These relations have an unstable se-
mantics along the UML development, and have received
several interpretations, reflecting a high degree of con-
fusion among developers [SIm99]. Use case diagrams
can now be viewed as a high-level specification of each

and any other systems that may interact with the sys- use case descnpﬂon, given bY.aCt.'V'ty diagrams and,
. .~ therefore, as a high-level specification of the presenta-
tem are represented as actors. The required behaviouy. .
ion logic of the system.

of the system is specified by one or more uses cases, In addition, the GUI design reflects these relation-

which are defined according to the needs of the ac- , . .
I . ships between use cases, by usingappletor frame
tors. Each use case specifies some behaviour, possi-

; . . - “inheritance as an implementation of use cases general-
bly including variants, that the system can perform in .__: ; . : .
. . ization, and the applet invocation as an implementation
collaboration with one or more actors. On the other

hand,graphical user interfaces (GUBave become in- of <<include>> relationship. We handle use cases and

creasingly dominant, and the design of the “external’ activity diagrams and, following some rules of transfor-

o . T mation, we transform both specifications into the user
or visible system has assumed increasing importance.. .))

. L interface. The designer is the responsible for both spec-
The user interface, as a significant part of most ap-

plications, should also be modeled using UML. How- ifications and the GUI are designed according to the

. specification.
ever, it is by no means always clear how to model . .
. . In the literature there are some works which accom-
user interfaces using UML, although there are some re-

plish the design of GUI in UML. The closest to our ap-
cent approaches [Kov98, dSP03, dSP00, EK00, EKK99,
NunOSppBNTOZ] V\[IhiCh have addressed this problem. proach are [dSPO3, dSP00, Nun03]. These proposals

.)) identify some aspects of GUI that cannot be modeled
In this paper, we focus on the design @I with ! ity P

the UML Use case modeThe design of GUI is based using UML notation, and a set of UML constructors

U del. and . the desi ; that may be used to model GUI. However, a method-
on Lseé case model, and conversely, the design o use%Iogy for GUI design using the use case model is not
cases is oriented to GUI design.

.) completely addressed, and there also exists a lack of
Use case model is intended to be used in early stageg,ma| description of use cases and the correspondence

of the system analysis in order to specify the systém poyeen use case relationships and GUI components.
*This work has been partially supported by the Spanish project AnOth.er S|mllar work to O.ur contrlbuthn s [EKOO,

of the Ministry of Science and Technology “INDALOG" TIC2002- EKK991 In WhIC_h state machines and petri nets are used

03968. to specify GUI in UML. In the quoted approaches they

In the Unified Modeling Languag€¢UML), one of
the key tools for behaviour modeling is tlse Case
model, originated from th&®bject-Oriented Software
EngineeringlOOSE). The key concepts associated with
the use case model aaetorsanduse casesThe users

specify user interaction but they also lack of use case re- fulfilling those restrictions of the method. The
lationships handling. Finally, in [Lia03, KSWO01], uses original use case diagrams go refining until they
cases are mapped into a UML class diagram to represent ~ obtain a more formal diagrams.

the data managed by the system, but not to design GUI.

The tools for supporting the development of soft-

ware, the so-calle@CASE tools not only support the
analysis and design of systems, but they also contain (d) Finally, the class diagrams obtained in the previous
code generatorto automatically create code fragments step produce Java implementations which could be

of the specified system in a target programming lan- considered as GUI component prototypes.
guage. In [KGO1l, EHSW99], the authors describe

how to implement collaboration diagrams into code. A Certainly, this development sequence is cyclic since
CASE tool following our method should be able to per- the designer can refine high-level details of the use case
form the transformation of the use case model and ac-diagrams in the next phases. On the other hand, the
tivity diagrams into a set of GUI. It could allowrapid behaviour described for the method only refers to the
prototypingof the external view of the system, which ~Presentation logicwithout considering thbusiness and
completes thelient and designer viewsf the system data logic which remains in a second level and out of
to be developed. The generated GUI interfaces will con- the scope of this paper.

sist of a UML clas§ diagram and a view of GUI compo- 5 5 Ryles for a GUI design

nents, together with code generation. We have chosen _ _
Java as the programming language for GUI coding due Now, we can summarize the rules of the GUI design,
to the familiarity of most software developers with the as follows:

(c) Thirdly, the use cases and the stereotyped states
and transitions are translated into class diagrams.

Javaswingfor GUI (for instanceappletandframe). — Eachactor representing a user in the use case di-
The rest of the paper is organized as follows. Sec- agram is amapplet Actors representing external
tion 2 describes the rules of a method that the designer systems are not considered for visual component

should follow to build GUI components, using use design.

cases, class and activity diagrams. Section 3 presents
a GUI project example of an Internet book shopping
that ilustrates the use of the design rules. Then, Sec-
tion 4 describes a formalism that helps us to validate
the proposed method. Finally, Section 5 discusses some

conclusions and future work. — Eachuse casén the use case diagram is applet

— The generalization relationshigpetween two ac-
torsp andq (p generalizes]) corresponds witln-
heritanceof the applet represented loyfrom the
applet representing.

2 A Method — The generalization relationshippetween two use

]) casexu andw (u generalizesw) corresponds with
In our method, a use case diagram consists of a set of inheritanceof the applet ofv from the applet ofl.
actors (users and external systems) and use cases. Re-

lationships between actors are generalizations, and rela- — The <<include>> relationshipbetween two use

tionships between uses cases areinclude>> depen- casess andw (u includesw) corresponds with the

dences, together with generalizations. In addition, rela- invocationfrom the applet ol of the (sub)applet

tionships between actors and use cases are simple asso- Of w.

ciations. Roles, multiplicity, directionality, anektend

dependences will not be considered in our approach yet.
An activity diagram consists of a set of states, with

two special cases: the initial and the final state. States

Each state of the activity diagram describing a use
case necessarily falls in one of the two following
categoriesterminal state®r non-terminal states

can be linked with labeled transitions (arrows), and a e A terminal state is labeled with &ML

transition can have several branches with a diamond stereotypaepresenting aoutput GUI com-

representing the branching point. Some activity dia- ponent Therefore, they are also called

grams can describe a state of another activity diagram. stereotyped states

2.1 Steps for applying the method ¢ A non-terminal state is not labeled and is de-
scribed by means of an activity diagram. The

The following presents the steps identifying a GUI non-terminal states can be use cases of the
project development: use case diagram or not.

— Eachtransition in the activity diagram of a use
case can be labeled by meansofditionsor UML
stereotypes with condition¥he UML stereotypes
representinput GUI components This kind of
transitions is also calledtereotyped transitions

(b) Secondly, for each use case its behaviour is de- The conditions represenise choices or business
scribed by means of one or more activity diagrams, logic.

(a) Firstly, an informal high level description of the
system is carried out by means of a use case di-
agram. The use case diagram involves the actors
and the main use cases.

— In the case of the non-terminal states, the use casethis approach, the next sections describe those steps that
diagram can specify.<include>> or generaliza- should be continued to develop a GUI project using uses
tion relationship between the non-terminal state cases. We will explain the Internet Shopping project to
and the use case, and we follow these rules: illustrate these steps.

¢ In the <<include>> relationship case, the
non-terminal state is also an applet. It con-
tains the GUI components in the associated
activity diagram.

3.1 Describing use cases

Since the method interpretation is that each use case
will correspond with an applet (or frame) component,
¢ In the generalization relationship case, the we should previously identify all those future windows
non-terminal state is also an applet contain- of the system (graphical user interfaces), carrying out
ing the GUI components in the associated ac- some quick outline of their content. The connection of
tivity diagram, but the use case also contains an actor with one or more use cases in the use case di-
these GUI components. agram will be interpreted as a set of options (menu) on
) . . a first window on which the actor will interact with the
— A non-terminal state, which do not appear in the g gem Figure 1 shows the complgtesentation logic

use case diagram, is not an applet, and the GUI yefinition for the Internet Shopping system using a sin-
components in the associated activity diagram are gle use case diagram.

GUI components of the applet of the use case. In our method, the<<include>> relationship can

— The conditions of the transitions of an activity dia- be used to represent optional or mandatory behaviour.

gram are not taken into account for the GUI design. This two kinds of relationships are properly inter-
preted in the activity diagrams associated with both

With regard to the use case relationships, they areconnected use cases, since a use case does not de-
interpreted as follows: scribe the behaviour. For instance, the use ¢Aae-
age catalogue is an applet that directly depends
on four use cases, connected to them by means of
an <<include>> relation. However, these connec-
tions are similar to three of them, and different from
the others. The<<include>> relationships between
— The generalization relationship between a use casethe use casedVithdraw article , Modify ar-
uand a use case (U generalizesy) means thatthe ticle andAdd article were modeled by the sys-
activity diagram representing contains the states tem’s designer as relations of optionality (the branches
and transitions of the activity diagram of but of the use castlanage Catalogue 's behaviour go
some states or transitiorssof u can bereplaced to these states in the activity diagram). However, the
in w by states (resp. transitions)following are- use casédministrator identification was
placement relationship’ <= s. In addition,w can considered by the system’s designer as a relation of
add new states and transitions starting from (and mandatory (this state is always reached in the activity
reaching) the particular case of the state diagram) of the use caddanage Catalogue
An <<include>> relationship can mean that a use
3 ACase Study case could be considered aspa composition of two
In this section, we explain a simple case study of an Or more other use cases. For instance, the use case
Internet book shopping to illustrate the functionality of Manage catalogue is composed of the use cases
our proposed method. Withdraw article , Modify article andAdd
In the Internet Shoppping there basically appear article (i.e., applets or frames). However, an
three actors: (a) the customer, (b) the ordering manager,<<include>> relationship can also indicate that a use
and (c) the administrator. A customer actor directly car- case mandatorily depends on another use case to op-
ries out the purchases by the Internet. The customer carerate. For example, since the administrator should be
also consult certain issues of the product in a catalogueitself identified before working with the system, the
of books before carrying out the purchase. On the otherthree use cases which he/she directly operates with (i.e.,
hand, the manager deals with (total or partially) cus- Manage catalogue , Update orders and Up-
tomer’s orders. Finally, the system’s administrator actor date partial order) mandatorily depend on the
can manage the catalogue of books adding and elimi-Administrator identification use case.
nating new books in the catalogue or modifying those The relation ofgeneralizationis intended as an in-
already existing. The administrator can also update or heritance of behaviour and, therefore, of GUI compo-
cancel certain component characteristics of an order ornents. For example, tH@uery catalogue use case
those orders fulfilling certain searching criteria. Both has been established as a generalization ofPtine
the manager and the administrator should be identifiedchase use case. That means that the purchasing applet
themself before carrying out any kind of operation re- also allows a query operation on the catalogue. In fact,
stricted to his/her environment of work. Considering the applet of purchasing inherits from query catalogue.

— The <<include>> relationship between a use
caseu and a use cas® (u includesw) means that
oneof the non-terminal states of the activity dia-
gram ofuisw.

>

Confirm remove article

S

Motify shopping cart empty <Fincludes>

sintlraze, Shopping cart

1
L =<iiciudes>

Query catalogue

Sk
-

Purchase
Custamer
Motify invoice exists

-

Confirm invoice

F‘A ==includes= :
==includes=% ==jnchide==

anage orders "+
; zenclude==

X [

Crdering Manag et

Manager \demiﬁcanun«mC;L-“;E;‘)—‘.,b
; -

S ==includes=

Manage partial Orders - . jncjudass
\==include=» Sy

é@

Motify invoice exists

==incude==

: gy
Y Query catalogue by administrator
e

Coniirm modification

s
Motify existence d

; o

L7
~=*7 7 Maotify no invoice exist

em A4include=s

Confirm cancel

Canfirm withdraw article in stock

Qu_”«inmude»

Confirm withdraw article

/Wilhdraw article R Q
L e
Bl

==include==

Manage catalogue

Modifparticle ssincluge>>

==\nc\udg3?.-"‘© <<|nc\:i.|de>>
- Addaricle .

s<include==
Administratoridentificationt

. 5 A
Coniirm add article =<indludes>
& :
O ==includes=
Motify incorrect identification /; ;

Administrator
=zincludgzs--"
<=include == Update arders

Zancel partial orders

-

Fe=include =

<<inclide== ancel orders (b

Motify incorrect identification O‘i"'aﬂmlude?ance\ orders by criterion
search

Confimm cancel order

O‘G\.‘:Tﬂum»

Motify incorrect identification

==intludes=
i Update partial orders

Adminigtrator id entific atinn

Figure 1. The Internet Shopping use case diagram

Note how the use casguery catalogue by ad-
ministrator
generalizes the use caséithdraw article
Modify article
client’'s presentation logi@and the administrator side.

The distinction betweeninclude relationships

, and

connecting them to a part of the

and JButton stereotype to transitions. Since the

also inherits from query catalogue and graphical behaviour concerns to states and transitions,

next we will describe them separately.

Statescan be stereotyped or not. Stereotyped states
represent terminal states which can be labeled by the

(mandatory, optional) and generalization is established <<JTextArea>> , <<JList>> and <<JLabel>>
by the system’s designer into the activity diagrams of Stereotypes. For instance, Figure 2 (a) shows the activ-
those include-connected use cases. In the following ity diagram for thePurchase use case. The behaviour
sections we will only focus on theurchase use case ~ Shows how the customer begins the purchasing process

to explain the behaviour of the method. of querying, adding or removing articles of the shop-
ping cart. After a usual purchasing process, the shop-

ping system requests the customer a card number and
a postal address to carry out the shipment, whenever
As we previously stated, each use case will corre- the shopping cart is not empty. This diagram shows the
spond with a Java applet (or frame) component in the graphical and behavioural content of the applet window
method. Activity diagrams describe certain graphical where the purchases can be carried out. The activity
and behavioural details about the graphical componentsgiagram is composed of four states. Two of them are
of an applet. In our case study, we have only adoptedterminal states, since they correspond to graphical ele-
four Java graphical componentextArea ,JList ments. They are stereotyped<TextArea>>) and
JLabel andJButton . Nevertheless, other graphical |apeled by a text related to the graphical element. Two
elements could be easily considered in the activity dia- other states have been described in a separate activity di-
gram since they are modeled as state or transition stereoagram in order to structure better the design. The name

types. of a separate activity diagram should be the same as the
Graphical components can be clasified as input (agne of the state.

text area or a button) and output components (a label

or list). Input and output graphical components are as- According to the rules of the proposed method, if

sociated with terminal states and transitions by using a state is not labeled with a stereotype, this means
the appropriate stereotype, for instand€extArea that the state is described in another activity diagram.
JList ,JLabel stereotypes are associated with states This new diagram can either represent the behaviour

3.2 Describing activity diagrams

of another use case or simply a way of allowing a hi- Condition/action transitions are also useful to model
erarchical decomposition of the original activity dia- the behaviour of the generalization relationships be-
gram. For example, in the activity diagram associated tween use cases in a use case diagram. Note in the
with the Purchase use case, there appear two non- original use case diagram how tRerchase use case

terminal statesManage shopping cart andNo- inherits the behaviour of the use ca3aery cata-

tify shopping cart empty . At the same time, logue by means of a generalization relationship. This

two activity diagrams are described for both states. All inheritance behaviour is modeled in the Purchase activ-

these activity diagrams are also shown in Figure 2. ity diagram as a non-terminal state that includes the be-
In the activity diagram of theNotify shop- haviour of the Query Catalogue activity diagram. For

ping cart empty use case, we can observe how example, let us observe the behaviour of the query cat-
the target use case (being modeled) brings to another@logue shown in Figure 2 (c). In this activity diagram,
activity diagram. The model represents a warning the user introduces the searching criteria in the text area,

applet window containing only the tex3hopping presses the buttoSearch and then the results are
cart empty and the buttorClose . In theManage shown on a list. After that, the user can select articles
shopping cart activity diagram, the stateQuery in the list, presses a button to exit or try a new search

catalogue andShopping cart are itemized on by pressing the butto€lear . Thus, when the Pur-
independent activity diagrams. Both states would also chase use case inherits the Query Catalogue use case, it
correspond with an applet, since they appear as useshould be possible to interrupt its behaviour.

cases in the diagram.

Transitions can be labeled by means stereotypes Condition/action transitions can be used to interrupt
conditionsor both together. For instance, a button is an inherited behaviour. For example, the query cata-
connected to a transition by using theJButton>> logue’s behaviour (previously described) is adopted in

stereotype, and the name of the label is the name of thethe activity diagram of the Purchase use case as a non-
button. For example, Show cart transition stereo- terminal state calleQuery catalogue . The output

typed as<<JButton>> will correspond with a button ~ transition[Selected article}/Add to cart
component called “Show cart”. mean that theAdd to cart button at the Purchase

applet (use case) can interrupt the query catalogue be-
haviour whether an article has been selected (condi-
g tion). Analogously, the output transitiorroceed
and Show cart at the Purchase applet (use case)
mean that both theroceed andShow cart buttons
can interrupt the inherited behaviour of the query cata-
logue.

Conditions can representuser choicesor busi-
ness/data logic The first one is a condition of the
user’s interaction with a graphical component (relate
to button or list states), and the second one is an in-
ternal checking condition (not related to the states, but
to the internal process). For example, in our case
study the selections on a list are modeled by condi-
tions. Note in the Query Catalogue activity diagram
how the listResults is modeled by a<<JList>>
state and 4Selected article] condition. Fig-
ure 2 shows some transitions (p[€lose] , [Exit]
or [Proceed]) that correspond with conditions of the
kind user choice The [Exit] output transition of
the stateManage shopping cart means that the
user has pressed a button calledt , which has been
defined in a separatdanage shopping cart ac-
tivity diagram. Nevertheless, tHshopping cart
no empty] and[shopping cart empty] con-
ditions are twdbusiness/data logiconditions, in which
the human factor does not participate.

Furthermore, stereotyped transitions (buttons in our
example) and conditions connect (non) terminal states
to (non) terminal states. As we said before, a condi-
tion would be an output of a non-terminal state in case
the user interacts with a button or a list component in-
side the respective non-terminal state. The usual way
“condition/action” transition can connect (non) termi-
nal states to (non) terminal states. A condition/action This rule of repl t Iso b idered ont
transition between states means which condition should _. IS Tule otreplacement can aiso be considered on tran-
be present to achieve the action. In our case study, anSItlons (p.e, replacing a_b_utton by ?noth_er Gul co_mp(z-

h . nent). Finally, the conditions and “conditions/actions
action can only be a button. For instance, to remove

: : . . can be also replaced. In all cases, is a decision of the
an article from the shopping cart, it must previously be designer to allow the replacement of states and transi-
selected from the cart list (Figure 2, d).

tions.

On the other hand, a generalization relationship does
not only represent an inheritance of the behaviour as
an extension; for instance, the Purchase use case in-
herits the Query Catalogue use case and increases its
behaviour to hold the buttonAdd to cart , Show
cart andProceed . However, a generalization rela-
tionship can also deal withr@placementof behaviour
instead of an increase in behaviour. For example, note
in the original use case diagram how the Query Cat-
alogue by Administrator also inherits the Query Cata-
logue. Let us suppose that their behaviours (activity di-
agrams) are the same, but the results list shown to the
customer actor (th®esults state) is different from
that shown to the administrator actor (for instante;
ministrator Results state). In this case, the sys-
tem’s designer can use the behaviour (activity diagram)
of the Query Catalogue use case to model the behaviour
(activity diagram) of the “Query Catalogue by Admin-
istrator” re-writing (replacing) the results list (p.e., re-
placingResults by Administrator Results).

<<JButtonx»=
Clear

=<JButton>>

Accept .

< «JTextAreas »
Searching criteria

[Selected article’]

==</Button=»
Search

<«JButtan»> <<JButtons:

<=llistz>
Resulis

<<dButton>> (" Lo TeutAreas>

Input pastal
address

<< TextArear>
Input < ad

Manage Return

shopping cart

<<JButton>>
Clear

<=|Button s
Exit

shopping cart no:empt
[M Eii {d) The Query Catalogue activity diagram
I

[shoppigg cart empty |

[Glose | . [Selected article]
Motify shopping << Button>x> E; <<JButton=>
cart ermpty Esit 3@ e<]liot>> Claze :
Selected
[Exit] articles

<<JButtonz:
{a) The Purchase activity diagram [Cancel] [Accept] [[Selected article | / Remave article

Confirm
AButt remove article
<<JButtor=>
[Belected article |/ Add to cart
Gluery
catalogue

(dy The Shopping Cart activity diagram

<< JButton=»
<<Jlabel>> Accept
e emes <<JButton=> O
atticls
Cancel

=)L abal>> << Buttonz= >

Shopping cart O

empty Close

[Clase |

I
=<JButton>: Gl

Shiwe cart
[Exit]

<<JButtonz»
Proceed

(b} The Manage Shopping Cart activity diagram (e) The Purchase's information activity diagrams

Figure 2. The whole activity diagram of the ~ Purchase use case

3.3 Generating class diagrams applet class from th@ueryCatalogue class. These
six classes —which (direct or indirectly) inherit the ap-

Once refined a formal use case diagram and obtainedplet class— correspond to those five use cases at the
a set of activity diagram, now we generate class dia- customer side in the use case diagram together with the
grams from this diagram information. customer actor.

The class diagrams are built from Jawingclasses. Furthermore, note how the stereotyped states and
In the method, each use case corresponds with an applefransitions in the activity diagrams are translated into
class. Use cases are translated into classes with the samgava classes in the class diagram. The stereotype name
name as these use cases. The translated classes speciaF a transition or state is translated into the appropri-
ize in a JavaAppletclass. The components of the applet ate Java swingclass. The name of the stereotyped
(use case) are described in activity diagrams. A terminal state (transition) is translated into an association be-
state is translated into that Jastaingclass represented tween theswing class and the applet class that con-
by the stereotype of the state. The Jawangclass is tains it. For example, the<JButton>> stereotype
connected from the container class (i.e., that class work-of theProceed transition that appears in tihdanage
ing as an applet window in the use case diagram) andshopping cart activity diagram (see Figure 2) is
uses an association relationship whose role’s name istranslated into @Button class. The transition name
the one on the terminal state. For example, those termi-(Proceed) is interpreted as an association —labeled
nal states stereotyped &sJTextArea>> are trans- with the same name— between thgutton class and
lated into aJTextAreeclass in the class diagram. Some- the class containing it (i.e., tHeurchase).
thing similar happens to the rest of stereotyped states Due to the extension of the resultant class diagram,
and transitions. The non-terminal states of an activity some classes have not been included in the figure.
diagram may correspond to some other use cases (ap: .
plets) or activity subdiagrams. In the last case, the non-3'4 Generating the GUI components
terminal states can be considered an abstract class inthe Finally, rapid GUI prototypes could be obtained from
class diagram. Then, it can be described in another classhe class diagram. Figure 4 shows a first visual result of
diagram with the same name as that abstract class. FigthePurchase applet, but without functionality.
ure 3 shows the resultant class diagram of the customer Note how the Purchase window (applet) is very sim-

side. ilar to the Query Catalogue window, except that the sec-
The class diagram contains six classes of the ap-ond one includes three buttons more than the first win-
plet type, four of which directly specialize in thgp- dow. This similarity between applets was reflected in
plet class: theNotifyShoppingCartEmpty class, the original use case diagram as a generalization re-
the Customer class, theConfirmRemoveArti- lationship between use cases (applets), here, between

cle class and th&hoppingCart class. The other the use caseQuery catalogue andPurchase .
classes inherit theApplet class through their super Since the Internet Shopping project was designed, the
classes. For example, tiairchase class inherits the customer will always work on a Purchase applet opened

JApplet

MotifyShoppingCart
Empty

ConfirmRemovedricle
+C\US&\L
+RemoveAricle | JBUtON | 4 oancel |
JButton
+Zloge +hccept QueryGatalogue +Exit
+Clear.
tRemoveText +3earch, |
o C JLahel

oppingCat| 1SalsctadArticlesTaxt +AddToSh iC art
+SearchingCriteria il

+ShoppingCat Te +5howCal
BRI . +ResultsText P :\‘

rocee

+Accept

+Cart
+Results +Exit
=
|
ot Area |258archingCriteria %
+Hnput Card +CartEmpty Text
+tihputPostaltddress Purchase
+SelectedAdicleText | JLabel

Hnput CardText
HnputPostalhddressText |
+ShoppingCartText_

=<hctor>>
Customer

Figure 3. A class diagram obtained from the use cases and activity diagrams

from theCustomer applet, and never on a Query Cat- Definition 1 (Use Case Diagram)A use case diagram
alogue applet, though the first one inherits the behaviour ;; - — (n, ACT,UC, —>, —, <§£§>) consists of a

of the second (i.e., by the relation of generalization). giagram name n; a finite set ACT of actor's names
The Shopping Cart window (Figure 4, c) appears \yhich can be users and external systemg,p,...; a
Wr?e” th(_aS(,jhow(FC_art t:lu“bo)n Ilfl F:fefssfﬁ on the IIDur- finite set UC of use casesww,...; and three rela-
chase window (Figure 4, b). Note in the original use . <<i>>
case diagram, shown in Figure 1, how the button is asso-1ONS >, — and -7, where—|><§<i(f\>CT x ACT) U
ciated with the window by means of arx include >> (UCxUC); — CACTxUC;and --»"C UCxUC;
relation between use cases. On the other hand, the twas usual we write p> g, rather than(p, q) € —>, and
information applet windows (Figure 4, d) are also asso- analogously for— and ~=3 .
ciated with two buttons: th&emove article but-
ton in the Shopping Cart window and tiroceed Now, we formally define a use case being specified
button in the Purchase window. Note again how these by means of an activity diagram as follows:
windows are also describediasluderelations between
use cases. Also observe the activity diagrams shown inDefinition 2 (Use Case)A use case U =
Figure 2 to track better the behaviour of the example. (n, S SI,IN, OUT, COND, —) consists of:
To develop the case study we have used the Ratio-
nal Rose for Java tool. For space reasons, we have in- — & US€ Case namg
cluded here just a part of the GUI project developed for
the case study. A complete version of the project is
available at http://WWW.ual.es/”liribarn/ — afinite setUC of use cases;
Investigacion/usecases.html

— afinite setS of states which consist of:

— afinite setSSof stereotyped states of the form

4 Formalisation (snp) where sn is an state name and¢

In this section we will formalize the described OuT;
method, and provide a formal definition for use case di- — three special states SP, the initial, end and
agrams and use cases. In particular, we will define the branching states.
use case relationships<include>> and generaliza-
tion. We will also define well-formed use case diagram — a finite set SI of stereotyped interactions of the
which follows some restrictions. In addition, we will form [C]/(in,i) where C € COND, in is an in-
provide an abstract definition of GUI, and we will de- teraction name, and € IN. The condition[C] is
fine two relationships between GUI: inclusion and gen- optional;

eralization. This will allow us to define a generic trans-

formation technique for use case diagrams into a set of ~ afinite set IN of input stereotypegi..

GUI. Finally, we will establish some properties of this _ 5 finjte set OUT of output stereotypegyp. . .;
transformation technique. Now, let us define a use case
diagram as follows: — a finite set COND of conditions,©®;

&5 Anpict Viewer: shopping QueryCatalogue.clas =lE)d = lofx
Apglet Applet
Guery Catalogue Purchase
Searching criteria Searching eriteria
| seorcn | | cuox | searsh | coxr |
Resulls Results
Ext | Addtocart | Show Can Procond Exit
Applet started Applet started
{2) The Query Catalogue applet {use case) (b} The Purchase applet (use case)
i [rovte viewsr: spgRT= Y
Appat
Shopping Cart Remouve article?
Selected articles accept | ’m
Applet started
i) x|
Shopping cart empty
Remove article | cuose =
Applet started Applet started

(¢} The Shopping Cart applet (use case)

Figure 4. The applet windows

e atransition relation—C Sx (SIUCOND) x S; as

usual we write A% B rather than(A, A\, B) €—,
where) can be[C] or [C]/(in,).

In an activity diagram we have two kinds of states:
stereotypedand non-stereotypedstates. Stereotyped
states represerterminal statesthat correspond with
graphical components. Theon-terminal stategsorre-
spond with use cases. Transitions are labeled (gith-
ditionated) stereotyped interactioaadconditions The
first case corresponds wisttereotyped transitions

We denote bynaméu) the name of a use case
Analogously, we define the functionsecasesl) and
transitiongu), to get the use cases, respectively, the
transitions of a use cas8l(u) —resp.SSu)— denotes
the set of stereotyped interactiofig, i) in u —resp.
stereotyped statesn p) in u—. Finally, we callexit
conditions denoted byexit(u), to the interaction names
[C]/(in,i

in of transitionss —) s and conditionsC of transi-
tions'< which go to the end state in a use case.

Now, we have to assume (geflexive) replacement

(4) Infermation applets (use cases)

of the Customer side

can be replaced if thmput GUI componentsan be re-
placed. For instance, a selection of any of the cited list.
Finally, conditions can be, for instance, replaced if one
of them ismore restrictivehan the other.

The replacement relation can be extended to use
cases, as follows. Given two use casgs v C uwhen-

N

evers >t e transitiongu) iff there existss' —' t' €
transitiongv), such thats C s, t' C tand)\ C A
Assuming this, we can define the inclusion and gen-
eralization relationship between use cases as follows.
Given two use cases,v we say thatu includesv if

v € usecasgsl), and we say thati generalizesy, if
there existsv € usecasgw) such thaiwv C u.

Therefore, the transitions of the most general use
case can be replaced in the particular one by more par-
ticular stereotyped states and interactions, and condi-
tions, by following the replacement relationship. In ad-
dition, the more particular use case can add new states
and transitions. Now, we will define the well-formed
use cases. Let remark that inclusion is a particular case
of generalization, that is, ifi includesv thenv general-
izesu. However, we handle the generalization by con-

relation = between stereotyped states, and the same re-Sidering two applets, one for each use casedv, but

lation for stereotyped interactions and conditions. In
practice, this replacement relation should be decided by

u does not invoke, rather thamu includes the behaviour
of v.

the designer. Basically, stereotyped states can be repefinition 3 (Well-formed Use Case)A use case U is

placed if theoutput GUI componentan be replaced.
For instance, a list with two columns can be replaced by
a list with three columns without lost of functionality.
The same happens with stereotyped interactions which

well-formed if the following conditions hold:

—foralls > te transitiongu) then\ has the form
[C]/(in,i) € SI iff

— s=(snp),pe OUT, or; Definition 6 (GUI of a Use Case Diagram)Given a
well-formed use case diagrabiCD = (n, ACT,UC,

-, —,“=537), we define the GUI associated

—for all v € usecases)) then there exists s> With UCD, denoted by GQUCD)_' as the set
t € transitiongu) such that\ has the forn|C] or {GUI(p) | p e ACT is a usef, where:

— s € usecasgsl) and s generalizes u;

[C]/(in, p) for every Ce exit(v). GUI(p) = (p,W,1,0)
Well-formed use cases take into account that: (1) an W= {GUI(u) | p — P}
output component should trigger an input interaction; Where IO: {(namgu), << option>>) | p — u}
=0

(2) input interactions can be added to a more general use
case in order to obtain more particular ones; and finally,
(3) the exit conditions of a non-terminal state should be
included in the main use case. GUI(u) = (nameu), W, 1,0)
According to the previous definition, a well-formed W= {GUI(V) | u <<i>> v}
use case diagram includes well-formed use cases, and h | = Sl(u) U
the <<include>> and generalization relationships be- where
tween use cases in the use case diagram correspond with O=S3§uu {veusecase@),and not i3 v} Sqv)
a subset of the analogous relationships defined for use

and

F3y SI(v)

{veusecase@l),and not u

We can state the following result from our transfor-

cases. ; ;
mation technique.
Definition 4 (Well-formed Use Case Diagram) Theorem 1 The GUI associated to a well-formed UCD
A well-formed Use Case Diagram satisfies the following conditions:
<<i>> . g

UCD = (n, ACT,UC, —>,—, --»") satisfies — foralla,a € ACT, d—> a then GU[a, —) gen-
that every ue UC is well-formed,; for all yu’ € UC, eralizes GU(a/, —);
u—r> u if u generalizes 'y and for all uu’ € UC,

<<i>> , — for all u,u’ € UC, U—> u then GU(u) general-
u --»" U ifuincludes t. . .

izes GUIU);

Now, we will provide an abstract definition of GUI —forallu.u € UC. u <<i>> u then GUIu) in-
and GUI components. A GUI has a name, a set of cludes éU(u’)' ’
GUI which can be invoked from it, and a set of stereo- '
typed interactions and states which represent the input — for all a < ACT and uc UC, a——u. then
and output GUI components. GUI(a, —) includes GU[u)
Definition 5 (GUI) A graphical user interface G= 5 Conclusions and Future Work
(n, W, 1, O) consists of a GUI name n; a finite set W of
graphical user interfaces; a finite set | of stereotypedin- In this paper, we have studied a method for mapping
teractions(in, i); and a finite set O of stereotyped states use case models into graphical user interfaces (GUI).
(snp). The use case diagrams help the designers to identify the

requirements of the system and to study its high level
GUI can be compared by means of generalization functionality. There exist UML diagrams (i.e., activity
and inclusion relationships. The first one corresponds and class diagrams) that allow to discover new details of
with the inheritance relationship, and the second one system behaviour or to describe better the already exist-
with the invocation of GUI. The designer should take ing. Nevertheless, in this paper we have shown how a
into account this correspondence when (s)he defines the&lirect correspondence between the requirements identi-
replacement relationship between stereotyped states anfled in the use cases with these UML diagrams is feasi-

transitions. ble. GUI components may be designed with our method
Given two GUI(n,W,1,0), (n,W',l’, O') we say for rapid prototyping of the external view of the system.
that(n, W, |, O) generalizesn’, W', ', ') if forall G Through a case study, we have shown how our tech-
W, there exist§s’ € W’ such thaiG generalize$s'; for nique can be applied to the design of the Internet Book
alli €1, there exists’ € |’ such thai’ C i; and for all Shopping system. In addition, our approach has been
0 € O, there exist®’ € O’ such thabt’ C o. Given two formally studied by providing a generic transformation
GUI G andG’, we say thaG = (n, W, |, O) includesG’ technique of the use case model into a set of abstract
if G e W. graphical user interfaces. As a future work, we firstly

Now, we can formally define our transformation plan to extend our work to deal with the<extends->
technique which provides a set of GUI for each use caserelationship of use cases. Secondly, we would like to
diagram. In order to define our transformation, we need incorporate our method in a CASE tool in order to au-
to suppose that <option>> is a stereotype represent- tomatize it. And finally, we would like to integrate our
ing each menu option of a GUI. technique in the whole development process.

References

[BNTO2]

[dSPOO]

[dSPO3]

[Sim99]

Robert Biddle, James Noble, and Ewan Tem-
pero. Essential use cases and responsibility in
object-oriented development. RFroceedings of
the Australasian Computer Science Conference
(ACSC2002)2002.

Paulo Pinheiro da Silva and Norman W. Paton.
User interface modelling with UML. linforma-
tion Modelling and Knowledge Bases Xplages
203-217. 10S Press, 2000.

Paulo Pinheiro da Silva and Norman W. Paton.
User Interface Modeling in UMLI. IEEE Soft-
ware, 20(4):62—-69, 2003.

[Ste01]

[EHSW99] Gregor Engels, Roland Huecking, Stefan Sauer,

[EKO0]

[EKK99]

[KGO1]

[Kov98]

[KSWO1]

[Lia03]

[Nun03]

[OP99]

and Annika Wagner. UML Collaboration Di-
agrams and their Transformation to Java. In
UML’'99: The Unified Modeling Language - Be-
yond the Standatdhages 473—-488. LNCS 1723,
1999.

Mohammed Elkoutbi and Rudolf K. Keller. User
Interface Prototyping Based on UML Scenar-
ios and High-Level Petri Nets. In M. Nielsen
and D. Simpson, editordApplication and The-
ory of Petri Nets 2000, 21st International Con-
ference, ICATPN 20Q0Opages 166—-186. LNCS
1825, 2000.

Mohammed Elkoutbi, Ismail Khriss, and
Rudolf K. Keller. Generating user interface
prototypes from scenarios. #th IEEE Interna-
tional Symposium on Requirements Engineering
(RE '99), page 150. IEEE Computer Society,
1999.

Ralf Kollmann and Martin Gogolla. Capturing
Dynamic Program Behaviour with UML Col-
laboration Diagrams. IrProceedings of the
Fifth Conference on Software Maintenance and
Reengineering, CSMR 200dages 58-67. IEEE
Computer Society, 2001.

Srdjan Kovacevic. UML and User Interface
Modeling. InThe Unified Modeling Language,
UML’98: Beyond the Notationpages 253-266.
LNCS 1618, 1998.

Georg Ksters, Hans-Werner Six, and Mario Win-
ter. Coupling Use Cases and Class Models as a
Means for Validation and Verification of Require-
ments Specification®kequirements Engineering
6(1):3-17, 2001.

Ying Liang. From use cases to classes: a way of
building object model with UML Information &
Software Technology5(2):83-93, 2003.

Nuno Jardim Nunes. Representing User-Interface
Patterns in UML. In D. Konstantas et al., edi-
tor, Object-Oriented Information Systems, 9th In-
ternational Conference, OOIS 2008ages 142—
151. LNCS 2817, 2003.

GunnarOvergaard and Karin Palmkvist. A For-
mal Approach to Use Cases and Their Rela-
tionships. InThe Unified Modeling Language,
UML'98: Beyond the Notationpages 406-418.
LNCS 1618, 1999.

10

A J H Simons. Use cases considered harmful. In
Proc. 29th Conf. Tech. Obj.-Oriented Prog. Lang.
and Sys., (TOOLS-29 Europg)ages 194-203.
IEEE Computer Society, 1999.

Perdita Stevens. On Use Cases and Their Re-
lationships in the Unified Modelling Language.
In Fundamental Approaches to Software Engi-
neering, 4th International Conference, FASE'01
pages 140-155. LNCS 2029, 2001.

