
Designing GUI components
from UML Use Cases∗

Jeśus M. Almendros-Jiḿenez and Luis Iribarne

Dpto. de Lenguajes y Computación. Universidad de Almerı́a, Spain.

email: {jalmen,liribarne }@ual.es

Abstract

The use case model helps the designers to identify
the requirements of the system and to study its high
level functionality. In this paper we present a method
for graphical user interface design using the UML use
case model. Given a use case diagram representing the
actors and use cases of a system, and a set of activity
diagrams describing each use case, our technique al-
lows us to generate a prototype of each user interface
together with a set of GUI components. Our technique
handles the<<include>> and generalization relation-
ships on use cases, in such a way that they are inter-
preted from the point of view of the GUI design.

1 Introduction

In the Unified Modeling Language(UML), one of
the key tools for behaviour modeling is theUse Case
model, originated from theObject-Oriented Software
Engineering(OOSE). The key concepts associated with
the use case model areactorsanduse cases. The users
and any other systems that may interact with the sys-
tem are represented as actors. The required behaviour
of the system is specified by one or more uses cases,
which are defined according to the needs of the ac-
tors. Each use case specifies some behaviour, possi-
bly including variants, that the system can perform in
collaboration with one or more actors. On the other
hand,graphical user interfaces (GUI)have become in-
creasingly dominant, and the design of the “external”
or visible system has assumed increasing importance.
The user interface, as a significant part of most ap-
plications, should also be modeled using UML. How-
ever, it is by no means always clear how to model
user interfaces using UML, although there are some re-
cent approaches [Kov98, dSP03, dSP00, EK00, EKK99,
Nun03, BNT02] which have addressed this problem.

In this paper, we focus on the design ofGUI with
the UML Use case model. The design of GUI is based
on Use case model, and conversely, the design of uses
cases is oriented to GUI design.

Use case model is intended to be used in early stages
of the system analysis in order to specify the system

∗This work has been partially supported by the Spanish project
of the Ministry of Science and Technology “INDALOG” TIC2002-
03968.

functionality, as an external view of the system. How-
ever, use cases can beformally specifiedby means of
activity diagrams, which provide a finer granularity and
more rigorous semantics. Activity diagrams can spec-
ify user-system interaction. States represent outputs to
the user which are labelled with UMLstereotypesrep-
resenting visual components for data output. Transi-
tions represent user inputs which are labeled with UML
stereotypes representing visual components for data in-
put and choices.

This finer description allows a mapping with the
graphic user interface design. The refinement of uses
cases by means of activity diagrams achieves more pre-
cise specifications, enabling to detect<<include>>
and generalization relationships between use cases
[Ste01, OP99]. These relations have an unstable se-
mantics along the UML development, and have received
several interpretations, reflecting a high degree of con-
fusion among developers [Sim99]. Use case diagrams
can now be viewed as a high-level specification of each
use case description, given by activity diagrams and,
therefore, as a high-level specification of the presenta-
tion logic of the system.

In addition, the GUI design reflects these relation-
ships between use cases, by using theappletor frame
inheritance as an implementation of use cases general-
ization, and the applet invocation as an implementation
of <<include>> relationship. We handle use cases and
activity diagrams and, following some rules of transfor-
mation, we transform both specifications into the user
interface. The designer is the responsible for both spec-
ifications and the GUI are designed according to the
specification.

In the literature there are some works which accom-
plish the design of GUI in UML. The closest to our ap-
proach are [dSP03, dSP00, Nun03]. These proposals
identify some aspects of GUI that cannot be modeled
using UML notation, and a set of UML constructors
that may be used to model GUI. However, a method-
ology for GUI design using the use case model is not
completely addressed, and there also exists a lack of
formal description of use cases and the correspondence
between use case relationships and GUI components.

Another similar work to our contribution is [EK00,
EKK99] in which state machines and petri nets are used
to specify GUI in UML. In the quoted approaches they

1



specify user interaction but they also lack of use case re-
lationships handling. Finally, in [Lia03, KSW01], uses
cases are mapped into a UML class diagram to represent
the data managed by the system, but not to design GUI.

The tools for supporting the development of soft-
ware, the so-calledCASE tools, not only support the
analysis and design of systems, but they also contain
code generatorsto automatically create code fragments
of the specified system in a target programming lan-
guage. In [KG01, EHSW99], the authors describe
how to implement collaboration diagrams into code. A
CASE tool following our method should be able to per-
form the transformation of the use case model and ac-
tivity diagrams into a set of GUI. It could allow arapid
prototypingof the external view of the system, which
completes theclient and designer viewsof the system
to be developed. The generated GUI interfaces will con-
sist of a UML class diagram and a view of GUI compo-
nents, together with code generation. We have chosen
Java as the programming language for GUI coding due
to the familiarity of most software developers with the
Javaswingfor GUI (for instance,appletandframe).

The rest of the paper is organized as follows. Sec-
tion 2 describes the rules of a method that the designer
should follow to build GUI components, using use
cases, class and activity diagrams. Section 3 presents
a GUI project example of an Internet book shopping
that ilustrates the use of the design rules. Then, Sec-
tion 4 describes a formalism that helps us to validate
the proposed method. Finally, Section 5 discusses some
conclusions and future work.

2 A Method

In our method, a use case diagram consists of a set of
actors (users and external systems) and use cases. Re-
lationships between actors are generalizations, and rela-
tionships between uses cases are<<include>> depen-
dences, together with generalizations. In addition, rela-
tionships between actors and use cases are simple asso-
ciations. Roles, multiplicity, directionality, andextend
dependences will not be considered in our approach yet.

An activity diagram consists of a set of states, with
two special cases: the initial and the final state. States
can be linked with labeled transitions (arrows), and a
transition can have several branches with a diamond
representing the branching point. Some activity dia-
grams can describe a state of another activity diagram.

2.1 Steps for applying the method

The following presents the steps identifying a GUI
project development:

(a) Firstly, an informal high level description of the
system is carried out by means of a use case di-
agram. The use case diagram involves the actors
and the main use cases.

(b) Secondly, for each use case its behaviour is de-
scribed by means of one or more activity diagrams,

fulfilling those restrictions of the method. The
original use case diagrams go refining until they
obtain a more formal diagrams.

(c) Thirdly, the use cases and the stereotyped states
and transitions are translated into class diagrams.

(d) Finally, the class diagrams obtained in the previous
step produce Java implementations which could be
considered as GUI component prototypes.

Certainly, this development sequence is cyclic since
the designer can refine high-level details of the use case
diagrams in the next phases. On the other hand, the
behaviour described for the method only refers to the
presentation logic, without considering thebusiness and
data logic, which remains in a second level and out of
the scope of this paper.

2.2 Rules for a GUI design

Now, we can summarize the rules of the GUI design,
as follows:

— Eachactor representing a user in the use case di-
agram is anapplet. Actors representing external
systems are not considered for visual component
design.

— The generalization relationshipbetween two ac-
torsp andq (p generalizesq) corresponds within-
heritanceof the applet represented byq from the
applet representingp.

— Eachuse casein the use case diagram is anapplet.

— The generalization relationshipbetween two use
casesu andw (u generalizesw) corresponds with
inheritanceof the applet ofw from the applet ofu.

— The <<include>> relationshipbetween two use
casesu andw (u includesw) corresponds with the
invocationfrom the applet ofu of the (sub)applet
of w.

— Each state of the activity diagram describing a use
case necessarily falls in one of the two following
categories:terminal statesor non-terminal states.

• A terminal state is labeled with aUML
stereotyperepresenting anoutput GUI com-
ponent. Therefore, they are also called
stereotyped states.

• A non-terminal state is not labeled and is de-
scribed by means of an activity diagram. The
non-terminal states can be use cases of the
use case diagram or not.

— Each transition in the activity diagram of a use
case can be labeled by means ofconditionsor UML
stereotypes with conditions. The UML stereotypes
representinput GUI components. This kind of
transitions is also calledstereotyped transitions.
The conditions representuse choices or business
logic.

2



— In the case of the non-terminal states, the use case
diagram can specify<<include>> or generaliza-
tion relationship between the non-terminal state
and the use case, and we follow these rules:

• In the <<include>> relationship case, the
non-terminal state is also an applet. It con-
tains the GUI components in the associated
activity diagram.

• In the generalization relationship case, the
non-terminal state is also an applet contain-
ing the GUI components in the associated ac-
tivity diagram, but the use case also contains
these GUI components.

— A non-terminal state, which do not appear in the
use case diagram, is not an applet, and the GUI
components in the associated activity diagram are
GUI components of the applet of the use case.

— The conditions of the transitions of an activity dia-
gram are not taken into account for the GUI design.

With regard to the use case relationships, they are
interpreted as follows:

— The <<include>> relationship between a use
caseu and a use casew (u includesw) means that
oneof the non-terminal states of the activity dia-
gram ofu is w.

— The generalization relationship between a use case
u and a use casew (u generalizesw) means that the
activity diagram representingw contains the states
and transitions of the activity diagram ofu, but
some states or transitionss of u can bereplaced
in w by states (resp. transitions)s′ following a re-
placement relationship s′ v s. In addition,w can
add new states and transitions starting from (and
reaching) the particular case of the stateu.

3 A Case Study

In this section, we explain a simple case study of an
Internet book shopping to illustrate the functionality of
our proposed method.

In the Internet Shoppping there basically appear
three actors: (a) the customer, (b) the ordering manager,
and (c) the administrator. A customer actor directly car-
ries out the purchases by the Internet. The customer can
also consult certain issues of the product in a catalogue
of books before carrying out the purchase. On the other
hand, the manager deals with (total or partially) cus-
tomer’s orders. Finally, the system’s administrator actor
can manage the catalogue of books adding and elimi-
nating new books in the catalogue or modifying those
already existing. The administrator can also update or
cancel certain component characteristics of an order or
those orders fulfilling certain searching criteria. Both
the manager and the administrator should be identified
themself before carrying out any kind of operation re-
stricted to his/her environment of work. Considering

this approach, the next sections describe those steps that
should be continued to develop a GUI project using uses
cases. We will explain the Internet Shopping project to
illustrate these steps.

3.1 Describing use cases

Since the method interpretation is that each use case
will correspond with an applet (or frame) component,
we should previously identify all those future windows
of the system (graphical user interfaces), carrying out
some quick outline of their content. The connection of
an actor with one or more use cases in the use case di-
agram will be interpreted as a set of options (menu) on
a first window on which the actor will interact with the
system. Figure 1 shows the completepresentation logic
definition for the Internet Shopping system using a sin-
gle use case diagram.

In our method, the<<include>> relationship can
be used to represent optional or mandatory behaviour.
This two kinds of relationships are properly inter-
preted in the activity diagrams associated with both
connected use cases, since a use case does not de-
scribe the behaviour. For instance, the use caseMan-
age catalogue is an applet that directly depends
on four use cases, connected to them by means of
an <<include>> relation. However, these connec-
tions are similar to three of them, and different from
the others. The<<include>> relationships between
the use casesWithdraw article , Modify ar-
ticle andAdd article were modeled by the sys-
tem’s designer as relations of optionality (the branches
of the use caseManage Catalogue ’s behaviour go
to these states in the activity diagram). However, the
use caseAdministrator identification was
considered by the system’s designer as a relation of
mandatory (this state is always reached in the activity
diagram) of the use caseManage Catalogue .

An <<include>> relationship can mean that a use
case could be considered as a composition of two
or more other use cases. For instance, the use case
Manage catalogue is composed of the use cases
Withdraw article , Modify article andAdd
article (i.e., applets or frames). However, an
<<include>> relationship can also indicate that a use
case mandatorily depends on another use case to op-
erate. For example, since the administrator should be
itself identified before working with the system, the
three use cases which he/she directly operates with (i.e.,
Manage catalogue , Update orders and Up-
date partial order ) mandatorily depend on the
Administrator identification use case.

The relation ofgeneralizationis intended as an in-
heritance of behaviour and, therefore, of GUI compo-
nents. For example, theQuery catalogue use case
has been established as a generalization of thePur-
chase use case. That means that the purchasing applet
also allows a query operation on the catalogue. In fact,
the applet of purchasing inherits from query catalogue.

3



Figure 1. The Internet Shopping use case diagram

Note how the use caseQuery catalogue by ad-
ministrator also inherits from query catalogue and
generalizes the use casesWithdraw article , and
Modify article connecting them to a part of the
client’spresentation logicand the administrator side.

The distinction between include relationships
(mandatory, optional) and generalization is established
by the system’s designer into the activity diagrams of
those include-connected use cases. In the following
sections we will only focus on thePurchase use case
to explain the behaviour of the method.

3.2 Describing activity diagrams

As we previously stated, each use case will corre-
spond with a Java applet (or frame) component in the
method. Activity diagrams describe certain graphical
and behavioural details about the graphical components
of an applet. In our case study, we have only adopted
four Java graphical components:JTextArea , JList ,
JLabel andJButton . Nevertheless, other graphical
elements could be easily considered in the activity dia-
gram since they are modeled as state or transition stereo-
types.

Graphical components can be clasified as input (a
text area or a button) and output components (a label
or list). Input and output graphical components are as-
sociated with terminal states and transitions by using
the appropriate stereotype, for instance,JTextArea ,
JList , JLabel stereotypes are associated with states

and JButton stereotype to transitions. Since the
graphical behaviour concerns to states and transitions,
next we will describe them separately.

Statescan be stereotyped or not. Stereotyped states
represent terminal states which can be labeled by the
<<JTextArea>> , <<JList>> and <<JLabel>>
stereotypes. For instance, Figure 2 (a) shows the activ-
ity diagram for thePurchase use case. The behaviour
shows how the customer begins the purchasing process
of querying, adding or removing articles of the shop-
ping cart. After a usual purchasing process, the shop-
ping system requests the customer a card number and
a postal address to carry out the shipment, whenever
the shopping cart is not empty. This diagram shows the
graphical and behavioural content of the applet window
where the purchases can be carried out. The activity
diagram is composed of four states. Two of them are
terminal states, since they correspond to graphical ele-
ments. They are stereotyped (<<JTextArea>> ) and
labeled by a text related to the graphical element. Two
other states have been described in a separate activity di-
agram in order to structure better the design. The name
of a separate activity diagram should be the same as the
one of the state.

According to the rules of the proposed method, if
a state is not labeled with a stereotype, this means
that the state is described in another activity diagram.
This new diagram can either represent the behaviour

4



of another use case or simply a way of allowing a hi-
erarchical decomposition of the original activity dia-
gram. For example, in the activity diagram associated
with the Purchase use case, there appear two non-
terminal states:Manage shopping cart andNo-
tify shopping cart empty . At the same time,
two activity diagrams are described for both states. All
these activity diagrams are also shown in Figure 2.

In the activity diagram of theNotify shop-
ping cart empty use case, we can observe how
the target use case (being modeled) brings to another
activity diagram. The model represents a warning
applet window containing only the textShopping
cart empty and the buttonClose . In theManage
shopping cart activity diagram, the statesQuery
catalogue and Shopping cart are itemized on
independent activity diagrams. Both states would also
correspond with an applet, since they appear as use
cases in the diagram.

Transitions can be labeled by means ofstereotypes,
conditionsor both together. For instance, a button is
connected to a transition by using the<<JButton>>
stereotype, and the name of the label is the name of the
button. For example, aShow cart transition stereo-
typed as<<JButton>> will correspond with a button
component called “Show cart”.

Conditions can representuser choicesor busi-
ness/data logic. The first one is a condition of the
user’s interaction with a graphical component (related
to button or list states), and the second one is an in-
ternal checking condition (not related to the states, but
to the internal process). For example, in our case
study the selections on a list are modeled by condi-
tions. Note in the Query Catalogue activity diagram
how the listResults is modeled by a<<JList>>
state and a[Selected article] condition. Fig-
ure 2 shows some transitions (p.e.,[Close] , [Exit]
or [Proceed] ) that correspond with conditions of the
kind user choice. The [Exit] output transition of
the stateManage shopping cart means that the
user has pressed a button calledExit , which has been
defined in a separateManage shopping cart ac-
tivity diagram. Nevertheless, the[shopping cart
no empty] and [shopping cart empty] con-
ditions are twobusiness/data logicconditions, in which
the human factor does not participate.

Furthermore, stereotyped transitions (buttons in our
example) and conditions connect (non) terminal states
to (non) terminal states. As we said before, a condi-
tion would be an output of a non-terminal state in case
the user interacts with a button or a list component in-
side the respective non-terminal state. The usual way
“condition/action” transition can connect (non) termi-
nal states to (non) terminal states. A condition/action
transition between states means which condition should
be present to achieve the action. In our case study, an
action can only be a button. For instance, to remove
an article from the shopping cart, it must previously be
selected from the cart list (Figure 2, d).

Condition/action transitions are also useful to model
the behaviour of the generalization relationships be-
tween use cases in a use case diagram. Note in the
original use case diagram how thePurchase use case
inherits the behaviour of the use caseQuery cata-
logue by means of a generalization relationship. This
inheritance behaviour is modeled in the Purchase activ-
ity diagram as a non-terminal state that includes the be-
haviour of the Query Catalogue activity diagram. For
example, let us observe the behaviour of the query cat-
alogue shown in Figure 2 (c). In this activity diagram,
the user introduces the searching criteria in the text area,
presses the buttonSearch and then the results are
shown on a list. After that, the user can select articles
in the list, presses a button to exit or try a new search
by pressing the buttonClear . Thus, when the Pur-
chase use case inherits the Query Catalogue use case, it
should be possible to interrupt its behaviour.

Condition/action transitions can be used to interrupt
an inherited behaviour. For example, the query cata-
logue’s behaviour (previously described) is adopted in
the activity diagram of the Purchase use case as a non-
terminal state calledQuery catalogue . The output
transition [Selected article]/Add to cart
mean that theAdd to cart button at the Purchase
applet (use case) can interrupt the query catalogue be-
haviour whether an article has been selected (condi-
tion). Analogously, the output transitionsProceed
and Show cart at the Purchase applet (use case)
mean that both theProceed andShow cart buttons
can interrupt the inherited behaviour of the query cata-
logue.

On the other hand, a generalization relationship does
not only represent an inheritance of the behaviour as
an extension; for instance, the Purchase use case in-
herits the Query Catalogue use case and increases its
behaviour to hold the buttonsAdd to cart , Show
cart andProceed . However, a generalization rela-
tionship can also deal with areplacementof behaviour
instead of an increase in behaviour. For example, note
in the original use case diagram how the Query Cat-
alogue by Administrator also inherits the Query Cata-
logue. Let us suppose that their behaviours (activity di-
agrams) are the same, but the results list shown to the
customer actor (theResults state) is different from
that shown to the administrator actor (for instance,Ad-
ministrator Results state). In this case, the sys-
tem’s designer can use the behaviour (activity diagram)
of the Query Catalogue use case to model the behaviour
(activity diagram) of the “Query Catalogue by Admin-
istrator” re-writing (replacing) the results list (p.e., re-
placingResults by Administrator Results ).
This rule of replacement can also be considered on tran-
sitions (p.e, replacing a button by another GUI compo-
nent). Finally, the conditions and “conditions/actions”
can be also replaced. In all cases, is a decision of the
designer to allow the replacement of states and transi-
tions.

5



Figure 2. The whole activity diagram of the Purchase use case

3.3 Generating class diagrams

Once refined a formal use case diagram and obtained
a set of activity diagram, now we generate class dia-
grams from this diagram information.

The class diagrams are built from Javaswingclasses.
In the method, each use case corresponds with an applet
class. Use cases are translated into classes with the same
name as these use cases. The translated classes special-
ize in a JavaAppletclass. The components of the applet
(use case) are described in activity diagrams. A terminal
state is translated into that Javaswingclass represented
by the stereotype of the state. The Javaswingclass is
connected from the container class (i.e., that class work-
ing as an applet window in the use case diagram) and
uses an association relationship whose role’s name is
the one on the terminal state. For example, those termi-
nal states stereotyped as<<JTextArea>> are trans-
lated into aJTextAreaclass in the class diagram. Some-
thing similar happens to the rest of stereotyped states
and transitions. The non-terminal states of an activity
diagram may correspond to some other use cases (ap-
plets) or activity subdiagrams. In the last case, the non-
terminal states can be considered an abstract class in the
class diagram. Then, it can be described in another class
diagram with the same name as that abstract class. Fig-
ure 3 shows the resultant class diagram of the customer
side.

The class diagram contains six classes of the ap-
plet type, four of which directly specialize in theAp-
plet class: theNotifyShoppingCartEmpty class,
the Customer class, theConfirmRemoveArti-
cle class and theShoppingCart class. The other
classes inherit theApplet class through their super
classes. For example, thePurchase class inherits the

applet class from theQueryCatalogue class. These
six classes —which (direct or indirectly) inherit the ap-
plet class— correspond to those five use cases at the
customer side in the use case diagram together with the
customer actor.

Furthermore, note how the stereotyped states and
transitions in the activity diagrams are translated into
Java classes in the class diagram. The stereotype name
of a transition or state is translated into the appropri-
ate Java swingclass. The name of the stereotyped
state (transition) is translated into an association be-
tween theswing class and the applet class that con-
tains it. For example, the<<JButton>> stereotype
of theProceed transition that appears in theManage
shopping cart activity diagram (see Figure 2) is
translated into aJButton class. The transition name
(Proceed ) is interpreted as an association —labeled
with the same name— between theJButton class and
the class containing it (i.e., thePurchase ).

Due to the extension of the resultant class diagram,
some classes have not been included in the figure.

3.4 Generating the GUI components

Finally, rapid GUI prototypes could be obtained from
the class diagram. Figure 4 shows a first visual result of
thePurchase applet, but without functionality.

Note how the Purchase window (applet) is very sim-
ilar to the Query Catalogue window, except that the sec-
ond one includes three buttons more than the first win-
dow. This similarity between applets was reflected in
the original use case diagram as a generalization re-
lationship between use cases (applets), here, between
the use casesQuery catalogue and Purchase .
Since the Internet Shopping project was designed, the
customer will always work on a Purchase applet opened

6



Figure 3. A class diagram obtained from the use cases and activity diagrams

from theCustomer applet, and never on a Query Cat-
alogue applet, though the first one inherits the behaviour
of the second (i.e., by the relation of generalization).

The Shopping Cart window (Figure 4, c) appears
when theShow Cart button is pressed on the Pur-
chase window (Figure 4, b). Note in the original use
case diagram, shown in Figure 1, how the button is asso-
ciated with the window by means of an<< include>>
relation between use cases. On the other hand, the two
information applet windows (Figure 4, d) are also asso-
ciated with two buttons: theRemove article but-
ton in the Shopping Cart window and theProceed
button in the Purchase window. Note again how these
windows are also described asincluderelations between
use cases. Also observe the activity diagrams shown in
Figure 2 to track better the behaviour of the example.

To develop the case study we have used the Ratio-
nal Rose for Java tool. For space reasons, we have in-
cluded here just a part of the GUI project developed for
the case study. A complete version of the project is
available athttp://www.ual.es/˜liribarn/
Investigacion/usecases.html .

4 Formalisation
In this section we will formalize the described

method, and provide a formal definition for use case di-
agrams and use cases. In particular, we will define the
use case relationships<<include>> and generaliza-
tion. We will also define well-formed use case diagram
which follows some restrictions. In addition, we will
provide an abstract definition of GUI, and we will de-
fine two relationships between GUI: inclusion and gen-
eralization. This will allow us to define a generic trans-
formation technique for use case diagrams into a set of
GUI. Finally, we will establish some properties of this
transformation technique. Now, let us define a use case
diagram as follows:

Definition 1 (Use Case Diagram)A use case diagram

UCD = (n, ACT,UC, −�,−−,
<<i>>
99K ) consists of a

diagram name n; a finite set ACT of actor’s names
which can be users and external systems p, q, r, . . .; a
finite set UC of use cases u, v, w, . . .; and three rela-

tions−�,−− and
<<i>>
99K , where−�⊆ (ACT× ACT) ∪

(UC×UC); −− ⊆ ACT×UC; and
<<i>>
99K ⊆ UC×UC;

as usual we write p−� q, rather than(p, q) ∈ −�, and

analogously for−− and
<<i>>
99K .

Now, we formally define a use case being specified
by means of an activity diagram as follows:

Definition 2 (Use Case)A use case u =
(n, S, SI, IN, OUT, COND,→) consists of:

— a use case namen;

— a finite setS of states which consist of:

– a finite setUC of use cases;

– a finite setSSof stereotyped states of the form
(sn, p) where sn is an state name and p∈
OUT;

– three special states SP, the initial, end and
branching states.

— a finite set SI of stereotyped interactions of the
form [C]/(in, i) where C ∈ COND, in is an in-
teraction name, and i∈ IN. The condition[C] is
optional;

— a finite set IN of input stereotypes i, j, . . .;

— a finite set OUT of output stereotypes p, q, . . .;

— a finite set COND of conditions C, D . . .;

7



Figure 4. The applet windows of the Customer side

• a transition relation→⊆ S× (SI∪COND)×S; as

usual we write A
λ→ B rather than(A, λ, B) ∈→,

whereλ can be[C] or [C]/(in, i).

In an activity diagram we have two kinds of states:
stereotypedand non-stereotypedstates. Stereotyped
states representterminal statesthat correspond with
graphical components. Thenon-terminal statescorre-
spond with use cases. Transitions are labeled with(con-
ditionated) stereotyped interactionsandconditions. The
first case corresponds withstereotyped transitions.

We denote byname(u) the name of a use caseu.
Analogously, we define the functionsusecases(u) and
transitions(u), to get the use cases, respectively, the
transitions of a use case.SI(u) —resp.SS(u)— denotes
the set of stereotyped interactions(in, i) in u —resp.
stereotyped states(sn, p) in u—. Finally, we callexit
conditions, denoted byexit(u), to the interaction names

in of transitionss
[C]/(in,i)→ s′ and conditionsC of transi-

tions
[C]→ which go to the end state in a use case.

Now, we have to assume a(reflexive) replacement
relationv between stereotyped states, and the same re-
lation for stereotyped interactions and conditions. In
practice, this replacement relation should be decided by
the designer. Basically, stereotyped states can be re-
placed if theoutput GUI componentcan be replaced.
For instance, a list with two columns can be replaced by
a list with three columns without lost of functionality.
The same happens with stereotyped interactions which

can be replaced if theinput GUI componentscan be re-
placed. For instance, a selection of any of the cited list.
Finally, conditions can be, for instance, replaced if one
of them ismore restrictivethan the other.

The replacement relationv can be extended to use
cases, as follows. Given two use casesu, v: vv u when-

evers
λ→ t ∈ transitions(u) iff there existss′

λ′

→′ t′ ∈
transitions(v), such thats′ v s, t′ v t and λ

′ v λ.
Assuming this, we can define the inclusion and gen-
eralization relationship between use cases as follows.
Given two use casesu, v we say thatu includesv if
v ∈ usecases(u), and we say thatu generalizesv, if
there existsw ∈ usecases(v) such thatwv u.

Therefore, the transitions of the most general use
case can be replaced in the particular one by more par-
ticular stereotyped states and interactions, and condi-
tions, by following the replacement relationship. In ad-
dition, the more particular use case can add new states
and transitions. Now, we will define the well-formed
use cases. Let remark that inclusion is a particular case
of generalization, that is, ifu includesv thenv general-
izesu. However, we handle the generalization by con-
sidering two applets, one for each use caseu andv, but
u does not invokev, rather thanu includes the behaviour
of v.

Definition 3 (Well-formed Use Case)A use case u is
well-formed if the following conditions hold:

— for all s
λ→ t ∈ transitions(u) thenλ has the form

[C]/(in, i) ∈ SI iff

8



– s = (sn, p), p∈ OUT, or;

– s∈ usecases(u) and s generalizes u;

— for all v ∈ usecases(u) then there exists s
λ→

t ∈ transitions(u) such thatλ has the form[C] or
[C]/(in, p) for every C∈ exit(v).

Well-formed use cases take into account that: (1) an
output component should trigger an input interaction;
(2) input interactions can be added to a more general use
case in order to obtain more particular ones; and finally,
(3) the exit conditions of a non-terminal state should be
included in the main use case.

According to the previous definition, a well-formed
use case diagram includes well-formed use cases, and
the<<include>> and generalization relationships be-
tween use cases in the use case diagram correspond with
a subset of the analogous relationships defined for use
cases.

Definition 4 (Well-formed Use Case Diagram)
A well-formed Use Case Diagram

UCD = (n, ACT,UC, −�,−−,
<<i>>
99K ) satisfies

that every u∈ UC is well-formed; for all u, u′ ∈ UC,
u′−� u if u generalizes u′; and for all u, u′ ∈ UC,

u
<<i>>
99K u′ if u includes u′.

Now, we will provide an abstract definition of GUI
and GUI components. A GUI has a name, a set of
GUI which can be invoked from it, and a set of stereo-
typed interactions and states which represent the input
and output GUI components.

Definition 5 (GUI) A graphical user interface G=
(n, W, I , O) consists of a GUI name n; a finite set W of
graphical user interfaces; a finite set I of stereotyped in-
teractions(in, i); and a finite set O of stereotyped states
(sn, p).

GUI can be compared by means of generalization
and inclusion relationships. The first one corresponds
with the inheritance relationship, and the second one
with the invocation of GUI. The designer should take
into account this correspondence when (s)he defines the
replacement relationship between stereotyped states and
transitions.

Given two GUI (n, W, I , O), (n′, W′, I ′, O′) we say
that(n, W, I , O) generalizes(n′, W′, I ′, O′) if for all G ∈
W, there existsG′ ∈ W′ such thatG generalizesG′; for
all i ∈ I , there existsi′ ∈ I ′ such thati′ v i; and for all
o ∈ O, there existso′ ∈ O′ such thato′ v o. Given two
GUI G andG′, we say thatG = (n, W, I , O) includesG′

if G′ ∈ W.
Now, we can formally define our transformation

technique which provides a set of GUI for each use case
diagram. In order to define our transformation, we need
to suppose that<<option>> is a stereotype represent-
ing each menu option of a GUI.

Definition 6 (GUI of a Use Case Diagram)Given a
well-formed use case diagramUCD = (n, ACT,UC,

−�,−−,
<<i>>
99K ), we define the GUI associated

with UCD, denoted by GUI(UCD), as the set
{GUI(p) | p ∈ ACT is a user}, where:

GUI(p) = (p, W, I , O)

where

 W = {GUI(u) | p −− u}
I = {(name(u), << option>>) | p −− u}
O = ∅

and

GUI(u) = (name(u), W, I , O)

where


W = {GUI(v) | u

<<i>>
99K v}

I = SI(u) ∪
{v∈usecases(u),and not u

<<i>>
99K v}

SI(v)

O = SS(u) ∪
{v∈usecases(u),and not u

<<i>>
99K v}

SS(v)

We can state the following result from our transfor-
mation technique.

Theorem 1 The GUI associated to a well-formed UCD
satisfies the following conditions:

— for all a, a′ ∈ ACT, a′−� a then GUI(a,−−) gen-
eralizes GUI(a′,−−);

— for all u, u′ ∈ UC, u′−� u then GUI(u) general-
izes GUI(u′);

— for all u, u′ ∈ UC, u
<<i>>
99K u′ then GUI(u) in-

cludes GUI(u′);

— for all a ∈ ACT and u ∈ UC, a−−u. then
GUI(a,−−) includes GUI(u)

5 Conclusions and Future Work

In this paper, we have studied a method for mapping
use case models into graphical user interfaces (GUI).
The use case diagrams help the designers to identify the
requirements of the system and to study its high level
functionality. There exist UML diagrams (i.e., activity
and class diagrams) that allow to discover new details of
system behaviour or to describe better the already exist-
ing. Nevertheless, in this paper we have shown how a
direct correspondence between the requirements identi-
fied in the use cases with these UML diagrams is feasi-
ble. GUI components may be designed with our method
for rapid prototyping of the external view of the system.
Through a case study, we have shown how our tech-
nique can be applied to the design of the Internet Book
Shopping system. In addition, our approach has been
formally studied by providing a generic transformation
technique of the use case model into a set of abstract
graphical user interfaces. As a future work, we firstly
plan to extend our work to deal with the<<extends>>
relationship of use cases. Secondly, we would like to
incorporate our method in a CASE tool in order to au-
tomatize it. And finally, we would like to integrate our
technique in the whole development process.

9



References

[BNT02] Robert Biddle, James Noble, and Ewan Tem-
pero. Essential use cases and responsibility in
object-oriented development. InProceedings of
the Australasian Computer Science Conference
(ACSC2002), 2002.

[dSP00] Paulo Pinheiro da Silva and Norman W. Paton.
User interface modelling with UML. InInforma-
tion Modelling and Knowledge Bases XII, pages
203–217. IOS Press, 2000.

[dSP03] Paulo Pinheiro da Silva and Norman W. Paton.
User Interface Modeling in UMLi. IEEE Soft-
ware, 20(4):62–69, 2003.

[EHSW99] Gregor Engels, Roland Huecking, Stefan Sauer,
and Annika Wagner. UML Collaboration Di-
agrams and their Transformation to Java. In
UML’99: The Unified Modeling Language - Be-
yond the Standard, pages 473–488. LNCS 1723,
1999.

[EK00] Mohammed Elkoutbi and Rudolf K. Keller. User
Interface Prototyping Based on UML Scenar-
ios and High-Level Petri Nets. In M. Nielsen
and D. Simpson, editors,Application and The-
ory of Petri Nets 2000, 21st International Con-
ference, ICATPN 2000, pages 166–186. LNCS
1825, 2000.

[EKK99] Mohammed Elkoutbi, Ismail Khriss, and
Rudolf K. Keller. Generating user interface
prototypes from scenarios. In4th IEEE Interna-
tional Symposium on Requirements Engineering
(RE ’99), page 150. IEEE Computer Society,
1999.

[KG01] Ralf Kollmann and Martin Gogolla. Capturing
Dynamic Program Behaviour with UML Col-
laboration Diagrams. InProceedings of the
Fifth Conference on Software Maintenance and
Reengineering, CSMR 2001, pages 58–67. IEEE
Computer Society, 2001.

[Kov98] Srdjan Kovacevic. UML and User Interface
Modeling. In The Unified Modeling Language,
UML’98: Beyond the Notation,, pages 253–266.
LNCS 1618, 1998.

[KSW01] Georg Ksters, Hans-Werner Six, and Mario Win-
ter. Coupling Use Cases and Class Models as a
Means for Validation and Verification of Require-
ments Specifications.Requirements Engineering,
6(1):3–17, 2001.

[Lia03] Ying Liang. From use cases to classes: a way of
building object model with UML.Information &
Software Technology, 45(2):83–93, 2003.

[Nun03] Nuno Jardim Nunes. Representing User-Interface
Patterns in UML. In D. Konstantas et al., edi-
tor, Object-Oriented Information Systems, 9th In-
ternational Conference, OOIS 2003, pages 142–
151. LNCS 2817, 2003.

[OP99] GunnarÖvergaard and Karin Palmkvist. A For-
mal Approach to Use Cases and Their Rela-
tionships. InThe Unified Modeling Language,
UML’98: Beyond the Notation, pages 406–418.
LNCS 1618, 1999.

[Sim99] A J H Simons. Use cases considered harmful. In
Proc. 29th Conf. Tech. Obj.-Oriented Prog. Lang.
and Sys., (TOOLS-29 Europe), pages 194–203.
IEEE Computer Society, 1999.

[Ste01] Perdita Stevens. On Use Cases and Their Re-
lationships in the Unified Modelling Language.
In Fundamental Approaches to Software Engi-
neering, 4th International Conference, FASE’01,
pages 140–155. LNCS 2029, 2001.

10


