Luis Del PeralUniversity of Alcalá | UAH · Department of Physics and Mathematics
Luis Del Peral
PhD in Physics
About
365
Publications
67,508
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,947
Citations
Introduction
Additional affiliations
September 2014 - present
August 2008 - October 2008
July 2014 - September 2014
Education
January 1989 - January 1994
Publications
Publications (365)
Context . Imaging atmospheric Cherenkov telescopes (IACTs) are used to observe very high-energy photons from the ground. Gamma rays are indirectly detected through the Cherenkov light emitted by the air showers they induce. The new generation of experiments, in particular the Cherenkov Telescope Array Observatory (CTAO), sets ambitious goals for di...
Results are presented for the measurement of large-scale anisotropies in the arrival directions of ultra–high-energy cosmic rays detected at the Pierre Auger Observatory during 19 yr of operation, prior to AugerPrime, the upgrade of the observatory. The 3D dipole amplitude and direction are reconstructed above 4 EeV in four energy bins. Besides the...
Context. To date, three pulsars have been firmly detected by imaging atmospheric Cherenkov telescopes (IACTs). Two of them reached the TeV energy range, challenging models of very high-energy (VHE) emission in pulsars. More precise observations are needed to better characterize pulsar emission at these energies. The LST-1 is the prototype of the la...
The Pierre Auger Observatory is the most sensitive instrument to detect photons with energies above 1 0 17 eV . It measures extensive air showers generated by ultrahigh energy cosmic rays using a hybrid technique that exploits the combination of a fluorescence detector with a ground array of particle detectors. The signatures of a photon-induced ai...
Results are presented for the measurement of large-scale anisotropies in the arrival directions of ultra-high-energy cosmic rays detected at the Pierre Auger Observatory during 19 years of operation, prior to AugerPrime, the upgrade of the Observatory. The 3D dipole amplitude and direction are reconstructed above $4\,$EeV in four energy bins. Besid...
The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff. Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux...
Ultra-high-energy cosmic rays are known to be mainly of extragalactic origin, and their propagation is limited by energy losses, so their arrival directions are expected to correlate with the large-scale structure of the local Universe. In this work, we investigate the possible presence of intermediate-scale excesses in the flux of the most energet...
The Pierre Auger Observatory is the most sensitive instrument to detect photons with energies above $10^{17}$ eV. It measures extensive air showers generated by ultra high energy cosmic rays using a hybrid technique that exploits the combination of a fluorescence detector with a ground array of particle detectors. The signatures of a photon-induced...
We present measurements of the atmospheric depth of the shower maximum $X_\mathrm{max}$, inferred for the first time on an event-by-event level using the Surface Detector of the Pierre Auger Observatory. Using deep learning, we were able to extend measurements of the $X_\mathrm{max}$ distributions up to energies of 100 EeV ($10^{20}$ eV), not yet r...
We report an investigation of the mass composition of cosmic rays with energies from 3 to 100 EeV (1 EeV=$10^{18}$ eV) using the distributions of the depth of shower maximum $X_\mathrm{max}$. The analysis relies on ${\sim}50,000$ events recorded by the Surface Detector of the Pierre Auger Observatory and a deep-learning-based reconstruction algorit...
We test the predictions of hadronic interaction models regarding the depth of maximum of air-shower profiles, X max , and ground-particle signals in water-Cherenkov detectors at 1000 m from the shower core, S ( 1000 ) , using the data from the fluorescence and surface detectors of the Pierre Auger Observatory. The test consists of fitting the measu...
Dark matter particles could be superheavy, provided their lifetime is much longer than the age of the Universe. Using the sensitivity of the Pierre Auger Observatory to ultrahigh energy neutrinos and photons, we constrain a specific extension of the Standard Model of particle physics that meets the lifetime requirement for a superheavy particle by...
The wind mission Aeolus of the European Space Agency was a groundbreaking achievement for Earth observation. Between 2018 and 2023, the space-borne lidar instrument ALADIN onboard the Aeolus satellite measured atmospheric wind profiles with global coverage, which contributed to improving the accuracy of numerical weather prediction. The precision o...
We show, for the first time, radio measurements of the depth of shower maximum ( X max ) of air showers induced by cosmic rays that are compared to measurements of the established fluorescence method at the same location. Using measurements at the Pierre Auger Observatory we show full compatibility between our radio and the previously published flu...
The (AERA), part of the Pierre Auger Observatory, is currently the largest array of radio antenna stations deployed for the detection of cosmic rays, spanning an area of 17 km 2 with 153 radio stations. It detects the radio emission of extensive air showers produced by cosmic rays in the 30–80 MHz band. Here, we report the AERA measurements of the...
JEM-EUSO is an international program for the development of space-based Ultra-High Energy Cosmic Ray observatories. The program consists of a series of missions which are either under development or in the data analysis phase. All instruments are based on a wide-field-of-view telescope, which operates in the near-UV range, designed to detect the fl...
Operating since 2004, the Pierre Auger Observatory has led to major advances in our understanding of the ultra-high-energy cosmic rays. The latest findings have revealed new insights that led to the upgrade of the Observatory, with the primary goal of obtaining information on the primary mass of the most energetic cosmic rays on a shower-by-shower...
A search for time-directional coincidences of ultra-high-energy (UHE) photons above 10 EeV with gravitational wave (GW) events from the LIGO/Virgo runs O1 to O3 is conducted with the Pierre Auger Observatory. Due to the distinctive properties of photon interactions and to the background expected from hadronic showers, a subset of the most interesti...
A search for time-directional coincidences of ultra-high-energy (UHE) photons above 10 EeV with gravitational wave (GW) events from the LIGO/Virgo runs O1 to O3 is conducted with the Pierre Auger Observatory. Due to the distinctive properties of photon interactions and to the background expected from hadronic showers, a subset of the most interesti...
The combined fit of the measured energy spectrum and shower maximum depth distributions of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical models with homogeneous source distributions. Studies of the distribution of the cosmic-ray arrival directions show a better agreement with models in which a fraction of the f...
In this work we present the interpretation of the energy spectrum and mass composition data as measured by the Pierre Auger Collaboration above 6 × 10 ¹⁷ eV. We use an astrophysical model with two extragalactic source populations to model the hardening of the cosmic-ray flux at around 5 × 10 ¹⁸ eV (the so-called “ankle” feature) as a transition bet...
We use the surface detector of the Pierre Auger Observatory to search for air showers initiated by photons with an energy above 10 ¹⁹ eV. Photons in the zenith angle range from 30 ∘ to 60 ∘ can be identified in the overwhelming background of showers initiated by charged cosmic rays through the broader time structure of the signals induced in the wa...
The search for correlations between secondary cosmic ray detection rates and seismic effects has long been a subject of investigation motivated by the hope of identifying a new precursor type that could feed a global early warning system against earthquakes. Here we show for the first time that the average variation of the cosmic ray detection rate...
Using the data of the Pierre Auger Observatory, we report on a search for signatures that would be suggestive of super-heavy particles decaying in the Galactic halo. From the lack of signal, we present upper limits for different energy thresholds above ≳108 GeV on the secondary by-product fluxes expected from the decay of the particles. Assuming th...
Instantons, which are nonperturbative solutions to Yang-Mills equations, provide a signal for the occurrence of quantum tunneling between distinct classes of vacua. They can give rise to decays of particles otherwise forbidden. Using data collected at the Pierre Auger Observatory, we search for signatures of such instanton-induced processes that wo...
A catalog containing details of the highest-energy cosmic rays recorded through the detection of extensive air showers at the Pierre Auger Observatory is presented with the aim of opening the data to detailed examination. Descriptions of the 100 showers created by the highest-energy particles recorded between 2004 January 1 and 2020 December 31 are...
A catalog containing details of the highest-energy cosmic rays recorded through the detection of extensive air-showers at the Pierre Auger Observatory is presented with the aim of opening the data to detailed examination. Descriptions of the 100 showers created by the highest-energy particles recorded between 1 January 2004 and 31 December 2020 are...
The Pierre Auger Observatory, being the largest air-shower experiment in the world, offers an unprecedented exposure to neutral particles at the highest energies. Since the start of data taking more than 18 years ago, various searches for ultra-high-energy (UHE, $E\gtrsim10^{17}\,\text{eV}$) photons have been performed: either for a diffuse flux of...
Both the lack of observation of ultra-high energy (UHE) photons and the limitations of the state-of-the-art methodology being applied for their identification motivate studies on alternative approaches to the relevant simulations and the related observational strategies. One such new approach is proposed in this report and it concerns new observabl...
We use the surface detector of the Pierre Auger Observatory to search for air showers initiated by photons with an energy above $10^{19}$ eV. Photons in the zenith angle range from 30$^\circ$ to 60$^\circ$ can be identified in the overwhelming background of showers initiated by charged cosmic rays through the broader time structure of the signals i...
The LOPES experiment was a radio interferometer built at the existing air shower array KASCADE-Grande in Karlsruhe, Germany. The last configuration of LOPES was called LOPES 3D and consisted of ten tripole antennas. Each of these antennas consisted of three crossed dipoles east-west, north-south, and vertically aligned. With this, LOPES 3D had the...
A promising energy range to look for angular correlations between cosmic rays of extragalactic origin and their sources is at the highest energies, above a few tens of EeV (1 EeV ≡ 10 ¹⁸ eV). Despite the flux of these particles being extremely low, the area of ∼3000 km ² covered at the Pierre Auger Observatory, and the 17 yr data-taking period of t...
We present a thorough search for signatures that would be suggestive of super-heavy $X$ particles decaying in the Galactic halo, in the data of the Pierre Auger Observatory. From the lack of signal, we derive upper limits for different energy thresholds above ${\gtrsim}10^8$\,GeV on the expected secondary by-product fluxes from $X$-particle decay....
Ultra-high-energy photons with energies exceeding 10 ¹⁷ eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 10 ¹⁵ eV range further motivate searches for even higher-energy photons. In this paper, we present a search f...
A promising energy range to look for angular correlation between cosmic rays of extragalactic origin and their sources is at the highest energies, above few tens of EeV ($1\:{\rm EeV}\equiv 10^{18}\:$eV). Despite the flux of these particles being extremely low, the area of ${\sim}\:3{,}000 \: \text{km}^2$ covered at the Pierre Auger Observatory, an...
Ultra-high-energy photons with energies exceeding $10^{17}$ eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the $10^{15}$ eV range further motivate searches for even higher-energy photons. In this paper, we present a...
Both the lack of observation of ultra-high energy (UHE) photons and the limitations of the state-of-the-art methodology being applied for their identification motivate studies on alternative approaches to the relevant simulations and the related observational strategies. One of such new approaches is proposed in this report and it concerns new obse...
The search for correlations between secondary cosmic ray detection rates and seismic effects has long been a subject of investigation motivated by the hope of identifying a new precursor type that could feed a global early warning system against earthquakes. Here we show for the first time that the average variation of the cosmic ray detection rate...
We investigate instanton-induced decay processes of super-heavy dark matter particles $X$ produced during the inflationary epoch. Using data collected at the Pierre Auger Observatory we derive a bound on the reduced coupling constant of gauge interactions in the dark sector: $\alpha_X^{\rm eff} \lesssim 0.09$, for $10^{10} < M_X/{\rm GeV} < 10^{16}...
Propagation of ultra-high energy photons in the solar magnetosphere gives rise to cascades comprising thousands of photons. We study the cascade development using Monte Carlo simulations and find that the photons in the cascades are spatially extended over millions of kilometers on the plane distant from the Sun by 1 AU. We estimate the chance of d...
EUSO-Balloon is a pathfinder for JEM-EUSO, the mission concept of a spaceborne observatory which is designed to observe Ultra-High Energy Cosmic Ray (UHECR)-induced Extensive Air Showers (EAS) by detecting their UltraViolet (UV) light tracks “from above.” On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario...
Compilation of papers presented by the JEM-EUSO Collaboration at the 37th International Cosmic Ray Conference (ICRC), held on July 12-23, 2021 (online) in Berlin, Germany.
Lorentz invariance violation (LIV) is often described by dispersion relations of the form E i ² = m i ² + p i ² +δ i,n E ²⁺ⁿ with delta different based on particle type i , with energy E , momentum p and rest mass m . Kinematics and energy thresholds of interactions are modified once the LIV terms become comparable to the squared masses of the part...
Lorentz invariance violation (LIV) is often described by dispersion relations of the form $E_i^2=m_i^2+p_i^2+\delta_{i,n} E^{2+n}$ with delta different based on particle type $i$, with energy $E$, momentum $p$ and rest mass $m$. Kinematics and energy thresholds of interactions are modified once the LIV terms become comparable to the squared masses...
Section I of this article deals with the political, economic and social conditions of Spain in the 1920s and at the arrival of the Republic. Section II analyses the agrarian reforms during the Second Republic. Section III examines the monetary and fiscal policies of the Republican governments. Section IV covers a comparative analysis of the impact...
Section I of this article deals with the political, economic and social conditions of Spain in the 1920s and at the arrival of the Republic. Section II analyses the agrarian reforms during the Second Republic. Section III examines the monetary and fiscal policies of the Republican governments. Section IV covers a comparative analysis of the impact...
We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single...
We present a measurement of the cosmic-ray spectrum above 100\,PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750~m. An inflection of the spectrum is observed, confirming the presence of the so-called \emph{second-knee} feature. The spectrum is then combined with that of the 1500\,m array to produce...
The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energ...
The atmospheric depth of the air shower maximum Xmax is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of Xmax are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been prop...
The Auger Muon Infill Ground Array (AMIGA) is part of the AugerPrime upgrade of the Pierre Auger Observatory. It consists of particle counters buried 2.3 m underground next to the water-Cherenkov stations that form the 23.5 km ² large infilled array. The reduced distance between detectors in this denser area allows the lowering of the energy thresh...
FRAM (F/Photometric Robotic Atmospheric Monitor) is a robotic telescope operated at the Pierre Auger Observatory in Argentina for the purposes of atmospheric monitoring using stellar photometry. As a passive system which does not produce any light that could interfere with the observations of the fluorescence telescopes of the observatory, it compl...
We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons i...
To obtain direct measurements of the muon content of extensive air showers with energy above 101 eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 m2-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon con...
The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energ...
We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultra-high energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons...
LOPES, the LOFAR prototype station, was an antenna array for cosmic-ray air showers operating from 2003 - 2013 within the KASCADE-Grande experiment. Meanwhile, the analysis is finished and the data of air-shower events measured by LOPES are available with open access in the KASCADE Cosmic Ray Data Center (KCDC). This article intends to provide a su...
LOPES, the LOFAR prototype station, was an antenna array for cosmic-ray air showers operating from 2003 to 2013 within the KASCADE-Grande experiment. Meanwhile, the analysis is finished and the data of air-shower events measured by LOPES are available with open access in the KASCADE Cosmic Ray Data Center (KCDC). This article intends to provide a s...
FRAM (F/Photometric Robotic Atmospheric Monitor) is a robotic telescope operated at the Pierre Auger Observatory in Argentina for the purposes of atmospheric monitoring using stellar photometry. As a passive system which does not produce any light that could interfere with the observations of the fluorescence telescopes of the observatory, it compl...
The Auger Muon Infill Ground Array (AMIGA) is part of the AugerPrime upgrade of the Pierre Auger Observatory. It consists of particle counters buried 2.3 m underground next to the water-Cherenkov stations that form the 23.5 km$^2$ large infilled array. The reduced distance between detectors in this denser area allows the lowering of the energy thre...
The atmospheric depth of the air shower maximum $X_{\mathrm{max}}$ is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of $X_{\mathrm{max}}$ are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, se...
To obtain direct measurements of the muon content of extensive air showers with energy above $10^{16.5}$ eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 $\mathrm{m^2}$-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to...
AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to complement the study of ultra-high-energy cosmic ray (UHECR) by measuring the muon content of extensive air showers (EAS). It consists of an array of 61 water Cherenkov detectors on a denser spacing in combination with underground scintillation dete...
Results of a search for ultra-high-energy neutrinos with the Pierre Auger Observatory from the direction of the blazar TXS 0506+056 are presented. They were obtained as part of the follow-up that stemmed from the detection of high-energy neutrinos and gamma rays with IceCube, \textit{Fermi}-LAT, MAGIC, and other detectors of electromagnetic radiati...