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A Machine Learning Approach to Modeling and
Identification of Automotive Three-Way

Catalytic Converters
Luigi Glielmo, Member, IEEE, Michele Milano, and Stefania Santini

Abstract—The working of three-way catalytic converters
(TWC’s) is based on chemical reactions whose rates are nonlinear
functions of temperature and reactant concentrations all along
the device. Unfortunately, the choice of suitable expressions
and the tuning of their parameters is particularly difficult in
dynamic conditions. In this paper, we introduce a hybrid modeling
technique which allows us to preserve the most important features
of an accurate distributed parameter TWC model, while it
circumvents both the structural and the parameter uncertainties
of “classical” reaction kinetics models, and saves computational
time. In particular, we compute the rates within the TWC dynamic
model by a neural network which, thus, becomes a static nonlinear
component of a larger dynamic system. A purposely designed
genetic algorithm, in conjunction with a fast ad hoc partial
differential equation integration procedure, allows us to train the
neural network, embedded in the whole model structure, using
currently available measurement data and without computing
gradient information.

Index Terms—Genetic algorithms, neural network applications,
parameter estimation, partial differential equations, road vehicles.

I. INTRODUCTION AND MOTIVATIONS

T O PREVENT the emission of harmful components by au-
tomotive gasoline engine, vehicles are equipped with a

three-way catalytic converter (TWC) which is located in the ex-
haust pipe (see Fig. 1). Usually, modern converters are of the
monolithic type, a block of ceramic material with thousands of
parallel channels (tubular reactor) maximizing the exposed sur-
face area; exhaust gas flows through the reticular structure of
this honeycomb ceramic block and is adsorbed by the catalytic
surface where it reacts. As is well known, the rate of chemical re-
actions can be affected by the presence of the so-called catalysts;
catalysts are agents that reduce the activation energy of the reac-
tion of interest, generally without being transformed throughout
the reactive chain. Most of the catalysts used in gas-phase reac-
tions are noble metals or metal oxides. In the emission treatment
system the ceramic block, mounted in a stainless steel container,
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Fig. 1. Emission treatment system and major pollutant components.

is usually covered by a thin coating of platinum, rhodium, or
palladium.

The TWC removes carbon monoxide, oxides of nitrogen, and
hydrocarbons. To allow the catalyzed reactions to proceed si-
multaneously, reaching high conversion efficiencies (more than
95%), the TWC has to be sufficiently warmed up (above 600 K)
and the air–fuel mixture in the combustion chamber has to be
regulated around the stoichiometric point by a control system.
In particular, the TWC is said tolight off when hydrocarbons
conversion efficiency reaches 50%. Unfortunately, in many con-
ditions of practical interest, such as cold start, warm-up, tran-
sient acceleration, and transient fuel cutoff during decelerations,
the TWC works out of the required temperature and/or stoichio-
metric ranges.

In view of this and future stricter legislation on engine ex-
haust gases, the so-called ultra low vehicle emissions (ULVE,
for the year 2000 and beyond), the optimization of the TWC dy-
namic behavior will become critical. An important task toward
the online optimization of engine fueling strategies is to predict
the transient TWC emissions for any driving condition with a
reasonable computational load. In the literature, one can find
many detailed physics- and chemistry-based models (see, for
example, [1], [3], [13]–[16], and [18] and references therein),
and, only recently, reduced-order models utilizable for bench-
marking or even for on-line computation (see, for example, [4],
[7], and [21]).

An obstacle to the synthesis of dynamic control-oriented
models is the description of the chemical phenomena occurring
inside the TWC which should be sufficiently flexible to match
the behavior of alarge variety of catalyst formulations and
washcoats. Most models employ simplified reaction schemes
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and empirical rate expressions, of Langmuir–Hinshelwood
type [6], [23], [25], [26], where reaction rates depend on
concentrations and temperature at the catalytic sitesalong the
reactor.

Unfortunately, the lack of precise kinetic measurements, in
particular, during the transient warm-up phase, makes the choice
of the suitable expressions and thetuning of their parameters
probably the most crucial aspects for model reliability. Thus,
there is a need for a method allowing the estimation of the ki-
netic parameters from more easily available experimental data,
like temperature and pollutant concentrations profiles at the inlet
and the outlet of the converter. In this paper, we present the use
of a machine learning technique to solve this problem.

Recently, multilayer neural networks (NN’s) have been used
for modeling static nonlinear maps with satisfactory results, and
novel interconnections of NN’s have been tested within dy-
namic contexts, namely, for the identification of unknown dy-
namical systems described by a set of ordinary differential equa-
tions [24], or as a part of a lumped parameter model [17], [19].
The training is realized through standard gradient methods, such
as backpropagation.

Here, we present a novel approach that considers the NN as a
subsystem in a partial differential equations (PDE’s) model and
uses a genetic algorithm (GA) to train it. More precisely, the
NN submodel computes the reaction rates of the catalyst during
warm-up and is embedded into the TWC PDE’s model. This
modeling technique allows one to preserve the most important
features of an accurate distributed parameter TWC model, it cir-
cumvents both the structural and the parameter uncertainty of
“classical” reaction kinetics models, and saves computational
time. The “ad hoc” GA bypasses the above-mentioned prob-
lems with the data and the difficulties in applying gradient-based
methods in this complex modeling scheme.

This identification procedure requires very short simulation
times, achieved here by a purposely designed PDE integration
algorithm exploiting the two-time-scale separation of the TWC
system.

II. DYNAMIC MODEL OFTWC DURING THE WARM-UP PHASE

In this section, we present the dynamic TWC model described
in detail in [7] and [21], which constitutes the backbone of our
work. It has been obtained by assuming that the adsorption co-
efficient between gas and substrate is infinite; this idealization
means that, at low temperatures, the adsorption phenomenon is
infinitely faster than the chemical reactions taking place on the
substrate, and is a reasonable simplification during the warm-up
phase [10]. The same can be deduced if one assumes reactions
to occur only on the external surface of the catalytic surface [1],
[5]. It is a monodimensional PDE’s model where the nonuni-
form flow distribution at the monolith face is neglected

(1a)

(1b)

(1c)

We consider chemical species participating incatalytic reac-
tions and the above equations describe the energy and the mass
equilibrium. Pedices “” and “ ” stand for gas and substrate (the
reactive surface); is temperature; is the vector of species
concentrations expressed in mol/munits and assumed equal in
the gas and solid phase in view of the infinite-adsorption hy-
pothesis (see [7] for more details);is the vector of specific
reaction rates for the species; andis the vector of specific
reaction rates for the chemical reactions, both depending on sub-
strate temperature and concentrations; is the -vector of
the heat produced by the catalytic reactions; the independent
variables and are, respectively, the time and the axial posi-
tion along the monolith; the various other coefficients are illus-
trated in the Appendix.

Theminimalnumber of reactions significant for the main pol-
lutant considered, e.g., CO, HC and NO, includes six chemical
species (CO, CH , CH , H , O , NO, hence, ; propylene,
C H , and methane, CHsummarize many different HC species
present in the feedgas). They take part in five chemical reactions
( ) that describe oxidation of the carbon monoxide CO and
unburned hydrocarbons HC, oxidation–reduction of the couple
CO–NO and combustion of H[3]

CO O CO (2a)

C H O CO H O (2b)

CH O CO H O (2c)

CO NO CO N (2d)

H O H O (2e)

The reaction with CO is considered as the main path for NO
reduction, although other reducing species, such as hydrogen or
hydrocarbons, may also contribute to NO conversion.

The structure of the system (1) (see Fig. 2) can be interpreted
as the coupling of a thermal subsystem and a chemical sub-
system [respectively, (1a) and (1b), and (1c)].

The boundary and initial conditions are ( )

(Adiabatic constraint) (3a)

(3b)

(3c)

(3d)

(3e)

where and are,
respectively, the temperature of the exhaust gas and the
concentrations of the chemical species at the inlet of the
TWC, is the initial temperature of the substrate,

are the initial concentrations,
and is the TWC length.

III. M ODELING BY MACHINE LEARNING

A. The NN for the Reaction Kinetics

In order to describe the reaction rates employed in model (1),
we use the following structure (see Fig. 3):

for
for

(4)
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Fig. 2. Structure of the system.

Fig. 3. A model of reaction kinetics.

where is the specific reaction rates vector

[used in (1b)]; diag
; is the output vector of a fully connected mul-

tilayer feedforward NN; is the temperature of the reactive
surface (substrate); and is a prefixed temperature threshold.
Notice the structure (4) ensures that the kinetic rates are zero
in the absence of reactants or when the substrate is at ambient
temperature. On the basis of the reaction kinetics it is straight-
forward to obtain the vector of the rates of the chemical species

[(1c)] since it is linearly related to
The mathematical model of the NN (see Fig. 4) is completely

defined by the number of layers, the specification of the activa-
tion function for the neurons in each layer, and the weight ma-
trices for each layer. The NN size has to be chosen according to
the tradeoff between model accuracy and computational burden.
In our case, a two-layer feedforward neural network is used in
the kinetic model and it can be specified as follows:

(5a)

(5b)

Fig. 4. Two-layers network architecture.

where is the output vector of the first layer;
and are the network weight matrices;

and are bias column vectors; the oper-
ator is intended component-wise andis the input vector of
the neural net defined as

. The mean gas velocity in monolith is in-
cluded in the input vector because previous identification ex-
periments with the system have shown that this further piece of
information improves the performance of the whole model.

B. The Identification Procedure

Since the kinetic data, i.e., inputs and outputs of the net, are
not directly available, we have to base the training on the TWC
inlet–outlet concentration and temperature profiles. Toward this
goal, we use a novel self-organizing GA which solves the fol-
lowing global optimization problem:

(6)

where is the measured output, is the simulation result,
refers to the output channel of the TWC (temperature and con-
centrations of the chemical species),are scaling factors, and

and are, respectively, the initial and final time instants of
the simulation.

As is well known, a GA [9] is a stochastic numerical
optimization procedure which operates on apopulation of
parameter vectors (in this framework, NN parameters). Three
“operators” are used to modify the population members:

• recombination/crossoverwhich generates new trial solu-
tion points (offspring), combining some elements drawn
from the population;

• mutationwhich randomly changes some of the offspring
components;

• selectionwhich chooses the population elements that will
be used by the next crossover.

For each population element, afitnessis defined, measuring in
a quantitative way how the element ranks in the population with
respect to the optimization problem. Based on their fitness, the
old population members are compared with the newly generated
ones, and the solutions with the best fitness constitute the new
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population members. In this way, iterating the crossover–mu-
tation–selection process, the population evolves to the optimal
solution. Our GA is described in the following.

1) A Self-Organizing GA:This is a real coded GA (i.e., data
are not coded as binary numbers as in some schemes) obtained
by a modification of the Controlled Random Search (CRS) algo-
rithm by Price [20]. A particular mutation operator, which varies
according to the local fitness value and the global success his-
tory of the population, allows jumping out of local minima.

Let be the objective function to be minimized (coin-
ciding here with the fitness function). In a first phase
population points are initially randomly chosen according to a
uniform distribution within a defined search volume of dimen-
sion . Afterwards, the algorithm, characterized by four param-
eters ( , , , and ) and two variables (and ), described
later, proceeds as follows.

Step 1) Compute the grid point in which
reaches the maximum value , i.e.,

.
Step 2) Form the so-called breeding set, i.e., grid

points chosen randomly (for ease of
notation we assume, after renumbering, they are the
first population points). All the subsequent
operations are performed on this set.

Step 3) Mutation: For all the breeding set points such that
, with probability

(7)

replace the point with a completely random one,
chosen within the search volume limits.

Step 4) Iterate Steps 4a and 4b on the whole breeding set.
Step 4a)Recombination: For each breeding point ,

determine the centroid of the other
points, i.e.,

(8)

• Generate the offspring
(in this way, is the midpoint between

and ); if is not contained in the
search volume, process the next point in
the breeding set.

• Compute ; if ,
then is purged from the popula-
tion, and is substituted by the offspring

.
Step 4b)Selection: Compute the new , if neces-

sary.
Step 5) Convergence test: for all

. If the convergence test is not satisfied, re-
turn to Step 1).

The variable is the number of consecutive iterations in
which the population did not change, i.e., no offspring substi-
tuted some population member. It gives an empirical measure
of the necessity of introducing some fresh information in the
population and increases the mutation probability. The variable

is the average value of the population fitness, used as a
scaling factor.

The parameter is a threshold value used for the conver-
gence test: if all the fitness values of the population are smaller
than , the convergence is declared. With this convergence
criterion the population points will be clustered inside the do-
main . This final cluster can provide useful
information about correlations among the unknown parameters
as well as information regarding the sensitivity of the cost func-
tion to these parameters.

The parameter modulates the mutation rate during
the course of the optimization process, and enforces
an upper bound to the mutation probability. The term containing
the parameter provides an ordering of the population
members. Namely, members that are farther from convergence,
i.e., whose fitness is larger than , have a greater mutation
probability. The parameters ( ) are inherent to the present
optimization scheme and may be viewed as modeling coeffi-
cients aiding the algorithm to identify its environment; a good
choice can increase the rate of convergence of the scheme.

To give an idea of how the recombination mechanism works,
Fig. 5 shows two possible grids of six points in a two-parame-
ters space and the offspring obtainable with all possible breeding
sets. Notice how the offspring distribution depends on the popu-
lation shape, in turn determined by the objective function shape,
thus exploiting any function regularity. A graphical illustration
demonstrating the recombination/mutation mechanism is Fig. 6.

In order to highlight the GA clustering feature, we report its
behavior with the Rosenbrock function as a fitness function. The
function and limits for the GA are the following:

(9)

The function has the global minimum in , with
a quite large banana-shaped basin . We searched
for the basin , i.e., . A
population size of 50 elements was used, and the parameters

. In Fig. 7 the contour plot of the
test function is reported, together with the population in three
different stages of the minimization. Convergence has been at-
tained after 500 iterations.

IV. A FAST INTEGRATION ALGORITHM FOR THEPDE MODEL

The TWC reduced model [(1) and (4)] is a distributed param-
eter model and its simulation times would be prohibitive without
using special care in the design of the integration algorithm. We
based our algorithm on the fact that: 1) the working of a TWC
derives from the interplay of thermal phenomena (thermal ex-
changes between gas and substrate and thermal energy gener-
ated by chemical reactions) and chemical reactions on the sub-
strate [see (1) and Fig. 2] and 2) the thermal phenomena are
much slower than the chemical phenomena. Consider now that,
when dealing with two-time-scale lumped parameter systems,
described via singularly perturbed ordinary differential equa-
tions (ODE’s) (e.g., [12]), one computes the “slow” subsystem
by replacing the fast dynamics with algebraic relations. Here,
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Fig. 5. Example of the recombination process [formula (8)]. All the possible offspring (crosses) obtainable from two different grid points distributions (circles)
(top) uniform grid points distribution; (bottom) clustered grid.

Fig. 6. Illustration of the mutation/recombination mechanism, for a 2-D
parameter space. Circles: original breeding set; crosses: corresponding
offspring; triangle: mutated point; bullets: offspring after the mutation.

similarly, we suggest replacing the chemical part of the equation
with simple algebraic relations which summarize the conversion
efficiencies of the TWC ( for CO NO); on the
other side, since these efficiencies depend on the temperature,
their values have to been modified from time to time by inte-
grating the appropriate chemical equations (see Fig. 8).

In particular, taking into account the thermal dynamics, de-
scribed by (1a), (1b), and the much faster chemical dynamics
(1c), we designed the approximate integration scheme that al-

lows the decoupling of the integration procedure as follows (fur-
ther mathematical details are in [8]).

• Equations (1a) and (1b) have been solved using a fi-
nite difference scheme (“method of lines”) [22]. The
distributed parameter model is converted into a lumped
one by a finite difference scheme, thus considering a
discrete number of spatial elements, each described by
time-varying variables.

• Using the “method of characteristics,” the problem of
solving the “quasi-linear” hyperbolic PDE’s [(1c) with a
time-fixed temperature pattern] of the chemical submodel
reduces to that of solving a system of ODE’s [11].

V. COMPARISON BETWEEN SIMULATION AND

EXPERIMENTAL DATA

A. The Experimental Setup

Fully legislated tests have been designed in the U.S. and
European Union (UE), respectively, Federal Test Procedure
(FPT) cycle and European Control Emissions (ECE) cycle [2],
in order to determine whether or not a vehicle meets emissions
requirements. The vehicle under test is placed on a chassis
dynamometer and driven through the cycle which includes idle
drive, accelerations, and decelerations at various rates, and
cruises (see, for example, Fig. 9). The tailpipe emissions are
collected into bags during the test; the mass of each emission
component is then measured and divided by the length of the
test to obtain pollutant emissions expressed in grams per mile
or kilometer.
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Fig. 7. Thin lines: contour plot of the Rosenbrock function in the search volume limits; black area: target basin; circles: GA population members. From top to
bottom: initial population, population after 100 iterations, and final population.

Fig. 8. Approximate system in the time interval[t̂; t̂ +�t].

For the purpose of building a model of TWC dynamic be-
havior the experimental data have to provide thetime historyof
pre- and post-converter gas temperature and pollutant concen-
trations in the exhaust gas. Toward this goal, Magneti Marelli
Engine Control Division (Bologna, Italy) provided the experi-
mental data. Measurements were conducted on a dynamic test
bench consisting of a four-stroke four-cylinder 1400cc FIAT en-
gine equipped with “fresh” (not aged) Pt/Rh converter monolith,
a dc motor/generator, and a computerized control facility for all
engine input signals. Fig. 10 illustrates the measurement setup.

The input data acquisition rate is 100 Hz. Pollutant mea-
sures use three kinds of analyzers: a two-channel flame ion-

Fig. 9. ECE cycle—Detail of the “warm-up phase.”

Fig. 10. Measurement setup.

ization detector for HC measurements (time response 0.5 s);
a chemi-luminescence analyzer for NO (time response 0.5 s);
and a nondispersive infrared detector for CO and CO(time re-
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(a) (b)

Fig. 11. (a)T time history. (b) CO time history. Dotted line: experimental data referred to the TWC outlet; solid line: model output referred to the TWC outlet;
dashed-dotted line: experimental data at the TWC inlet.

(a) (b)

Fig. 12. (a) CH time history. (b) CH time history. Dotted line: experimental data referred to the TWC outlet; solid line: model output referred to the TWC
outlet; dashed-dotted line: experimental data at the TWC inlet.

sponse 0.8 s). Thermocouple sensors measure the gas tempera-
ture at the inlet and the outlet of the TWC. Pre- and post-catalyst
air–fuel ratio is measured with linear exhaust gas oxygen (EGO)
sensors ( , in Fig. 10) previously heated. The mean exhaust
gas velocity is computed from mass air flow (MAF) sensor data.
The time delay of the overall acquisition system is about 1.5 s.

B. Results and Discussion

The model behavior is compared to experimental data along
the transient thermal phase of an ECE cycle. The simulation of
1200 real seconds of the warm-up along an ECE cycle takes a
mere 5 s on a PC, Intel Pentium II 350MHz Processor, 96-Mb
RAM; this duration is at least two orders of magnitude smaller
than the one obtainable with more standard integration algo-
rithms and “classical” nonlinear kinetic expressions. Our algo-
rithms have been developed on the Matlab 5.2/Simulink 2.0 en-
vironment with the support of C-compiled S function.

Simulation results are shown in Figs. 11–13. In all these fig-
ures, real TWC input and output data and simulations output
are plotted. The parameter identification phase covers the first

800 s of the ECE cycle; the remaining part, which is also rich
of dynamics, as one can see in Fig. 9, is used for validation.
The model captures the most important features of the TWC
warm-up; in particular, the thermal behavior is very well repro-
duced. As regards the concentrations, the model clearly detects
when, due to the low temperature, the catalyst is not properly
working. Once the device is sufficiently warm, the conversion
is reproduced reasonably well.

Upon closer look, one can notice a mismatch between some
peaks of the measurements and the corresponding ones of the
model. We point out, however, that the aim of this model is not
to describe accurately the catalyst behavior at each time instant,
but rather to give a prediction, useful for validation and bench-
marking of control strategies, of the main TWC dynamics with
very short simulations. From this viewpoint, the approximation
obtained has been considered sufficient, even though we plan to
collect more startup data (cold start and warm-up) in the future
so as to refine the modeling and validation work.

It may be interesting to look at one of the signals multi-
plied by (see Fig. 3) because it gives an idea of how the
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(a) (b)

Fig. 13. (a) NO time history. Dotted line: experimental data referred to the TWC outlet; solid line: model output referred to the TWC outlet; dashed-dotted line:
experimental data at the TWC inlet. (b) Reaction (2a),R (T � T ) = R =X computed at the converter outlet during the TWC warm-up.

(a) (b)

Fig. 14. (a) History of worst fitness and mutation probability along generations. (b) Hystogram of fitness distribution among the final population members.

TABLE I
SUMMARY OF THE IDENTIFICATION PROCEDURE

reaction rates change during the warm-up phase [ Fig. 13(b)];
the scales on the vertical axis do not have a physical meaning
since simulations employ an adimensional model.

The identification procedure of the NN submodel is summa-
rized in Table I. Finally, Fig. 14(a) (top) shows how the worst
value of fitness in the population decreases along the genera-
tions; in Fig. 14(a) (bottom), one can also notice how the mu-
tation probability saturates at its maximum value 0.02 as the

algorithm keeps trying to improve the fitness. The hystogram
of Fig. 14(b) illustrates the distribution of the fitness among the
final population members.

VI. CONCLUSIONS

The modeling of chemical kinetics is crucial for the mod-
eling of the TWC, but it is very difficult. To bypass this
problem, we introduced in this paper a hybrid modeling tech-
nique: an NN machine mimics the reaction kinetics inside a
PDE model. Furthermore, to overcome the identification ob-
stacles arising from both the lack of direct kinetic data and
the whole model structure, we designed a GA for the net
training. We showed the validity of this technique using a
static two-layer feedforward NN and a fast two-time-scale in-
tegration algorithm. We believe that this hybrid approach can
be successfully applied to modeling and identification con-
texts different from ours.
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APPENDIX

J/kg K specific heat capacity of gas;
J/kg K specific heat capacity of substrate;
mol/m s specific reaction rate for species;
mol/m s specific reaction rate for the chemical
reaction ;
m /m active area/volume ratio of the monolith;
W/m K convective heat transfer coefficient (from
gas to substrate);
W/m K heat transfer coefficient;
m/s mass transfer coefficient for species;
m /m external area/volume ratio;
K ambient temperature;
m/s mean gas velocity in monolith;
J/mol heat of th reaction;

void fraction;
kg/m gas density;
kg/m substrate density;
W/m K substrate thermal conductivity (from sub-
strate to ambient);
mol/m concentration ofth species.
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