About
73
Publications
26,135
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,530
Citations
Publications
Publications (73)
Carbon dots (CDs) have attracted much attention for applications in photonics and optoelectronics because of their high emission efficiency and ease of synthesis. Although studies in solution are well established, solid‐state applications are less common because of optical quenching phenomena that critically affect CDs. Herein, the synthesis of amo...
Carbon Dots (CDs) have gained significant attention for their fascinating optical properties, potential applications, and puzzling structural challenges. In the last decade, CDs have become the focal point in many photocatalysis studies, either as independent systems or combined with other established photocatalysts. CDs play a crucial role in enha...
Carbon dots (C‐dots) obtained from D‐glucose have attracted great interest because of their properties and as a model for understanding the synthesis process and the origin of photoluminescence in carbon‐based nanostructures. Synthesising C‐dots under hydrothermal conditions has become one of the most common methods for their preparation. Understan...
The scientific community is actively engaged in the development of innovative nanomaterials with broad‐spectrum virucidal properties, particularly those capable of producing reactive oxygen species (ROS), to combat upcoming pandemics effectively. The generation of ROS capable of inhibiting viral activity on high‐touch surfaces can prove an effectiv...
Alcohol and water photooxidation reactions are employed in concert with optical spectroscopy analyses to demonstrate the occurrence of multiple and distinctive charge-transfer (CT) mechanisms in the environmental photocatalyst MIL-125(Ti). The contribution of ligand-to-metal CT (LMCT) mechanisms increases at wavelengths lower than 320 nm while that...
In the present Account, we report the recent progress of our research group on experimental and theoretical studies of defects in 2D and 0D hexagonal boron nitride. The studies of the effect of defects in boron-based structures have been also extended to boron oxide glasses. Engineering the different types of defects in h-BN is paramount because ma...
The emergence of SARS-CoV-2 variants requires close monitoring to prevent the reoc-currence of a new pandemic in the near future. The Omicron variant, in particular, is one of the fastest-spreading viruses, showing a high ability to infect people and evade neutralization by anti-bodies elicited upon infection or vaccination. Therefore, the search f...
The phosphorescence of boric acid (BA, H3BO3) at room temperature is a puzzling phenomenon subject to controversial interpretations although the role of structural defects has not yet been considered. Heat treatments of boric acid cause its transformation into the metaboric phase and amorphous boron oxide (B2O3). The structural changes after therma...
This book chapter provides a comprehensive exploration of graphene quantum dots (GQDs) and carbon nanodots (CNDs), focusing on their structural intricacies and unique properties. The discussion encompasses an overview of carbon dots, including their diverse structures and properties. The chapter emphasizes the importance of computational methods fo...
The design of functional coatings for touchscreens and haptic interfaces is of paramount importance for smartphones, tablets, and computers. Among the functional properties, the ability to suppress or eliminate fingerprints from specific surfaces is one of the most critical. We produced photoactivated anti-fingerprint coatings by embedding 2D-SnSe2...
The differences between bare carbon dots (CDs) and nitrogen-doped CDs synthesized from citric acid as a precursor are investigated, aiming at understanding the mechanisms of emission and the role of the doping atoms in shaping the optical properties. Despite their appealing emissive features, the origin of the peculiar excitation-dependent luminesc...
Carbon dots (C-dots) are a large family of nanomaterials characterized by an intense photoluminescence. The origin of the emission is multifaceted and is dependent on a number of factors, including structure, surface, and composition. The term "carbon dots" is quite broad and encompasses a wide range of carbon
nanostructures. The multiple propertie...
In this work, we unveil the fluorescence features of citric acid and urea-based Carbon Dots (CDs) through a photo-physical characterization of nanoparticles synthesized, under solvent-free and open-air conditions, within silica-ordered mesoporous silica, as a potential host for solid-state emitting hybrids. Compared to CDs synthesized without silic...
Designing the architecture of l-lysine-based polymeric structures is a highly challenging task that requires careful control of the amino acid reactive groups. Conventional processes to obtain branched polylysine need several steps and the addition of specific catalysts. In the present work, to gain a better understanding and control of the formati...
Carbon nanodots (CNDs) are the latest and most shining rising stars among photoluminescent (PL) nanomaterials. These carbon-based surface-passivated nanostructures compete with other related PL materials, including traditional semiconductor quantum dots and organic dyes, with a long list of benefits and emerging applications. Advantages of CNDs inc...
L-lysine is an essential amino acid whose peculiar optical properties in aqueous solutions are still in search of a comprehensive explanation. In crystalline form L-lysine does not emit, but when in an aqueous solution, as the concentration increases, emits in the blue. The origin of such fluorescence is not yet clear. In the present article, we ha...
The origin of fluorescence in carbon dots (C-dots) is still a puzzling phenomenon. The emission is, in most of the cases, due to molecular fluorophores formed in situ during the synthesis. The carbonization during C-dots processing does not allow, however, a fine control of the properties and makes finding the source of the fluorescence a challengi...
Halide perovskite colloidal nanocrystals have recently gained much attention thanks to their superior stability compared with their bulk counterpart and to their unique optical properties. In this paper, two systems combining nanocrystals and nanoporous gold are studied to create an optimal metal semiconductor heterojunction that can be used in pho...
Thermal polymerization of glycine, the simplest amino acid bearing only one alfa carbon atom, is not an efficient process in mild conditions. Hydrothermal processing of glycine produces only small peptides, up to 4 units on average, with only a fraction of glycine that reacts. In the present work, we have used boric acid as a catalyst to promote th...
Heterostructures formed by anatase nanotitania and bidimensional semiconducting materials are expected to become the next-generation photocatalytic materials with an extended operating range and higher performances. The capability of fabricating optically transparent photocatalytic thin films is also a highly demanded technological issue, and incre...
Bioimaging supported by nanoparticles requires low cost, highly emissive and photostable systems with low cytotoxicity. Carbon dots (C-dots) offer a possible solution, even if controlling their properties is not always straightforward, not to mention their potentially simple synthesis and the fact that they do not exhibit long-term photostability i...
The outbreak of the Covid-19 pandemic due to the SARS-CoV-2 coronavirus has accelerated the search for innovative antivirals with possibly broad-spectrum efficacy. One of the possible strategies is to inhibit the replication of the virus by preventing or limiting its entry into the cells. Nanomaterials derived from lysine, an essential amino acid c...
Graphene-enhanced Raman scattering (GERS) produces enhancement of the Raman signal, which is based on chemical rather than electromagnetic mechanism such as in the surface-enhanced Raman scattering. Graphene oxide, amino- and guanidine-functionalized graphene oxide, exfoliated graphene, and commercial graphene nanoplatelets have been used to invest...
A series of 6-aryl coumarin dyes were synthesized in satisfactory yields by Pd-catalyzed Suzuki cross-coupling reactions with a panel of boronic acids and coumarin bromides. Photophysical studies highlighted a large Stoke shift and interesting fluorescence quantum yield for these compounds. Optical properties were also investigated with the aid of...
The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: commu...
A novel blue excitable green fluorescent triazine-based material with high thermal stability (up to 350 °C) has been synthesized. Solid-state structural characterizations showed bright solid-state photoluminescence centered at 490 nm with an internal quantum yield (iQY) up to 40%. The coordination capabilities offered by the presence of a multi nit...
The polycondensation of amino acids can originate complex polymers that display fascinating structural and optical properties. Thermally induced amidation of l-lysine allows forming a branched polymer without the support of any catalyst. The polycondensation is completed at 240–250 °C; at higher temperatures, the amino acid degrades. The obtained p...
Nitrite ions pose a severe problem to human health justifying the need for fast and reliable detection of their presence in freshwater. Here we report a method to detect nitrite by photoluminescence of amino-rich carbon dots (C-dots). The dots are synthesized from p-phenylenediamine through a solvothermal treatment in ethanol. When nitrites ions ar...
Hexagonal boron nitride (h-BN) nanodots of 10 nm have been synthesized via top-down route from bulk powders. A combination of ultrasonic and thermal treatments in phosphoric acid has been used to achieve edge etching and size reduction to the nanoscale. A new emission in the ultraviolet region, correlated to a characteristic infrared-active vibrati...
CsPbI3 inorganic perovskite is synthesized by a solvent-free, solid-state reaction, and its structural and optical properties can be deeply investigated using a multi-technique approach. X-ray Diffraction (XRD) and Raman measurements, optical absorption, steady-time and time-resolved luminescence, as well as High-Resolution Transmission Electron Mi...
Hexagonal boron nitride (h-BN) nanodots of 10 nm have been synthesized via top-down route from bulk powders. A combination of ultrasonic and thermal treatments in phosphoric acid has been used to achieve edge etching and size reduction to the nanoscale. A new emission in the ultraviolet region, correlated to a characteristic infrared-active vibrati...
Totally inorganic perovskites are playing an increasingly important role for their potential applications in optoelectronics devices. However, a big problem to be solved is the role of the different phases, the presence of which is closely linked to the growth method and to the role of impurities. In this article, we propose a solvent-free, solid-s...
The fabrication of optically active heterostructures in the shape of mesostructured thin films is a highly challenging task. It requires an integrated process to allow in one-step incorporating the two-dimensional materials within the mesoporous ordered host without disrupting the pore organization. Hexagonal boron nitride (BN) nanosheets have been...
The molecular emission model is the most accredited one to explain the emission properties of carbon dots (CDs) in a low-temperature bottom-up synthesis approach. In the case of citric acid and urea, the formation of a citrazinic acid (CZA) single monomer and oligomers is expected to affect the optical properties of the CDs. It is therefore mandato...
Functionalization of boron nitride (BN) materials with hydroxyls has attracted great attention to accomplish better performances at micro- and nanoscale. BN surface hydroxylation, in fact, induces a change in properties and allows expanding the fields of application. In this review, we have summarized the state-of-the-art in developing hydroxylated...
The study of new phosphors requires in-depth knowledge of the mechanisms and radiative emission paths and, with this aim, the study here reported focuses on the emission properties of CaZnOS crystals single doped with Terbium and co-doped with Terbium and Europium. By studying the optical properties and, in particular, the kinetics of recombination...
Carbonized polymer dots (CPDs), a peculiar type of carbon dots, show extremely high quantum yields, making them very attractive nanostructures for application in optics and biophotonics. The origin of the strong photoluminescence of CPDs resides in a complicated interplay of several radiative mechanisms. To understand the correlation between CPD pr...
In recent years, carbon dots (CDs) have attracted considerable attention for their potential application in photonics and optoelectronics. One of the main limitations in realizing efficient and reliable solid-state devices is the aggregation-caused quenching effect. At a short distance, the mutual interaction among nanoparticles enhances the non-ra...
The development of functional optoelectronic applications based on hexagonal boron nitride nanosheets (h-BNNs) relies on controlling the structural defects. The fluorescent emission, in particular, has been observed to depend on vacancies and substitutional defects. In the present work, few-layer h-BNNs have been obtained by sonication-assisted liq...
The origin of carbon-dots (C-dots) fluorescence and its correlation with the dots structure still lack a comprehensive model. In particular, the core-shell model does not always fit with the experimental results, which, in some cases, suggest a molecular origin of the fluorescence. To gain a better insight, we have studied the response of molecular...
The appearance of new and lethal viruses and their potential threat urgently requires innovative antiviral systems. In addition to the most common and proven pharmacological methods, nanomaterials can represent alternative resources to fight viruses at different stages of infection, by a selective action or in a broad spectrum. A fundamental requir...
Citrazinic acid (CZA) is a weakly fluorescent molecular compound whose optical properties are dependent on aggregation states and chemical environment. This molecule and its derivatives have been recently identified as the source of the intense blue emission of carbon dots obtained from citric acid with a nitrogen source, such as ammonia or urea. C...
Highly fluorescent blue and green-emitting carbon dots have been designed to be integrated into sol-gel processing of hybrid organic-inorganic materials through surface modification with an organosilane, 3-(aminopropyl)triethoxysilane (APTES). The carbon dots have been synthesised using citric acid and urea as precursors; the intense fluorescence e...
Understanding the luminescence of carbon dots is a highly challenging task because of the complex reactions involved in the synthesis process. Several by-products form at different reaction stages and become possible sources of emission. Citrazinic acid and its derivatives, in particular, have been identified as intermediates that give rise to blue...
Despite the potential applications in several technological fields, 2D materials are at their early stages. Among them, boron nitride-based systems are still far from having been comprehensively studied. The possibilities of practical applications extend to very varied fields, from mechanics to optics. However, from careful observation of the exper...
The discovery of graphene has paved the way for intense research into 2D materials which is expected to have a tremendous impact on our knowledge of material properties in small dimensions. Among other materials, boron nitride (BN) nanomaterials have shown remarkable features with the possibility of being used in a large variety of devices. Photoni...
The optical properties of microwave synthesized Carbon Dots dispersed in water and in mesoporous ordered silica are reported. The fluorescence characteristics of bare carbon dots are compared to the ones of nitrogen-doped samples, nitrogen doping being exploited to increase the emission efficiency. Two emission bands in the blue-green region, at ab...
In this work we analysed the optical and structural properties of Ce:YAG regenerated phosphors. The concentrate resulted as the final product of an industrial recycling process of waste electrical and electronic equipment (WEEE), and in particular fluorescent powders coming from spent lamps treatment plant. The waste pristine materials were re-util...
The optical and electron properties of three different s-triazine derivatives are investigated to ascertain the role of the donor acceptor character in amine-triazine systems depending on the bridging radical of the ammine group. The three derivatives were obtained starting from three different ammine compounds allowing to achieve a structure with...
The UV excited emission properties of mesoporous silica in the blue and UV range are modified by the adsorption and desorption of oxygen molecules at the two defect sites. To interpret the experimental purging cycles we model the oxygen-silica interaction at thermodynamic level, succeeding in explaining the interaction mechanism and the trend of UV...
Aluminium silicate crystal is proposed as new promising inert matrix as host of luminescent ions. In particular, we studied the luminescence properties of single doped and multi‐doped Al 2 SiO 5 samples (doping elements: Ce, Tb, Cr, Fe, Zr) to explore their suitability as phosphors in modern lighting systems. The Al 2 SiO 5 host matrix, obtained in...
Rare earth based phosphors are largely the most applied luminescent materials in the present lightening devices. Their ubiquity in lighting system, like light emitting diodes or compact fluorescent lamps, is related to the optical high efficiency of the rare earth as luminescent ions but also to the relative easiness of growth technique as well hig...
Graphitic carbon nitride (g-C3N4) is considered as one of the most promising photocatalysts for environmental improvement and energy storage. It presents a graphene – like 2D structure, composed of heptazine units connected by amino groups. Here we report multi-technique experimental data (XRD patterns, Raman, steady-time and time resolved Luminesc...
A facile and ecofriendly strategy to project and engineering new organic white LED is tested. The hybrid system was implemented by combining a commercial blue LED, with emission at 405 nm, with an hybrid transparent organic film (Polycarbonate, PMMA, PVC) containing two selected organic dyes. The emitting molecules, a home designed push-pull based...
The luminescence properties of Tb and Ce in Rare Earth Doped crystalline oxides largely depend on their relative concentrations: by increasing the dopant concentration, the luminescence profile changes from blue to green because of the energy transfer among centers. The kinetic properties of the luminescence of optically excited Terbium–Cerium co-d...
The phenomenon of luminescence enhancement was studied in melamine-Y2O3:Tb hybrids.
Terbium
doped Y2O3 mesoporous nanowires were synthesized by hydrothermal method. X-ray diffraction patterns and Raman scattering spectra testified the realization of a cubic crystal phase. Organic-inorganic melamine-Y2O3:Tb3+
hybrid system was successfully obtained...
The light induced structural phase transition of TiO2 nanoparticles from anatase to rutile structure is reported with different distribution of defect related surface states. Pristine, defective, and surface passivated samples were irradiated in vacuum condition by intragap visible wavelength to achieve the phase transformation. The surface states...
Cerium doped rare earths aluminum perovskites, (REAlO3) are widely used as highly efficient and fast scintillators matrix for γ-ray detection. The crystal structures of pure perovskites (YAlO3 (YAP) and LuAlO3 (LuAP)) and their mixed compound (Lu0,7Y0,3AlO3 (LuYAP)) needs to be free of structural defects in order to avoid unwelcome shallow or deep...
The light induced phase transformation between stable phases of metal oxides nanoparticles is analyzed. The surrounding atmosphere as well as the defect density at the surface play a fundamental role. It has been found that in oxygen poor chamber atmosphere the phase transformation is favored, while the phase transition cannot be achieved if the de...
The structural evolution of γ-Fe2O3 (maghemite) in bare nanoparticles and in core/shell γ-Fe2O3/SiO2 systems was studied as a function of laser irradiation and heat treatment by the combined use of Raman spectroscopy, transmission electron microscopy, X-ray diffraction. The study was addressed to deepen understanding the driving mechanisms at the b...
In this work we reveal the structure of a NaYO2 compound solved from the X-ray diffraction powder pattern
using the “ab-initio” structure solution approach. The compound turned out to be of trigonal structure, S. G.
R-3m isomorphous with α-NaFeO2 layered compound. The lattice parameters are a = 3.404 and c =
16.602 Å, respectively, the atoms being...
The light-induced phase transition of TiO2 nanoparticles from anatase to rutile structure is reported depending on the surrounding environment, the transition being accomplished under oxygen-poor conditions. The transition mechanism is interpreted in the framework of oxygen adsorption and desorption phenomena with the involvement of surface oxygen...