Ludwig R. Sinn

Ludwig R. Sinn
Charité Universitätsmedizin Berlin | Charité · Institute of Biochemistry

MSc

About

23
Publications
8,881
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
461
Citations
Citations since 2016
22 Research Items
460 Citations
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200

Publications

Publications (23)
Article
Full-text available
Proteome-wide crosslinking mass spectrometry studies have coincided with the advent of mass spectrometry (MS)-cleavable crosslinkers that can reveal the individual masses of the two crosslinked peptides. However, recently, such studies have also been published with noncleavable crosslinkers, suggesting that MS-cleavability is not essential. We ther...
Article
Full-text available
Ion-mobility spectrometry shows great promise to tackle analytically challenging research questions by adding another separation dimension to liquid chromatography-mass spectrometry. The understanding of how analyte properties influence ion mobility has increased through recent studies, but no clear rationale for the design of customized experiment...
Preprint
Full-text available
Proteome-wide crosslinking mass spectrometry studies have coincided with the advent of MS-cleavable crosslinkers that can reveal the individual masses of the two crosslinked peptides. However, recently such studies have also been published with non-cleavable crosslinkers suggesting that MS-cleavability is not essential. We therefore examined in det...
Article
Full-text available
Viruses have evolved means to manipulate the host's ubiquitin-proteasome system, in order to down-regulate antiviral host factors. The Vpx/Vpr family of lentiviral accessory proteins usurp the substrate receptor DCAF1 of host Cullin4-RING ligases (CRL4), a family of modular ubiquitin ligases involved in DNA replication, DNA repair and cell cycle re...
Article
Full-text available
Protein-protein interactions govern most cellular pathways and processes, and multiple technologies have emerged to systematically map them. Assessing the error of interaction networks has been a challenge. Crosslinking mass spectrometry is currently widening its scope from structural analyses of purified multi-protein complexes towards systems-wid...
Article
Full-text available
Crosslinking mass spectrometry has developed into a robust technique that is increasingly used to investigate the interactomes of organelles and cells. However, the incomplete and noisy information in the mass spectra of crosslinked peptides limits the numbers of protein–protein interactions that can be confidently identified. Here, we leverage chr...
Preprint
Viruses have evolved means to manipulate the host’s ubiquitin-proteasome system, in order to down-regulate antiviral host factors. The Vpx/Vpr family of lentiviral accessory proteins usurp the substrate receptor DCAF1 of host Cullin4-RING ligases (CRL4), a family of modular ubiquitin ligases involved in DNA replication, DNA repair and cell cycle re...
Preprint
Full-text available
Crosslinking mass spectrometry (Crosslinking MS) has developed into a robust technique that is increasingly used to investigate the interactomes of organelles and cells. However, the incomplete and noisy information in the spectra limits the numbers of protein-protein interactions (PPIs) that can be confidently identified. Here, we successfully lev...
Article
Full-text available
Organofluorine compounds are known to be toxic to a broad variety of living beings in different habitats, and chemical fluorination has been historically exploited by mankind for the development of therapeutic drugs or agricultural pesticides. On the other hand, several studies so far have demonstrated that, under appropriate conditions, living sys...
Article
Full-text available
Complexes containing a pair of structural maintenance of chromosomes (SMC) family proteins are fundamental for the three-dimensional (3D) organization of genomes in all domains of life. The eukaryotic SMC complexes cohesin and condensin are thought to fold interphase and mitotic chromosomes, respectively, into large loop domains, although the under...
Article
Full-text available
Integrative in-cell structural biology In bacteria, RNA polymerases can associate with ribosomes to form transcription-translation units called expressomes. Multiple models based on structural data of in vitro reconstitution assays have been proposed for how the two machineries interface with one another. Understanding this bacteria-specific coupli...
Preprint
Full-text available
Crosslinking mass spectrometry is widening its scope from structural analyzes of purified multi-protein complexes towards systems-wide analyzes of protein-protein interactions. Assessing the error in these large datasets is currently a challenge. Using a controlled large-scale analysis of Escherichia coli cell lysate, we demonstrate a reliable fals...
Preprint
Full-text available
Structural biology performed inside cells can capture molecular machines in action within their native context. Here we develop an integrative in-cell structural approach using the genome-reduced human pathogen Mycoplasma pneumoniae. We combine whole-cell crosslinking mass spectrometry, cellular cryo-electron tomography, and integrative modeling to...
Article
Full-text available
Thyroglobulin (TG) is the protein precursor of thyroid hormones, which are essential for growth, development and the control of metabolism in vertebrates1,2. Hormone synthesis from TG occurs in the thyroid gland via the iodination and coupling of pairs of tyrosines, and is completed by TG proteolysis3. Tyrosine proximity within TG is thought to ena...
Article
Full-text available
The field of structural biology is increasingly focusing on studying proteins in situ, i.e. in their greater biological context. Crosslinking mass spectrometry is contributing to this effort, typically through the use of MS-cleavable crosslinkers. Here, we apply the popular non-cleavable crosslinker disuccinimidyl suberate to human mitochondria and...
Preprint
Full-text available
Organofluorine compounds are toxic to various living beings in different habitats. On the other hand, fluorine incorporation into single proteins via related amino acid analogues has become common practice in protein engineering. Thus, an essential question remains: can fluorinated amino acids generally be used as xeno-nutrients to build up biomass...
Article
Full-text available
Structural maintenance of chromosomes (SMC)–kleisin complexes organize chromosomal DNAs in all domains of life, with key roles in chromosome segregation, DNA repair and regulation of gene expression. They function through the entrapment and active translocation of DNA, but the underlying conformational changes are largely unclear. Using structural...
Article
Crosslinking mass spectrometry draws structural information from covalently-linked peptide pairs. When these links do not match to previous structural models, they may indicate changes in protein conformation. Unfortunately, such links can also be the result of experimental error or artefacts. Here, we describe the observation of non-covalently-ass...
Preprint
Full-text available
Crosslinking mass spectrometry draws structural information from covalently-linked peptide pairs. When these links do not match to previous structural models, they may indicate changes in protein conformation. Unfortunately, such links can also be the result of experimental error or artefacts. Here, we describe the observation of non-covalently-ass...
Preprint
Full-text available
Structural maintenance of chromosomes (SMC)-kleisin complexes organize chromosomal DNAs in all domains of life, where they have key roles in chromosome segregation, DNA repair and regulation of gene expression. They function through topological entrapment and active translocation of DNA, but the underlying conformational changes are largely unclear...
Article
Abstract The murine polyomavirus encodes three structural proteins, VP1, VP2 and VP3, which together form the viral capsid. The outer shell of this capsid is composed of the major capsid protein VP1, the inner shell consists of VP2 and its N-terminally truncated form VP3. These two minor capsid proteins interact with their identical C-terminal part...

Network

Cited By

Projects

Projects (2)
Project
Combining cellular cryo-ET, sub-tomogram analysis, whole-cell crosslinking mass spectrometry, integrative modeling and more to achieve high-resolution structural biology inside the cell.