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all precursors5, whereas others, such as 
PAcIFIC (precursor acquisition independent 
from ion count), use precursor selection 
windows as small as 2.5 m/z6 (see ref. 16 for 
a recent overview). In this Correspondence, 
we describe OpenSWATH, a software for 
automated targeted DIA analysis, benchmark 
it against manual analysis of >30,000 
chromatograms from 342 synthesized 
peptides and use it to analyze the proteome of 
Streptococcus pyogenes.

DIA methods offer several potential 
advantages over shotgun proteomics and 
SRM. Specifically, data acquired in DIA 
mode is continuous in time and fragment-ion 
intensity, thus increasing the dimensionality 
of the data relative to shotgun proteomics, in 
which full fragment-ion intensity scans are 
recorded only at selected time points  
(MS/MS spectra), or SRM, in which 
continuous time profiles are acquired 
but only for selected fragment ions (ion 
chromatograms)1,17–20. Thus, DIA methods 
produce a complete two-dimensional record 
of the fragment-ion signal of all precursors 
generated from a sample (Fig. 1a). By 
acquiring time-resolved data of all fragment 
ions, DIA has the potential to overcome some 
of the limitations of the current proteomic 
methods and to combine the high-throughput 
of shotgun proteomics with the high 
reproducibility of SRM21,22. 

However, DIA data has historically been 
more difficult to analyze than shotgun or 
SRM data. To limit the time needed for data 
analysis and the amount of sample required, 
one typically uses larger precursor-isolation 
windows than in shotgun proteomics 
or SRM16. This leads to highly complex, 
composite fragment-ion spectra from 
multiple precursors and thus to a loss of 
the direct relationship between a precursor 
and its fragment ions, making subsequent 
data analysis nontrivial. To date, DIA data 
have been analyzed by one of two strategies. 
In the first, fragment-ion spectra4,6 or 
pseudo fragment-ion spectra (which are 
computationally reconstructed from the 
complex data sets8,9,11–13) are searched 
by methods developed for DDA. In these 
approaches, a proteomics search engine 
compares experimental spectra to theoretical 
spectra generated by an in silico tryptic digest 
of a proteome, assuming that the fragment-
ion spectrum is derived from a single 
precursor. These approaches suffer from the 
high complexity of the data and the fact that 
errors in the generation of pseudo-spectra will 
propagate through the analysis workflow.

Recently, we proposed an alternative, 
fundamentally different DIA data analysis 

To the Editor:
Liquid chromatography tandem mass 
spectrometry (LC-MS/MS)-based proteomics 
is the method of choice for large-scale 
identification and quantification of proteins 
in a sample1. Several LC-MS/MS methods 
have been developed that differ in their 
objectives and performance profiles2. 
Among these, shotgun proteomics (also 
referred to as discovery proteomics) using 
data-dependent acquisition (DDA) and 
targeted proteomics using selected reaction 
monitoring (SRM, also referred to as multiple 
reaction monitoring, MRM) have been 
widely adopted. Alternatively, some mass 

spectrometers can also be operated in data-
independent acquisition (DIA) mode3–15. 
In DIA mode, the instrument fragments all 
precursors generated from a sample that are 
within a predetermined mass-to-charge ratio 
(m/z) and retention-time range. Usually, the 
instrument cycles through the precursor-ion 
m/z range in segments of specified width, at 
each cycle producing a highly multiplexed 
fragment-ion spectrum. Multiple DIA 
methods have been described with different 
instrument types and setups, duty cycles 
and window widths. Methods such as MSE 
(simultaneous acquisition of exact mass at 
high and low collision energy) fragment 

ZENBU is freely available as a web service at 
http://fantom.gsc.riken.jp/zenbu/. ZENBU 
can also be installed locally from the open-
source source code (Supplementary Data) 
or via preconfigured virtual machines which 
we provide. There is also a wiki-based 
documentation available on the website 
containing a detailed manual and set of 
case studies (Supplementary Note 1 and 
Supplementary Figs. 2–4,7–13).

Note: Any Supplementary Information and Source Data 
files are available in the online version of the paper 
(doi:10.1038/nbt.2840).
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as Skyline23 and PeakView (AB SCIEX), 
can visualize the XIC data, making manual 
analysis possible. Automation of this process 
is critical, however, because in a single typical 
SWATH-MS data set tens of thousands of 
peptides are identified.

Here we present OpenSWATH, an open-
source (Modified BSD License) software 
that allows targeted analysis of DIA data in 
an automated, high-throughput fashion. 
OpenSWATH is cross-platform software, 
written in C++, that relies only on open data 
formats, allowing it to analyze DIA data from 
multiple instrument vendors (Supplementary 
Note 1)24. The algorithm can be summarized 
in the following five steps (Fig. 1 and 
Supplementary Notes 2–4).

Data conversion. OpenSWATH takes as 
input the acquired SWATH-MS data and 
an assay library. These are first converted 
to suitable open file formats (mzML and 
TraML25,26). The assay library contains 
precursor- and fragment-ion m/z values 
(transitions) as well as relative fragment-ion 
intensities and normalized peptide retention 
times. Decoy assays are appended to the target 
assay library for later classification and error 
rate estimation.

Retention-time alignment. Each run 
is aligned against a previously determined 
normalized retention-time space using 
reference peptides whose mappings to the 
normalized space are known (for example, 
spiked-in peptides), as described previously27. 
Outlier detection is subsequently applied to 
remove wrongly assigned reference peptides 
and to evaluate the quality of the alignment.

Chromatogram extraction. Using the m/z 
and retention-time information from the 
assay library, the workflow extracts an ion 
chromatogram from the corresponding  
MS/MS map, producing integrated fragment-
ion counts versus retention-time data. The 
extraction function (Top-hat or Bartlett) 
and m/z window-width can be specified to 
account for the instrument-specific MS/MS 
resolution.

Peak-group scoring. The core algorithm 
identifies ‘peak groups’ (that is, positions 
in the chromatograms where individual 
fragment traces coelute) and scores 
them using multiple, orthogonal scores 
(Supplementary Note 4). These scores are 
based on the elution profiles of the fragment 
ions, the correspondence of the peak group 
with the expected retention time and 
fragment-ion intensity from the assay library, 
as well as the properties of the full MS/MS 
spectrum at the chromatographic peak apex.

Statistical analysis. The separation 
between true and false signal is achieved 

approach, which is derived from methods for 
analyzing SRM-based targeted proteomics 
data. We implemented it in a method called 
SWATH-MS16. In SWATH-MS, precursor 
ions from sequential segments of 25 m/z units 
are concurrently fragmented and the resulting 
composite fragment ions are recorded at 
high mass accuracy in a time-of-flight (TOF) 
analyzer. In our targeted data analysis strategy, 
extracted ion chromatograms (XIC) of the 
most intense transitions of a targeted peptide 

are generated from all corresponding  
MS/MS spectra, producing chromatographic 
data that are similar to SRM traces (Fig. 1a). 
This approach reduces the complexity of the 
data substantially, facilitating data analysis 
while retaining the complete fragment-
ion information of all precursors. So far, 
such data analysis has been performed 
semi-manually and to our knowledge, no 
automated workflow has been published. 
However, certain specialized software, such 

Figure 1  SWATH-MS data-independent acquisition and OpenSWATH analysis. (a) The DIA method 
used here consists of sequential acquisition of fragment-ion spectra with overlapping precursor 
isolation windows. Here, a swath window width of 25 m/z is depicted which allows stepping through 
a mass range of 400–1,200 m/z in 32 individual steps. If all fragment-ion spectra of the same 
isolation window are aligned, an MS2 map (so-called swath) is obtained (right side, swath 4 out of 
32 is schematically shown). Figure adapted from ref. 16. (b) The individual steps performed by the 
OpenSWATH software are illustrated for a peptide precursor with three transitions: red, green and blue. 
The steps are data conversion, retention-time alignment, chromatogram extraction, peak-group scoring 
and statistical analysis to estimate an FDR (false-discovery rate). See main text for a more detailed 
explanation of the workflow.
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previously16 (Supplementary Note 6). Using 
an assay library for 342 peptides (not all 422 
peptides generated high-quality fragment-ion 
spectra, Supplementary Data 1), the 30,780 
chromatograms were extracted in Skyline23 
and manually analyzed to determine the true 
peak group (if present). In parallel, the same 
data were processed with OpenSWATH and 
results were compared with those generated by 
the manual analysis (Supplementary Data 2).

To assess the identification accuracy of 
OpenSWATH, we calculated the pseudo-
receiver operator characteristics (ROC) 
using the best peak group per chromatogram 
and computed an area under the curve 
(AUC) >0.9 (Fig. 2a). At a fixed FDR of 
5% (as computed by mProphet28), the 
software could achieve a recall of 87.5% 
and a precision of 94.3%. Furthermore, 
we noticed that the misidentification rate 
(that is, cases where the highest scoring 
peak group is not the correct peak group) 
is below 0.7%. Thus, most of the false 
identifications were caused by peak groups 
that were not confidently assigned by manual 
curation, rather than by misidentification 
by OpenSWATH. Furthermore, we found 
a good correspondence between the 
estimated FDR and the true, manually 
determined false-positive rate (with a slight 
underestimation of 0.9% at 1% FDR, Fig. 
2b), indicating that OpenSWATH can 
identify peptides with high precision and 
that it supports the accurate selection of the 
desired false-positive rate. However, accurate 
error rate estimations critically depend on 
a suitable decoy strategy32 (Supplementary 
Note 1.5). Similar to methods for SRM data 
analysis, OpenSWATH uses the sum of the 
integrated chromatographic fragment-ion 
peak areas of SWATH-MS data to quantify 
peptides. When analyzing the coefficients 
of variation (CV) of quantified signals 
reported in all technical replicates, we 
consistently found mean CVs below 20% 
(Fig. 2c). By normalizing the intensities of 
each peptide signal to the intensity of the 
most concentrated run (1 × dilution), we 
could evaluate the quantification accuracy 
achieved by the software over large fold 
changes (Fig. 2d). Because our goal was 
to study quantification accuracy, we did 
not include misidentified peptides in our 
analysis. We found that the manually 
determined changes between subsequent 
dilution steps (water, 2.35 ± 1.0 (mean fold 
change ± s.d.); yeast, 2.03 ± 0.45; and human,  
2.11 ± 0.53) matched closely with the 
changes determined using OpenSWATH 
(water, 2.62 ± 1.43; yeast, 2.02 ± 0.44; and 
human, 1.96 ± 0.39). From this, we computed 

using a set of decoy assays that were scored 
exactly the same way as the target assays. 
The false-discovery rate (FDR = false 
positives/(true positives + false positives)) 
can then be estimated, for example by the 
mProphet algorithm28. If multiple runs are 
present, a peak-group alignment can be 
performed to annotate signals that could not 
be confidently assigned using data from a 
single run alone, as described previously for 
data-dependent acquisition and  
SRM data29.

To validate and benchmark our 
SWATH-MS data analysis algorithms, we 
created a ‘gold standard’ data set of known 
composition (termed SGS for SWATH-MS 
Gold Standard), consisting of 422 chemically 
synthesized, stable isotope–labeled standard 

(SIS) peptides30,31 (Supplementary Table 2). 
To simulate differently abundant peptides 
in proteomic backgrounds of varying 
complexity, we added the peptides in ten 
dilution steps at final concentrations ranging 
from 0.058 fmol/mL to 30.0 fmol/mL into three 
different backgrounds (water or trypsinized 
whole-cell protein extracts from Homo sapiens 
or Saccharomyces cerevisiae, normalized to 1 
mg of total protein; Supplementary Note 5).  
We deliberately chose to explore the lower 
end of the dynamic range in this experiment, 
allowing us to study the influence of 
background complexity on ion suppression 
and signal-to-noise (see below and 
Supplementary Note 5.4). These samples 
were measured on the AB SCIEX TripleTOF 
5600 System in DIA mode as described 

Figure 2  Identification and quantification accuracy of OpenSWATH on the SGS data set. We spiked 
422 peptides into three different proteomic backgrounds in a ten-step dilution series to produce a 
‘gold standard’ data set. (a) Pseudo-ROC curve showing sensitivity (recall of true signals) versus the 
false-positive rate, achieving an AUC >0.9 using OpenSWATH. Because misidentified peaks cannot be 
recovered, even at high score cutoff values, a sensitivity of 1.0 cannot be reached. (b) The estimated 
FDR (by mProphet28) versus manually curated, true FDR on the SGS data set. The continuous line at  
45 degrees shows the optimal values. (c) Mean CVs across the three technical replicates are below  
20% CV (no significant difference between OpenSWATH and manual quantification for yeast and  
human backgrounds using the Mann-Whitney test; whiskers indicate 25% and 75% quantiles).  
(d) Peptide intensities quantified by OpenSWATH for all ten dilution steps, normalized to the most 
intense concentration shown for the yeast proteomic background. The red dashed line indicates the ideal 
values (twofold difference to the next dilution). The number of peaks considered is given on the top. For 
panels c and d, only peptides that were detectable above a cutoff of 1% FDR were analyzed and only true 
positives were considered. For panel c, only peptides present in all triplicates were analyzed.
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more than three orders of dynamic range in 
estimated protein ion count (Fig. 3b)  
in a single injection. The results from 
these analyses surpassed previous shotgun 
proteomics and SRM approaches in terms of 
number of quantified proteins at 1% FDR (765 
proteins were quantified in an extensive SRM 
study with multiple injections per sample 
and 523 proteins were identified in a shotgun 
proteomics study with 98.92% overlap with 
our data, see Supplementary Note 1.4)29,33. 
The fraction of the assay library that could not 
be detected may be partially explained by the 
fact that not all proteins were expressed under 
the conditions studied and that these proteins 
have also rarely been identified in earlier 
studies (nearly 80% were never identified in 
PeptideAtlas34).

OpenSWATH identified 82 proteins, 
which showed significant (P < 0.05 in an 
multiple testing-corrected ANOVA test) 
differences in abundance between the two 
conditions in two biological replicates (Fig. 
3c,d; see Supplementary Note 7). Ten out 
of 13 proteins associated with fatty-acid 
biosynthesis are significantly (P < 0.05) 
downregulated, consistent with results of 
previous studies on  
S. pyogenes33. As expected, we also found 
several known virulence factors to be 
upregulated (for example, HasA, HasB, 
Slo, SpeC and CovR)35,36. Additionally, we 
observed significant (P < 0.05) downregulation 
of an ABC transporter complex for inorganic 
phosphate import (PstB1, PstB2 and PstS), 
as well as significant (P < 0.05) upregulation 
of six proteins involved in pyrimidine 
biosynthesis (PyrF, PyrD, PyrE, PyrB, PyrR 
and Upp). Although these results agree with 
previous observations on S. pyogenes,  
they also provide the first indications that 
the Pst system is involved in responding to 
human plasma in S. pyogenes. In conclusion, 
our results derived from SWATH-MS data sets 
analyzed with OpenSWATH are consistent 
with many previous suppositions about 
bacterial virulence but additionally are able 
to provide the foundation for new hypotheses 
(Supplementary Note 7).

By combining the most advanced DIA 
technology with a software capable of 
analyzing the resulting complex data sets, 
we were able to substantially scale-up the 
targeted proteomic approach described 
previously16 and show that targeted analysis 
of DIA data facilitates high-throughput 
analysis of microbial whole-cell lysates, as 
demonstrated on the example of S. pyogenes. 
Using the SGS validation data set, we 
further demonstrate high sensitivity of the 
method and software for identification and 

a deviation from the theoretical value of 
31.2%, 1.0% and 2.0% and a CV of 54.6%, 
21.9% and 20.2% for the OpenSWATH 
quantification (respectively for the three 
backgrounds, outliers removed), suggesting 
that OpenSWATH quantification is suitable 
for obtaining relative quantification values 
for differentially abundant peptides. The 
quantification in water is less accurate 
and precise than in the yeast and human 
backgrounds, because without a matrix, the 
spiked-in SIS peptides are prone to surface 
adsorption during sample preparation 
(Supplementary Note 5.5).

We next explored the performance of 
OpenSWATH in identifying and quantifying 
peptides from a full tryptic digest of a  
S. pyogenes microbial sample. To study 
proteomic changes that occur upon 
vascular invasion of the pathogen, we grew 
S. pyogenes (strain SF370) in 0% and 10% 
human plasma in biological duplicates 

and analyzed the samples in SWATH-MS 
mode on an AB SCIEX TripleTOF 5600 
System (Supplementary Note 6). First, 
we created a spectral library of S. pyogenes 
by combining the measurements of ten 
fractions of the S. pyogenes proteome in data-
dependent aquisition (shotgun) mode on 
the same instrument (Supplementary Data 
3), providing an extensive coverage of the 
expressed S. pyogenes proteome, with 1,322 
proteins (out of 1,905 open reading frames; 
ORFs) mapping to 20,027 proteotypic peptide 
precursors at 1% peptide-spectrum match 
FDR (Fig. 3a).

Using OpenSWATH, we identified and 
quantified 927 proteins (out of 1,322 targeted 
proteins) of S. pyogenes consistently in each 
of the four LC-MS/MS runs at 1% FDR 
(Supplementary Table 1). Out of these, 767 
proteins were quantified by more than one 
peptide per protein. Thus, we achieved >70% 
coverage of the expressed proteome spanning 

Figure 3  Streptococcus pyogenes exposed to human plasma (0% plasma versus 10% plasma). 
Analysis of two biological replicates with OpenSWATH at 1% assay FDR yields over 900 proteins 
and 6,000 peptides consistently quantified over four SWATH-MS runs. (a) Proteome coverage of  
S. pyogenes: of 1,905 annotated ORFs, 1,322 were detected using mass spectrometry after 
extensive fractionation (constituting the assay library) and 927 could be detected consistently in 
each of four unfractionated samples using SWATH-MS. (b) Protein abundances of S. pyogenes as  
detected by SWATH-MS estimated by the ion count of the most intense peptide. (c) Volcano plot 
(log fold change versus log P value) of protein expression determined by ANOVA analysis on two 
biological replicates. Red dots indicate fold changes above 1.5 fold and a Benjamini-Hochberg–
corrected P value below 0.05. (d) The fold changes of all 13 proteins involved in fatty-acid 
biosynthesis (FAB) in S. pyogenes, in the same order as they appear on their respective operons. All 
proteins are substantially upregulated, except accD, accB and fabT (where fabT is a transcriptional 
repressor and not expected to be upregulated).
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quantification. Our open source software is 
available as standalone executable at http://
www.openswath.org (Supplementary Source 
Code File 1 and Supplementary Data 4–6). 
The OpenSWATH algorithms are provided as 
a C++ software library, allowing integration 
of our algorithms into a multitude of popular 
proteomics software, such as OpenMS37 
or Skyline23. The software is integrated 
and distributed together with OpenMS37, 
which will make targeted DIA data analysis 
immediately accessible to a large research 
community. Owing to the nature of DIA 
data, which contain a complete record of 
all fragment ions of a biological sample, 
reanalysis of a data set is possible completely 
in silico, allowing researchers to re-query data 
with their specific hypothesis in mind. The 
availability of fast DIA-capable instruments, 
assay libraries (available in proteome-wide 
coverage owing to large-scale peptide 
synthesis efforts) and, now, an automated 
software for DIA targeted data analysis 
should facilitate the widespread use of this 
technology. 

Note: Any Supplementary Information and Source Data 
files are available in the online version of the paper 
(doi:10.1038/nbt.2841).
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To the Editor:
There is a growing trend toward public 
dissemination of proteomics data, which 
is facilitating the assessment, reuse, 
comparative analyses and extraction of 
new findings from published data1,2. This 
process has been mainly driven by journal 
publication guidelines and funding agencies. 
However, there is a need for better integration 
of public repositories and coordinated 
sharing of all the pieces of information 
needed to represent a full mass spectrometry 
(MS)–based proteomics experiment. An 
editorial in your journal in 2009, ‘Credit 
where credit is overdue’3, exposed the 
situation in the proteomics field, where full 

data disclosure is still not common practice. 
Olsen and Mann4 identified different levels 
of information in the typical experiment: 
from raw data and going through peptide 
identification and quantification, protein 
identifications and protein ratios and the 
resulting biological conclusions. All of these 
levels should be captured and properly 
annotated in public databases, using the 
existing MS proteomics repositories for 
the MS data (raw data, identification and 
quantification results) and metadata, whereas 
the resulting biological information should be 
integrated in protein knowledge bases, such 
as UniProt5. A recent editorial6 in Nature 
Methods again highlighted the need for a 

ProteomeXchange provides globally 
coordinated proteomics data 
submission and dissemination
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