
On the Hierarchy of Generalizations of
One-Unambiguous Regular Languages

Pascal Carona, Ludovic Mignota, Clément Miklarza

aLaboratoire LITIS - EA 4108 Université de Rouen, Avenue de l’Université 76801
Saint-Étienne-du-Rouvray Cedex, France

Abstract

A regular language is lookahead (resp. block) deterministic if it is specified by a

lookahead (resp. block) deterministic regular expression. These two subclasses

of regular languages have been respectively introduced by Han and Wood for

lookahead determinism and by Giammarresi et al. for block determinism, as a

possible extension of one-unambiguous languages defined and characterized by

Brüggemann-Klein and Wood.

In this paper, we study the hierarchies and inclusion links of these families.

We first show that each block deterministic language is the alphabetical image

of some one-unambiguous language. Moreover, we show that deciding the block

determinism of a regular language from its minimal DFA does not only require

state elimination. Han and Wood state that there is a proper hierarchy in

block deterministic languages, but prove it using this erroneous requirement.

However, we prove their statement by giving our own parametrized family. We

also prove that there is a proper hierarchy in lookahead deterministic languages

by studying particular properties of unary regular expressions. Finally, using

our valid results, we confirm that the family of block deterministic languages

is strictly included in the one of lookahead deterministic languages by showing

that any block deterministic unary language is one-unambiguous.
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determinism

1. Introduction

Every XML document is defined by an XML schema language. This makes

XML schema languages useful for validation check, data translation and query

optimization of XML documents. Among these schema languages, let us cite

DTD [1], W3C XML Schema [2] and Relax NG [3]. Since people often use

XML for representing and storing data, it is desirable to handle XML schemas

and XML documents efficiently in many applications. Thus, we need to un-

derstand the fundamentals on XML schemas to design better algorithms. For

instance, it is well known that XML DTD is an LL(1) context-free grammar.

These grammars are made of rules whose right-hand parts are restricted regu-

lar expressions. Brüggemann-Klein and Wood [4] have formalized these regular

expressions and showed that the set of languages specified by these restricted

regular expressions is strictly included in the set of regular ones. The distinctive

aspect of such expressions is the one-to-one correspondence between each letter

of the input word and a unique occurrence of an alphabetical symbol in the

expressions. The resulting Glushkov automata [5] for these regular expressions

are deterministic and the specified languages are called one-unambiguous.

Several extensions of one-unambiguous regular expressions have been con-

sidered:

• a k-block deterministic regular expression [6] is such that while reading

an input word, there is a one-to-one correspondence between the next at

most k input symbols and the same number of symbols in the expression.

The Glushkov automata of these expressions have transitions labelled by

words of length at most k such that for any two distinct transitions going

out of a same state, their labels are not prefix from each other.

• a k-lookahead deterministic regular expression [7] is such that the reading

of the next k symbols of the input word allows to totally determine the

following position in the expression.
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• a (k, l)-unambiguous regular expression [8] is such that the next k symbols

may induce several paths, but with a unique successor at a distance smaller

than l.

These three families of expressions fit together as families of languages in the

way that a language is k-block deterministic (resp. k-lookahead deterministic,

(k, l)-unambiguous) if there exists a k-block deterministic (resp. k-lookahead

deterministic, (k, l)-unambiguous) regular expression to represent it.

Han andWood [7] show that there is a proper hierarchy in block deterministic

languages and a strict inclusion of the family of block deterministic languages in

the one of lookahead deterministic languages. However, they base their proofs

on an erroneous statement due to Giammarresi et al. [6], invalidating them.

In this paper, we first show that there is indeed a proper hierarchy in block

deterministic languages by giving our own parametrized family. Then, we show

that there is also a proper hierarchy in lookahead deterministic languages by

studying the structural properties of unary lookahead deterministic Glushkov

automata. Finally, using our valid results, we demonstrate that the family

of block deterministic languages is strictly included in the one of lookahead

deterministic languages by showing that any block deterministic unary language

is one-unambiguous.

Preliminaries are gathered in Section 2. In Section 3, we recall several re-

sults from Giammarresi et al. [6] and Han and Wood [7] on which we question

their truthfulness. Indeed, we show in Section 4 that due to an erroneous state-

ment of Lemma 3, the witness family given as a proof of Theorem 3 is invalid;

and present an alternative family, proving the infinite hierarchy of k-block de-

terministic languages with respect to k. In Section 5, we give another witness

family to prove that there is also an infinite hierarchy in lookahead determin-

istic languages. Then, in Section 6, we give our own proof that the family

of block deterministic languages is a proper subfamily of the one of lookahead

deterministic languages.
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2. Preliminaries

2.1. Languages and Automata Basics

Let Σ be a non-empty finite alphabet and w be a word over Σ. The length

of w is denoted by |w|, and the empty word is denoted by ε.

Let Σ∗ be the set of all words over Σ. A language over Σ is a subset of

Σ∗. Usual operations on sets, like ∪, ∩, \ (set difference) and 4 (symmetrical

difference) are also defined on languages. Let L and L′ be two languages over

Σ. The concatenation L ·L′ is the set {w ·w′ | w ∈ L∧w′ ∈ L′} and the Kleene

star L∗ is the set
⋃
k∈N L

k with L0 = {ε} and Lk+1 = L · Lk.

A regular expression over Σ is built from ∅ (the empty set), ε, and symbols in

Σ using the binary operators + and ·, and the unary operator ∗. The language

L(E) specified by a regular expression E is recursively defined as L(∅) = ∅,

L(ε) = {ε}, L(a) = {a}, L(F + G) = L(F ) ∪ L(G), L(F · G) = L(F ) · L(G),

L(F ∗) = L(F )∗ with a in Σ, and F , G some regular expressions over Σ. Given

a language L, if there exists a regular expression E such that L(E) = L, then

L is regular. Thereafter, we consider only regular languages.

A regular expression is trim if it is equal to ∅ or does not contain any occur-

rence of ∅. In the following of the paper, only trim regular expressions will be

considered.

A finite automaton A is a 5-tuple (Σ, Q, I, F, δ) with Q a finite set of states,

I ⊂ Q the set of initial states, F ⊂ Q the set of final states, and δ ⊂ Q×Σ×Q

the set of transitions. The set δ is equivalent to a function of Q × Σ → 2Q :

(p, a, q) ∈ δ ⇐⇒ q ∈ δ(p, a). This function can be extended to 2Q × Σ∗ → 2Q

such that for any subset Q′ of Q, for any symbol a in Σ, for any word w in Σ∗:

δ(Q′, ε) = Q′, δ(Q′, a) =
⋃
q∈Q′ δ(q, a), δ(Q′, a · w) = δ(δ(Q′, a), w). Finally, we

set δ(q, w) = δ({q}, w).

The language L(A) recognized by A is the set {w ∈ Σ∗ | δ(I, w) ∩ F 6= ∅}.

Two automata are equivalent if they recognize the same language. The right

language of a state q of A is denoted by Lq(A) = {w ∈ Σ∗ | δ(q, w) ∩ F 6= ∅}.

Two states of an automaton are equivalent if they have the same right language.
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Let p and q be two states in Q. Then q is a direct successor of p if there

exists a transition (p, a, q) in δ.

An automaton is trim if all states can be reached from an initial state and

can reach a final state. Every automaton considered in this paper is trim

An automaton A is standard [9] if it has only one initial state with no

incoming transition. The operation of standardization allows one to obtain an

equivalent standard automaton (Σ, Q ∪ {is}, {is}, Fs, δs) with Fs = F ∪ {is} if

I ∩ F 6= ∅, F otherwise; and δs = δ ∪ {(is, a, q) | ∃i ∈ I, (i, a, q) ∈ δ} from an

automaton (Σ, Q, I, F, δ).

A deterministic finite automaton (DFA) is an automaton A = (Σ, Q, I, F, δ)

such that |I| = 1 and for any two distinct transitions (p, a, q1) and (p, b, q2) in

δ, a 6= b.

A DFA is minimal if there is no equivalent DFA with fewer states. Com-

puting an equivalent minimal DFA is always possible by merging equivalent

states [10]. Notice that two equivalent minimal DFA are isomorphic.

A subset O of Q is an orbit if it is a strongly connected component. An orbit

is trivial if it consists of only one state with no self-loop. Let O be an orbit of

A and p be a state of O. The state p is an out-gate (resp. in-gate) of O if p

is final (resp. initial) or if there exists a transition (p, a, q) (resp. (q, a, p)) in δ

such that q is not in O.

Kleene’s Theorem [11] asserts that the set of languages specified by regular

expressions is the same as the set of languages recognized by finite automata.

The conversion of regular expressions into automata has been deeply studied [12,

13, 14, 5, 15]. In the following, we focus on the Glushkov construction [5]

which compute an automaton reflecting the structural properties of the input

regular expression E. It is based on functions considering the positions of the

alphabetical symbols of E. To differentiate each occurrence of a same symbol

in a regular expression, a marking is performed by indexing them with their

relative position in the expression. The marking of a regular expression E

produces amarked regular expression denoted by E] over an alphabet of indexed

symbols denoted by ΠE . Thus, any element of ΠE occurs exactly once in E]
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and represents a unique position in E. The reverse of marking is the dropping

of subscripts, denoted by \, such that if x ∈ ΠE and x = ak, then x\ = a.

Let E be a regular expression over an alphabet Σ. The following functions

are defined:

• Null(E) = {ε} if ε ∈ L(E), ∅ otherwise,

• First(E) = {a ∈ Σ | ∃w ∈ Σ∗, aw ∈ L(E)},

• Last(E) = {a ∈ Σ | ∃w ∈ Σ∗, wa ∈ L(E)},

• Follow(E, a) = {b ∈ Σ | ∃u, v ∈ Σ∗, uabv ∈ L(E)}, for any a in Σ.

From these functions, an automaton recognizing L(E) can be computed:

Definition 1. The Glushkov automaton of a regular expression E over an

alphabet Σ is denoted by GE = (Σ, Q, {0}, F, δ) with:

• Q = ΠE ∪ {0},

• F = Last(E]) ∪ {0} if Null(E]) = {ε}, Last(E]) otherwise,

• δ = {(x, a, y) | y ∈ Follow(E], x) ∧ a = y\}

∪ {(0, a, y) | y ∈ First(E]) ∧ a = y\}.

Finally, an automaton is a Glushkov automaton if it is the Glushkov automa-

ton of a regular expression E.

Example 1. Let E = (a + b)∗a + ε. Then E] = (a1 + b2)∗a3 + ε with ΠE =

{a1, b2, a3}, and GE is given in Figure 1.

0 a3

a1

b2

a

a

b

a

b

a

b

a

a

Figure 1: The Glushkov automaton GE of E = (a+ b)∗a+ ε
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2.2. One-Unambiguous Regular Languages

Brüggemann-Klein and Wood [4] define a regular expression as being one-

unambiguous if its Glushkov automaton is deterministic. A language is then

one-unambiguous if it can be specified by a one-unambiguous regular expression.

They show that the one-unambiguity of a regular language is structurally

decidable over its minimal DFA. This decision procedure is related to the orbits

of the underlying graph and their links with the outside: an automaton has

the orbit property if every orbit has out-gates with identical connections to the

outside. More formally:

Definition 2. An automaton A = (Σ, Q, I, F, δ) has the orbit property if, for

any orbit O of A and for any two out-gates g1 and g2 of O, the two following

conditions are satisfied:

• g1 ∈ F ⇐⇒ g2 ∈ F ,

• ∀q ∈ (Q \O),∀a ∈ Σ, (g1, a, q) ∈ δ ⇐⇒ (g2, a, q) ∈ δ.

Let q ∈ Q be a state. The orbit of a state q, denoted by O(q), is the orbit to

which q belongs. The orbit automaton Aq of the state q in A is the automaton

obtained by restricting the states and the transitions of A to O(q) with initial

state q and with the out-gates as final states. Every language L(Aq), for q in

Q, is called an orbit language of A.

A symbol a in Σ is A-consistent if there exists a state qa in Q such that all

final states of A have a transition labelled by a to qa. A set of symbols S is

A-consistent if every symbol is A-consistent. The S-cut AS of A is constructed

from A by removing all transitions labelled by a symbol in S that leave a

final state of A. All these notions are used to characterize one-unambiguous

languages:

Theorem 1 ([4]). Let M be a minimal DFA and S be an M -consistent set of

symbols. Then, L(M) is one-unambiguous if and only if:

1. the S-cut MS of M has the orbit property,
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2. all orbit languages of MS are one-unambiguous.

Furthermore, ifM consists of a single non-trivial orbit and L(M) is one-unambi-

guous, then M has at least one M -consistent symbol.

This theorem suggests an inductive algorithm to decide, given a minimal

DFA M , whether L(M) is one-unambiguous: the BW-test. Furthermore, it

defines a sufficient condition over non-minimal DFA:

Lemma 1 ([4]). Let A be a DFA and M be its equivalent minimal DFA.

1. If A has the orbit property, then so does M .

2. If all orbit languages of A are one-unambiguous, then so are all orbit

languages of M .

Consequently, the BW-test is extended to DFA which are not minimal. Rein-

terpreting the results in [4], it comes

Corollary 1. The Glushkov automaton of a one-unambiguous regular expres-

sion passes the BW-test.

2.3. Lookahead Deterministic Regular Languages

Lookahead determinism is a generalization of one-unambiguity suggested by

Brüggemann-Klein and Wood and studied by Han and Wood [7]. It is specified

in the same way i.e. a language is k-lookahead deterministic if it can be specified

by a k-lookahead deterministic regular expression. The basic idea is that the

reading of the next k symbols of the input word allows to totally determine the

following position in the expression or in the automaton.

Definition 3. An automaton A = (Σ, Q, I, F, δ) is k-lookahead deterministic

for a positive integer k if |I| = 1 and for any two distinct transitions (p, a, q1)

and (p, b, q2) in δ, either a is different from b, or for any words w in Σk−1,

δ(q1, w) = ∅ or δ(q2, w) = ∅.

Thus, a regular expression is k-lookahead deterministic if its Glushkov au-

tomaton is k-lookahead deterministic.
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Since a 1-lookahead deterministic automaton is a DFA, the family of 1-

lookahead deterministic languages is the same as the one of one-unambiguous

languages.

Example 2. Let E = b∗a(b∗a)∗(a + b), GE is given in Figure 2. Notice that

the states a2 and a4 admit two successors by a and b. But δ(a5, a) = δ(a5, b) =

δ(b6, a) = δ(b6, b) = ∅. Thus, following Definition 3, GE and E are 2-lookahead

deterministic.

0 a2

b1

a4b3

a5 b6

b

a

b

a

b a
a

b

b
a

b
a

a

b

Figure 2: The 2-lookahead deterministic Glushkov automaton GE

Thus, the language L(b∗a(b∗a)∗(a + b)) is 2-lookahead deterministic and

since it is not one-unambiguous [7], the family of one-unambiguous languages is

strictly included in the one of lookahead deterministic languages.

2.4. Block Deterministic Regular Languages

Block determinism is another generalization of one-unambiguity suggested

and studied by Giammarresi et al. [6]. As for lookahead determinism, k-block

determinism regular languages are defined as those which can be specified by a

k-block deterministic regular expression. The principle here is to read words of

length at most k instead of just one letter.

Let Σ be an alphabet and k be an integer. The set of blocks BΣ,k is the

set of non-empty words over Σ of length at most k. The notions of regular

9



expression and automaton can be extended to ones over set of blocks. Let Γ

be a set of blocks, E be a regular expression over Γ and A = (Γ, Q, I, F, δ) be

an automaton. Let Σ be an alphabet and k be an integer such that Γ ⊂ BΣ,k,

then E and A are (Σ, k)-block. And since Γ ⊂ BΣ,k ⊂ Σ∗, a language over Γ is

also a language over Σ. To distinguish blocks as syntactic components in block

regular expressions, we write them between square brackets. Those are omitted

for one letter blocks.

Since Σ = BΣ,1, regular expressions and automata can be considered as ones

over a set of blocks. Moreover, blocks can be treated as single symbols, as we

do when we refer to the elements of an alphabet. With this assumption, the

marking of block regular expressions induces the construction of their Glushkov

automata, and the usual transformations on automata such as determinization

and minimization can be easily performed.

Example 3. Let E = [aa]∗([ab]b + ba)b∗. Then E] = [aa]∗1([ab]2b3 + b4a5)b∗6,

and GE is given in Figure 3.

0

[aa]1b4 [ab]2

b3b5 b6

aa
b

ab

aa

b ab

b

b

a

b

b

Figure 3: The ({a, b}, 2)-block Glushkov automaton GE

The notion of determinism can also be extended to block determinism as

follows:

Definition 4. An automaton A = (Γ, Q, I, F, δ) is k-block deterministic if there

exists an alphabet Σ such that A is (Σ, k)-block, |I| = 1 and for any two distinct

transitions (p, b1, q1) and (p, b2, q2) in δ, b1 is not a prefix of b2.
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Thus, a block regular expression is k-block deterministic if its Glushkov

automaton is k-block deterministic.

Since a 1-block deterministic automaton is a DFA, the family of 1-block

deterministic languages is the same as the one of one-unambiguous languages.

Example 4. Since the Glushkov automaton in Figure 3 is 2-block deterministic,

the language L([aa]∗([ab]b+ ba)b∗) is 2-block deterministic.

Let A = (Σ, Q, I, F, δ) be an automaton and Γ be a set. The automaton

B = (Γ, Q, I, F, δ′) is an alphabetical image of A if there exists an injection ϕ

from Σ to Γ such that δ′ = {(p, ϕ(a), q) | (p, a, q) ∈ δ}. In this case, we set

B = ϕ(A).

Caron and Ziadi [16] show that an automaton is a Glushkov one if and only

if the two following conditions hold:

• it is homogeneous (for any state q, for any two transitions (p, a, q) and

(r, b, q), the labels a and b are the same),

• it satisfies some structural properties over its transitions 1, such as the

orbit property.

One can check that any injection ϕ from Σ to Γ preserves such conditions,

since the alphabetical image preserves the transition structure by only changing

the labels of the transitions. Therefore

Lemma 2. The alphabetical image of an automaton A is a Glushkov automaton

if and only if A is a Glushkov automaton.

Let us show that the BW-test can be used to determine the block determin-

ism of a regular language:

Theorem 2. A language is k-block deterministic if and only if it is recognized

by a k-block deterministic automaton which is the alphabetical image of a DFA

passing the BW-test.

1these properties are called stability and transversality. More details are given in [16]
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Proof. Let us show the double implication.

1. Let L be a k-block deterministic language over Σ. By definition, there ex-

ists a k-block deterministic Glushkov automatonK = (BΣ,k, Q, {0}, F, δK)

that recognizes L. Let Π = {[b] | b ∈ BΣ,k} be an alphabet and ϕ :

Π → BΣ,k be the bijection such that for any [b] in Π, ϕ([b]) = b. Let

A = (Π, Q, {0}, F, δA) be a Glushkov automaton such that K = ϕ(A).

Let us suppose that A is not deterministic. Since A admits a unique ini-

tial state, there exist two distinct transitions (p, a, q) and (p, a, r) in δA.

Thus, the transitions (p, ϕ(a), q) and (p, ϕ(a), r) are distinct and belong

to δK , which contradicts the fact that K is k-block deterministic. So, A

is a deterministic Glushkov automaton, and therefore passes the BW-test

following Corollary 1.

2. Let A = (Π, QA, {iA}, FA, δA) be a DFA which passes the BW-test, K =

{Γ, QA, {iA}, FA, δK) be a k-block deterministic automaton, and ϕ : Π→

Γ be an injection such that K = ϕ(A). Now, ϕ : Π → Γ is extended

into the morphism ϕ : Π∗ → Γ∗ such that for any letter a in Π and

any word w in Π∗, we have ϕ(a · w) = ϕ(a) · ϕ(w) and ϕ(ε) = ε. Ob-

viously, L(K) = ϕ(L(A)). Since A passes the BW-test, L(A) is one-

unambiguous and there exists a deterministic Glushkov automaton G =

(Π, QG, {iG}, FG, δG) such that L(G) = L(A). Following Lemma 2, the

automaton H = (Γ, QG, {iG}, FG, δH) such that H = ϕ(G) is a Glushkov

one, and L(H) = ϕ(L(G)). Since A and G are equivalent DFA, ϕ(L(G)) =

ϕ(L(A)). And so, L(H) = L(K).

Let us suppose that H is not k-block deterministic. Following Definition 4,

there exist two distinct transitions (pH , ϕ(a), qH) and (pH , ϕ(b), rH) in

δH such that either (ϕ(a) = ϕ(b)) ∧ (qH 6= rH) or ϕ(a) is a prefix of

ϕ(b). By definition, (pH , a, qH) and (pH , b, rH) belong to δG. Since G

and A are equivalent DFA, there exist two distinct transitions (pA, a, qA)

and (pA, b, rA) in δA. And by definition, (pA, ϕ(a), qA) and (pA, ϕ(b), rA)

belong to δK . Two cases may occur. Let us suppose that:

(a) (ϕ(a) = ϕ(b)) ∧ (qH 6= rH). Since ϕ is an injection, we have (a = b)
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and (qH 6= rH), which means that G is not deterministic.

(b) ϕ(a) is a prefix of ϕ(b). Following Definition 4, K is not k-block

deterministic.

Both cases lead to a contradiction. Therefore, H is a k-block deterministic

Glushkov automaton, and L(K) is k-block deterministic.

i 1

2

3

4

a

b
a

b

a

b

b

Figure 4: The minimal DFA of L(E)

It has been proved that the family of one-unambiguous languages is a proper

subfamily of the one of k-block deterministic languages. As an example, the lan-

guage L([aa]∗([ab]b + ba)b∗) is 2-block deterministic but not one-unambiguous

since its minimal DFA given in Figure 4 does not pass the BW-test. Therefore

one can wonder whether there exists an infinite hierarchy in k-block determin-

istic languages regarding k. That has been achieved by Han and Wood [7], but

with an invalid assumption.

3. Previous Results on Block Deterministic Regular Languages

Giammarresi et al. [6] present a method for creating from a block automaton

an equivalent block automaton with larger blocks by eliminating states while

preserving the right languages of other states.

Let A = (Γ, Q, I, F, δ) be a block automaton. The state elimination of q in

A creates a new block automaton computed as follows: first, the state q and all

transitions going in and out of it are removed; second, for any two transitions

(r, u, q) and (q, v, s) in δ, the transition (r, uv, s) is added. This transformation

is illustrated in Figure 5.
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q

r1

r2

s1

s2

u1

u2

v1

v2

w

r1

r2

s1

s2

u1v1

u1v2
u2v1

u2v2

wv1

wv2

Figure 5: The state elimination of q

Definition 5. Let A be a block automaton. A state q of A satisfies the state

elimination precondition if it is neither initial nor final and has no self-loop.

State elimination is extended to a set of states S if every state in S satisfies

the state elimination precondition, and if the subgraph induced by S is acyclic.

If so, we can eliminate every state in S in any order. Giammarresi et al. [6]

suggest that state elimination is sufficient to decide the block determinism of a

language.

Lemma 3 ([6, 7]). Let M be the minimal DFA of a k-block deterministic lan-

guage. We can transform M to a k-block deterministic automaton that satisfies

the orbit property using state elimination.

Let k > 1 be an integer and Lk be the language specified by the regular

expression (ak)∗(ak−1bb+ ba)b∗. From the minimal DFA Mk of Lk represented

in Figure 6, Han and Wood state that:

Theorem 3 ([7]). There is a proper hierarchy in k-block deterministic lan-

guages.

Proof. It is already known that there exist 1-block deterministic languages since

they are one-unambiguous. Thus, we only need to check that there exist k-

block deterministic languages for any integer k > 1, which are not (k− 1)-block

deterministic. Since Lk can be specified by the k-block deterministic regular

expression ([ak])∗([ak−1b]b + ba)b∗, it is k-block deterministic. Moreover, the

minimal DFA Mk has two non-trivial orbits. Following Lemma 3, there is no
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other choice but to eliminate k− 1 states (q1 to qk−1), in any order, to have the

orbit property. Thus, Lk is not (k − 1)-block deterministic.

qk

1

qk−1 qk−2 q3 q2

q1

23

a

b

a a

a

a

b

ba

b

qk

1 3 2

ak

b

ak−1b

ba

b

Figure 6: The minimal DFA Mk and its equivalent k-block deterministic automaton after

having eliminated states q1 to qk−1

4. A Witness for the Infinite Hierarchy of Block Deterministic Reg-

ular Languages

In this section, we exhibit a counter-example for Lemma 3. We can find

a block deterministic language with a minimal DFA from which we cannot get

any block deterministic automaton that satisfies the orbit property. In Figure 7,

the leftmost automaton is minimal and none of its states can be eliminated.

However, by applying standardization, we create an equivalent DFA from which

we can eliminate the state i to get the rightmost equivalent 2-block deterministic

automaton.

i

1

2

a

b

b is i

1

2

a

b

a

b

b
is

1

2

a

b

ba

bb

Figure 7: The counter-example by applying standardization

This clearly shows that state elimination alone is not enough to decide

whether a language is block deterministic. Using this operation, we show that:
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Proposition 1. For any integer k > 1, the language Lk is 2-block deterministic.

Proof. As showed in Figure 8, we can always standardize Mk, proceed to the

state elimination of qk and get a 2-block deterministic automaton which re-

spects the conditions stated in Theorem 2. Thus, the language Lk is 2-block

deterministic and is specified by the 2-block deterministic regular expression

(ak−1([aa]ak−2)∗([ab]a+ bb) + ba)b∗.

is qk

1

qk−1 qk−2 q3 q2

q1

23

a

b

a

b

a a

a

a

b

ba

b

is

1

qk−1 qk−2 q3 q2

q1

23

a

b

a a

aaa

ab b

ba

b

Figure 8: The standardization of Mk followed by the state elimination of qk

However, Theorem 3 is still correct since we can give proper details about

the proof with our own parametrized family of languages.

Definition 6. Let n > 1 be an integer. The automaton Bn = ({a, b, c}, Q, I, F, δ)

is defined by:

• Q = {f} ∪ {αj , βj | 1 ≤ j ≤ n},

• I = {βn},

• F = {f} ∪ {αn, βn},

• δ = {(βn, a, αn), (β1, b, f), (αn, a, αn), (α1, b, f), (α1, c, βn)}

∪ {(αj , b, αj−1), (βj , b, βj−1) | 2 ≤ j ≤ n}.

The family of automata B is then defined by {Bj | j ∈ N \ {0, 1}}.
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Figure 9: An automaton Bk of the family B

By construction, every automaton of B is trim and deterministic. Further-

more, let us notice that the word bj belongs to L(Bk) if and only if j = k.

Thus, for any two different integers k and k′, the languages L(Bk) and L(Bk′)

are different. Moreover, it can be checked that L(Bk) is specified by the k-block

deterministic regular expression (a(ε+ [bk−1c]))∗(ε+ [bk]). Thus,

Proposition 2. For any automaton Bk of B, the language L(Bk) is k-block

deterministic.

Finally, let us show that the index cannot be reduced:

Proposition 3. For any automaton Bk of B, the language L(Bk) is not (k−1)-

block deterministic.

Proof. Let Bk = ({a, b, c}, Q, I, F, δ) be an automaton of B with α1, . . . , αk,

β1, . . . , βk, f its states, and A = (BΣ,k−1, QA, {iA}, FA, δA) be a (k − 1)-block

deterministic automaton equivalent to Bk.

We first show that there exists a non-trivial orbit O in A and two states

o1 and o2 in O such that Lo1(A) = Lαk
(Bk) and Lo2(A) = Lβk

(Bk). Let

us consider the following state sequences: (ϕj)j∈N ⊂ FA and (ψj)j∈N ⊂ FA,

such that ψ0 = iA, δA(ψj , a) = ϕj and δA(ϕj , b
k−1c) = ψj+1. It follows that

δA(iA, (ab
k−1c)j) = ψj and δA(iA, (ab

k−1c)ja) = ϕj . Notice that the existence

of ϕj and ψj is ensured since L(A) = L(Bk). Let us suppose that there exists

an integer j such that Lψj (A) 6= Lβk
(Bk). Then there exists a word w such

that w ∈ Lψj (A) 4 Lβk
(Bk). And since δ(βk, (abk−1c)j) = βk, (abk−1c)j ·

w ∈ L(A)4 L(Bk). Thus, L(A) 6= L(Bk) which is contradictory. So, we have
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Lψj (A) = Lβk
(Bk) for any integer j. The proof that Lϕj (A) = Lαk

(Bk) for

any integer j is done in the same way. Now, let us suppose that ϕj 6= ϕj′ and

ψj 6= ψj′ for any two different integers j and j′. Then QA would be infinite,

which would contradict the fact that A is a finite automaton. So, there exist

two integers j < j′ such that ϕj = ϕj′ or ψj = ψj′ . Thus, either there exist a

path going from ψj to ϕj and a path going from ϕj to ψj′ = ψj , which implies

that ψj and ϕj belong to the same orbit; or there exist a path going from ϕj to

ψj+1 and a path going from ψj+1 to ϕj′ = ϕj , which implies that ϕj and ψj+1

belong to the same orbit.

Finally, let us focus on such an orbit O with two out-gates o1 and o2 such

that Lo1(A) = Lαk
(Bk) and Lo2(A) = Lβk

(Bk). We know that δ(βk, bi) = βk−i

for any positive integer i < k, with |Lβk−i
(Bk)| < ∞. Since Lo2(A) = Lβk

(Bk)

and A is (k − 1)-block deterministic, there exist a positive integer j < k and a

state p in QA such that δA(o2, b
j) = p and Lp(A) = Lβk−j

(Bk). This means that

|Lp(A)| < ∞, so p /∈ O. Now, if there does not exist a state q in QA such that

δA(o1, b
j) = q, then A does not have the orbit property. So, let us suppose that

such a state exists. We know that δ(αk, bi) = αk−i for any positive integer i < k,

with |Lαk−i
(Bk)| = ∞. Since Lo1(A) = Lαk

(Bk), we have Lq(A) = Lαk−j
(Bk)

and |Lq(A)| = ∞. Thus p and q are distinct and A does not have the orbit

property.

Since L(Bk) cannot be recognized by a (k−1)-block deterministic alphabet-

ical image of an automaton passing the BW-test, following Theorem 2 it holds

that L(Bk) is not (k − 1)-block deterministic.

5. A Witness for the Infinite Hierarchy of Lookahead Deterministic

Regular Languages

In this section, we give a parametrized family (Lj)j≥1 such that Lj is (j+1)-

lookahead deterministic but not j-lookahead deterministic. We show that any j-

lookahead deterministic Glushkov automaton can not recognize Lj which proves

our assumption.
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Definition 7. Let n be a positive integer. The unary automaton An = ({a}, Q, I, F, δ)

is defined by:

• Q = {αi | 0 ≤ i ≤ 2n},

• I = {α0},

• F = {α0, αn},

• δ = {(αi, a, αi+1) | 0 ≤ i < 2n} ∪ {(α2n, a, α0)}.

The family of unary automata A is then defined by {Aj | j ∈ N \ {0}}.

α0

α1 αj−1

αj

αj+1α2j

a a

aa

Figure 10: An automaton Aj of the family A

Let us first show that distinct automata of the family A recognize distinct

regular languages and also that these languages are lookahead deterministic.

Proposition 4. For any automaton Aj of A, Aj is a minimal DFA.

Proof. By construction, any automaton Aj ofA is trim and deterministic. More-

over, there are always two distinct final states α0 and αj such that aj is in

Lα0(Aj) and not in Lαj (Aj). Thus, the states α0 and αj are not equivalent,

and so are all non-final states. Therefore, any automaton Aj of A is also mini-

mal.

Thus, for any two different automata Aj and Aj′ of A, since their set of

states are different, the languages L(Aj) and L(Aj′) are different. Furthermore,

it can be checked that L(Aj) is specified by the (j + 1)-lookahead deterministic

regular expression (a2j+1)∗ · (ε+ aj). Thus,
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Proposition 5. For any automaton Aj of A, the language L(Aj) is (j + 1)-

lookahead deterministic.

Let Aj be an automaton of A and G be a j-lookahead deterministic Glushkov

automaton. We demonstrate that G cannot recognize L(Aj) and therefore, that

L(Aj) is not j-lookahead deterministic. In order to do so, we consider a property

of Glushkov automata from Proposition 4.2 of [16]:

Lemma 4 ([16]). Let G be a Glushkov automaton and O be a non-trivial orbit

of G. Then, for any in-gate gi and any out-gate go of O, gi is a direct successor

of go.

Let us first restrain the set of Glushkov automata to consider. We show

that a state in a unary lookahead deterministic automaton does not admit two

distinct direct successors which have infinite right languages.

Proposition 6. Let A be a unary lookahead deterministic automaton. Then

for any state of A, at most one of its direct successors has an infinite right

language.

Proof. Let A = ({a}, Q, {0}, F, δ), and p and q be two distinct states in Q such

that they are direct successors of a same state, and have both an infinite right

language. Then necessarily, for any positive integer j, we have δ(p, aj−1) 6= ∅ and

δ(q, aj−1) 6= ∅, which contradicts the fact that A is lookahead deterministic.

As a direct consequence, we can deduce a property over the orbits of unary

lookahead deterministic Glushkov automata.

Proposition 7. Let G be a unary lookahead deterministic Glushkov automaton

recognizing an infinite language. Then G has exactly one non-trivial orbit, with

a single in-gate and a single out-gate, such that among the direct successors of

any state of this orbit, at most one is in the orbit.

Proof. Since G has only one initial state, following Proposition 6, there is at

most one non-trivial orbit in it. Now, let us suppose that G has no non-trivial

orbit, then L(G) is finite. Thus, G must have a single non-trivial orbit.
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Let O be this orbit. The fact that O has a single in-gate gi is a direct

consequence of Proposition 6. Furthermore, let us suppose that O has two

distinct out-gates go1 and go2. Since G is a Glushkov automaton, following

Lemma 4, gi is a direct successor of both go1 and go2. Consequently, there

exists a state in O with two direct successors in O, which both have infinite

right languages, contradicting Proposition 6.

The fact that every state of O has exactly one direct successor in O can be

deduced in the same way.

Moreover, since the language recognized by an automaton Aj of A is unary,

it can be totally ordered with respect to the lengths of its words. And since

L(Aj) = L((a2j+1)∗ · (ε + aj)) = {ε, aj , a2j+1, a3j+1, a4j+2, · · · }, we can give a

property over the lengths of three consecutive words in it:

Lemma 5. Let Aj be an automaton of A and w1, w2 and w3 be three consecutive

words in L(Aj). Then, either |w3| − |w2| = j + 1 and |w2| − |w1| = j, or

|w3| − |w2| = j and |w2| − |w1| = j + 1.

Finally, we show that for any automaton Aj of A, the language L(Aj) cannot

be recognized by a j-lookahead deterministic Glushkov automaton.

Proposition 8. Let G be a unary Glushkov automaton and Aj be an automaton

of A. If G is j-lookahead deterministic, then G does not recognize L(Aj).

Proof. Let G = ({a}, Q, {0}, F, δ). Since for any automaton Aj of A, the lan-

guage L(Aj) is infinite, if L(G) is finite, then it is different from L(Aj). So let us

suppose that G is j-lookahead deterministic and recognize an infinite language.

Following Proposition 7, let O be the single non-trivial orbit of G, lO = |O| be

the size of O, gi be the single in-gate of O and go be the single out-gate of O.

First, let us characterize the words reaching go from the initial state 0.

Following Proposition 7, every state o of O has exactly one direct successor in

O and o reaches itself by a word w if and only if there exists an integer k such

that |w| = k × lO. And following Lemma 4, since gi is a direct successor of go,

gi reaches go by a word w if and only if there exists a positive integer k such
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that |w| = k × lO − 1. Now, as a corollary of Proposition 6, and since G has

a single initial state, there exists a single state s outside of O such that gi is

a direct successor of s, and s can be reached from the initial state by a single

word u such that |u| = m. Thus, go can be reached from 0 by a word w if and

only if there exists a positive integer k such that |w| = m+1+k× lO−1. Thus,

|w| = m+ k × lO (1)

Now, let us show that G recognizes a different language than L(Aj). Let

Qo = δ(go, a) \ O be the set of direct successors of go outside of O, and Lo =⋃
q∈Qo

Lq(G) be the union of their right language. Let us consider the set Lout

of words reaching a final state from go without going through O. By definition,

Lout = {a} · Lo ∪ {ε} if go ∈ F , {a} · Lo otherwise. Since G is j-lookahead

deterministic, the length of any word of Lo is strictly smaller than j − 1 and

the length of any word in Lout is strictly smaller than j. Thus, three cases may

occur. Let us suppose that:

1. Lout = ∅, then L(G) is finite which is contradictory.

2. there exist two distinct words wo1 and wo2 in Lout such that |wo2| > |wo1|.

Since the lengths of wo1 and wo2 are strictly smaller than j, we have

|wo2|−|wo1| < j. Thus, for any word w reaching go from 0, the words wwo1

and wwo2 both belong to L(G), and |wwo2| − |wwo1| = |wo2| − |wo1| < j.

Following Lemma 5, L(G) 6= L(Aj).

3. Lout = {wo} such that |wo| = m′. Since O is the only non-trivial orbit

and has a single out-gate, there exists an integer n such that for every

word wG in L(G), if |wG| ≥ n then wG = wpws such that wp reach

go from 0 and ws reach a final state from go. Since Lout = {wo}, we

have ws = wo. And following (1), we have |wp| = m + k × lO. Thus,

for any word wG in L(G) such that |wG| ≥ n, there exists a positive

integer k such that |wG| = m + k × lO + m′. Let wG1, wG2 and wG3

be three consecutive words of L(G) such that their lengths are greater

than or equal to n. Then there exist three positive integers k1, k2 and

k3 such that |wG1| = m + m′ + k1 × lO, |wG2| = m + m′ + k2 × lO and
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|wG3| = m + m′ + k3 × lO. Since wG1, wG2 and wG3 are consecutive, we

have k2 = k1+1 and k3 = k2+1. Thus, |wG3|−|wG2| = |wG2|−|wG1| = lO

and following Lemma 5, L(G) 6= L(Aj).

In any case, if G is j-lookahead deterministic, it does not recognize L(Aj).

Consequently:

Proposition 9. For any automaton Aj of A, the language L(Aj) is not j-

lookahead deterministic.

We can conclude that:

Theorem 4. There is a proper hierarchy in k-lookahead deterministic lan-

guages.

6. Block Deterministic Regular Languages Are a Proper Subfamily

of Lookahead Deterministic Regular Languages

The fact that k-block deterministic languages are a subfamily of k-lookahead

deterministic languages for any positive integer k can be directly deduced from

the Glushkov construction. Indeed, let Eb be a k-block deterministic regular

expression, and E be a regular expression constructed by replacing every block

[b1 · · · bn] in Eb by the expression b1 · · · bn. Then E specifies the same language

as Eb and for any position x in ΠE , we have |Follow(E], x)| > 1 if and only if x\ is

the end of a block in Eb. And thus, each distinct position following x in E is the

beginning of a distinct block in Eb. Moreover, since Eb is k-block deterministic,

any two different positions in Eb following a same position refer to blocks of size

at most k which are not prefix from each other. Thus, for any position in E,

the reading of k symbols totally determines the next following position. This

means that the Glushkov automaton of E is k-lookahead deterministic, and so

is E.

Han and Wood [7] state that block deterministic languages are a proper

subfamily of lookahead deterministic languages. However, their proof cites a
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statement made by Giammarresi et al. [6] about the family of languages L((a+

b)∗a(a + b)k−1) not being block deterministic. But we prove that Lemma 3,

which they use as a basis for deciding if a language is block deterministic, is

wrong. So we cannot be sure that their example is not block deterministic and

give our own proof, using properties of unary block deterministic languages.

Proposition 10. Let E be a block regular expression over a set of unary blocks.

If E is block deterministic, then |First(E])| ≤ 1 and for any position x in ΠE,

|Follow(E], x)| ≤ 1.

Proof. If |First(E])| > 1, then there exist two distinct positions in First(E]).

Since E is defined over unary blocks, one of these two positions is a prefix

of the other. Following Definition 1 and Definition 4, the resulting Glushkov

automaton is not block deterministic, and the same goes for E. Therefore

|First(E])| ≤ 1, and the same reasoning can be applied to Follow(E], x) for any

position x of E].

Let us notice that if each position of a regular expression E is followed by at

most one position, then its Glushkov automaton is necessarily deterministic and

E is one-unambiguous. Now, if we consider a block regular expression such that

each position is followed by at most one position, then replacing every block

[b1 · · · bn] by the expression b1 · · · bn does not alter this property. Thus:

Lemma 6. Let E be a block regular expression. If |First(E])| ≤ 1 and for any

position x in ΠE, |Follow(E], x)| ≤ 1, then L(E) is one-unambiguous.

Consequently:

Theorem 5. If a unary language is block deterministic, then it is one-unambiguous.

Moreover, we show in Section 5 that for any automaton Aj of A with j

a positive integer, the language L(Aj) is (j + 1)-lookahead deterministic with-

out being j-lookahead deterministic. Thus, it is not 1-lookahead determinis-

tic (one-unambiguous), and following Theorem 5, it is not block deterministic.

Therefore:
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Proposition 11. For any integer k > 1, there exist unary languages which are

k-lookahead deterministic without being block deterministic.

Finally:

Theorem 6. For any integer k > 1, the family of k-block deterministic lan-

guages is strictly included in the one of k-lookahead deterministic languages.

7. Conclusion and Perspectives

In this paper, we demonstrate that despite some erroneous results, there

exists an infinite hierarchy in block deterministic languages. We show that

such an infinite hierarchy also exists in lookahead deterministic languages. And

finally, showing that block-deterministic unary languages are one-unambiguous,

we give our own proof of the family of block deterministic languages being

strictly included in the one of lookahead deterministic languages.

From these results, one can wonder whether there exists a k-lookahead de-

terministic language which is (k+ 1)-block deterministic without being k-block

deterministic. Another open problem is the decidability of the lookahead de-

terminism of a language. Finally, the decidability of the block determinism of

a language has been studied by Giammarresi et al. but proved with Lemma 3

which we invalidate. Thus, this problem is still open.
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