
Lucy MailingUniversity of Illinois, Urbana-Champaign | UIUC · Division of Nutritional Sciences
Lucy Mailing
PhD - Nutritional Sciences
About
19
Publications
5,861
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
982
Citations
Citations since 2017
Introduction
Publications
Publications (19)
Regular, moderate exercise modifies the gut microbiome and contributes to human metabolic and immune health. The microbiome may exert influence on host physiology through the microbial production and modification of metabolites (xenometabolites); however, this has not been extensively explored. We hypothesized that 6 weeks of supervised, aerobic ex...
There is a broad consensus in nutritional-microbiota research that high-fat (HF) diets are harmful to human health, at least in part through their modulation of the gut microbiota. However, various studies also support the inherent flexibility of the human gut and our microbiota's ability to adapt to a variety of food sources, suggesting a more nua...
The gastrointestinal tract contains trillions of microbes (collectively known as the gut microbiota) that play essential roles in host physiology and health. Studies from our group and others have demonstrated that exercise independently alters the composition and functional capacity of the gut microbiota. Here, we review what is known about the gu...
Recent data has supported a role for the gut microbiota in improving cognition and shaping behavior. Here, we assessed whether pectin, a soluble, fermentable fiber, could enhance learning and memory in mice. Two cohorts of young male C57Bl/6 J mice, C1 (n = 20) and C2 (n = 20), were obtained from Jackson Laboratory and randomized to semi-purified A...
Aging results in chronic systemic inflammation that can alter neuroinflammation of the brain. Specifically, microglia shift to a pro-inflammatory phenotype predisposing them to hyperactivation upon stimulation by peripheral immune signals. It is proposed that certain nutrients can delay brain aging by preventing or reversing microglial hyperactivat...
α-diversity rarefaction plots as determined by Chao1. No differences in α-diversity were observed as a result of age (blue: adult mice red: aged mice; shown above) or fiber feeding (data not shown).
Hippocampal (A) Il-1β, (B) Tnf, (C) Il-6 gene expression and DNA methylation of the Il-1β promoter at (D) CpG1 and (E) CpG2 in adult and aged mice fed low or high fiber diets 4 h post-lipopolysaccharide (LPS) injection. Data are presented as mean ± SEM (n = 6–8). (F) Serum LPS binding protein (LBP) measured in adult and aged mice fed low or high fi...
β-diversity analysis (weighted Unifrac) reveals differences in gut microbiota community composition between high fiber-fed (green) and low fiber-fed (orange) mice after 4 weeks of feeding.
Gene expression of (A) colon and (B) lymph nodes from aged mice fed either a low or high fiber diet 4 h post-lipopolysaccharide (LPS) injection. Data are presented as mean ± SEM (n = 5–7). * indicates significance at p < 0.05 and # indicates significance at p < 0.1.
Key points:
Chronic inflammation underlies many of the health decrements associated with obesity. Circulating progenitor cells can sense and respond to inflammatory stimuli, increasing the local inflammatory response within tissues. Here we show that 6 weeks of endurance exercise training significantly decreases inflammatory circulating progenitor...
Purpose:
Exercise is associated with altered gut microbial composition, but studies have not investigated whether the gut microbiota and associated metabolites are modulated by exercise training in humans. We explored the impact of six weeks of endurance exercise on the composition, functional capacity, and metabolic output of the gut microbiota i...
Exercise reduces the risk of inflammatory disease by modulating a variety of tissue and cell types, including those within the gastrointestinal tract. Recent data indicates that exercise can also alter the gut microbiota, but little is known as to whether these changes affect host function. Here, we use a germ-free (GF) animal model to test whether...
Many factors are involved in weight gain and metabolic disturbances associated with obesity. The gut microbiota has been of particular interest in recent years, since both human and animal studies have increased our understanding of the delicate symbiosis between the trillions of microbes that reside in the GI tract and the host. It has been sugges...