Lucie Bard

Lucie Bard
University College London | UCL · Institute of Neurology

PhD

About

21
Publications
4,463
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,091
Citations
Citations since 2017
8 Research Items
648 Citations
2017201820192020202120222023020406080100120
2017201820192020202120222023020406080100120
2017201820192020202120222023020406080100120
2017201820192020202120222023020406080100120
Additional affiliations
September 2006 - December 2009
University of Bordeaux
Position
  • PhD Student

Publications

Publications (21)
Preprint
Neutrophils are white blood cells that are critical to the acute inflammatory and adaptive immune responses. While their diverse interactions with tissue cells and pathogens have been intensely studied, little is known about how they communicate among themselves. Here we employ up-to-date neuroscience techniques to find that electrical, mechanical,...
Article
Full-text available
Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is p...
Article
Full-text available
Activity-dependent remodeling of excitatory connections underpins memory formation in the brain. Serotonin receptors are known to contribute to such remodeling, yet the underlying molecular machinery remains poorly understood. Here, we employ high-resolution time-lapse FRET imaging in neuroblastoma cells and neuronal dendrites to establish that act...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Preprint
Full-text available
Astroglia constrain extrasynaptic escape of the excitatory neurotransmitter glutamate, thus controlling synaptic signal integration in cortical circuits, which ultimately influences cognitive function. Memory formation is associated with synaptic remodeling but how the latter affects perisynaptic astroglia and thus extrasynaptic glutamate actions r...
Article
Full-text available
Whilst astrocytes in culture invariably respond to dopamine with cytosolic Ca2+ rises, the dopamine sensitivity of astroglia in situ and its physiological roles remain unknown. To minimize effects of experimental manipulations on astroglial physiology, here we monitored Ca2+ in cells connected via gap junctions to astrocytes loaded whole-cell with...
Article
Full-text available
Maintaining low intracellular calcium is essential to the functioning of brain cells, yet the phenomenology and mechanisms involved remain an enigma. We have advanced a two-photon excitation time-resolved imaging technique, which exploits high sensitivity of the OGB-1 fluorescence lifetime to nanomolar Ca2+ concentration ([Ca2+]) and enables a high...
Article
NMDA-type glutamate receptors (NMDAR) are central actors in the plasticity of excitatory synapses. During adaptive processes, the number and composition of synaptic NMDAR can be rapidly modified, as in neonatal hippocampal synapses where a switch from predominant GluN2B- to GluN2A-containing receptors is observed after the induction of long-term po...
Article
Rapid signal exchange between astroglia and neurons has emerged as an essential element of neural circuits of the brain. However, the increasing variety of mechanisms contributing to this signalling appears to be facing a conceptual stalemate. The communication medium of astroglia involves intracellular [Ca(2+)] waves, which until recently have bee...
Article
Full-text available
Neuronal N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic plasticity. Their activation requires not only binding of their ligand glutamate and membrane depolarization but also the presence of a co-agonist, glycine or D-serine. An increasing body of experimental evidence suggests that different populations of NMDARs could be...
Article
Full-text available
The interactions of the AMPA receptor (AMPAR) auxiliary subunit Stargazin with PDZ domain-containing scaffold proteins such as PSD-95 are critical for the synaptic stabilization of AMPARs. To investigate these interactions, we have developed biomimetic competing ligands that are assembled from two Stargazin-derived PSD-95/DLG/ZO-1 (PDZ) domain-bind...
Article
Full-text available
The relative content of NR2 subunits in the NMDA receptor confers specific signaling properties and plasticity to synapses. However, the mechanisms that dynamically govern the retention of synaptic NMDARs, in particular 2A-NMDARs, remain poorly understood. Here, we investigate the dynamic interaction between NR2 C termini and proteins containing PS...
Article
Full-text available
This paper describes applications of two optical microscopy techniques, namely laser tweezers and fluorescence recovery after photo-bleaching (FRAP), to the measurement of ligand/receptor/cytoskeleton interactions. These methods are used in combination with ligand-coated microspheres, binding to specific membrane receptors at the dorsal cell surfac...
Article
The N-methyl-D-aspartate receptor (NMDAR) plays a crucial role in shaping the strength of synaptic connections. Over the last decades, extensive studies have defined the cellular and molecular mechanisms by which synaptic NMDARs control the maturation and plasticity of synaptic transmission, and how altered synaptic NMDAR signaling is implicated in...
Article
Full-text available
The adhesion molecule N-cadherin plays important roles in the development of the nervous system, in particular by stimulating axon outgrowth, but the molecular mechanisms underlying this effect are mostly unknown. One possibility, the so-called "molecular clutch" model, could involve a direct mechanical linkage between N-cadherin adhesion at the me...

Network

Cited By