Lucia Specia

Lucia Specia
The University of Sheffield | Sheffield · Department of Computer Science (Faculty of Engineering)

PhD Computer Science

About

318
Publications
46,214
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,376
Citations
Citations since 2017
149 Research Items
4769 Citations
201720182019202020212022202302004006008001,000
201720182019202020212022202302004006008001,000
201720182019202020212022202302004006008001,000
201720182019202020212022202302004006008001,000

Publications

Publications (318)
Article
Understanding toxicity in user conversations is undoubtedly an important problem. Addressing “covert” or implicit cases of toxicity is particularly hard and requires context. Very few previous studies have analysed the influence of conversational context in human perception or in automated detection models. We dive deeper into both these directions...
Preprint
Full-text available
Neural conditional language generation models achieve the state-of-the-art in Neural Machine Translation (NMT) but are highly dependent on the quality of parallel training dataset. When trained on low-quality datasets, these models are prone to various error types, including hallucinations, i.e. outputs that are fluent, but unrelated to the source...
Preprint
Full-text available
Scene Text Recognition (STR) models have achieved high performance in recent years on benchmark datasets where text images are presented with minimal noise. Traditional STR recognition pipelines take a cropped image as sole input and attempt to identify the characters present. This infrastructure can fail in instances where the input image is noisy...
Preprint
Full-text available
Despite recent progress in video and language representation learning, the weak or sparse correspondence between the two modalities remains a bottleneck in the area. Most video-language models are trained via pair-level loss to predict whether a pair of video and text is aligned. However, even in paired video-text segments, only a subset of the fra...
Conference Paper
Recent efforts within the AI community have yielded impressive results towards “soft theorem proving” over natural language sentences using language models. We propose a novel, generative adversarial framework for probing and improving these models’ reasoning capabilities. Adversarial attacks in this domain suffer from the logical inconsistency pro...
Preprint
We present Burst2Vec, our multi-task learning approach to predict emotion, age, and origin (i.e., native country/language) from vocal bursts. Burst2Vec utilises pre-trained speech representations to capture acoustic information from raw waveforms and incorporates the concept of model debiasing via adversarial training. Our models achieve a relative...
Conference Paper
Full-text available
Not all machine mistranslations are of equal scale of severity. For example, mis-translating a date or time in an appointment , mistranslating a number or currency in a contract, or hallucinating profanity may lead to catastrophic consequences for the users. The severity of the errors is an important but overlooked aspect of machine translation (MT...
Preprint
Full-text available
Recent efforts within the AI community have yielded impressive results towards "soft theorem proving" over natural language sentences using language models. We propose a novel, generative adversarial framework for probing and improving these models' reasoning capabilities. Adversarial attacks in this domain suffer from the logical inconsistency pro...
Preprint
Recently, there has been a surge in research in multimodal machine translation (MMT), where additional modalities such as images are used to improve translation quality of textual systems. A particular use for such multimodal systems is the task of simultaneous machine translation, where visual context has been shown to complement the partial infor...
Preprint
Understanding toxicity in user conversations is undoubtedly an important problem. As it has been argued in previous work, addressing "covert" or implicit cases of toxicity is particularly hard and requires context. Very few previous studies have analysed the influence of conversational context in human perception or in automated detection models. W...
Preprint
Full-text available
In traditional Visual Question Generation (VQG), most images have multiple concepts (e.g. objects and categories) for which a question could be generated, but models are trained to mimic an arbitrary choice of concept as given in their training data. This makes training difficult and also poses issues for evaluation -- multiple valid questions exis...
Preprint
Full-text available
Current Machine Translation (MT) systems achieve very good results on a growing variety of language pairs and datasets. However, they are known to produce fluent translation outputs that can contain important meaning errors, thus undermining their reliability in practice. Quality Estimation (QE) is the task of automatically assessing the performanc...
Preprint
Full-text available
Sentence-level Quality estimation (QE) of machine translation is traditionally formulated as a regression task, and the performance of QE models is typically measured by Pearson correlation with human labels. Recent QE models have achieved previously-unseen levels of correlation with human judgments, but they rely on large multilingual contextualiz...
Preprint
The societal issue of digital hostility has previously attracted a lot of attention. The topic counts an ample body of literature, yet remains prominent and challenging as ever due to its subjective nature. We posit that a better understanding of this problem will require the use of causal inference frameworks. This survey summarises the relevant r...
Preprint
Full-text available
Recent Quality Estimation (QE) models based on multilingual pre-trained representations have achieved very competitive results when predicting the overall quality of translated sentences. Predicting translation errors, i.e. detecting specifically which words are incorrect, is a more challenging task, especially with limited amounts of training data...
Article
Recent Quality Estimation (QE) models based on multilingual pre-trained representations have achieved very competitive results when predicting the overall quality of translated sentences. Predicting translation errors, i.e. detecting specifically which words are incorrect, is a more challenging task, especially with limited amounts of training data...
Article
Full-text available
In order to simplify sentences, several rewriting operations can be performed such as replacing complex words per simpler synonyms, deleting unnecessary information, and splitting long sentences. Despite this multi-operation nature, evaluation of automatic simplification systems relies on metrics that moderately correlate with human judgements on t...
Conference Paper
Full-text available
Quality Estimation (QE) is the task of automatically predicting Machine Translation quality in the absence of reference translations, making it applicable in real-time settings, such as translating online social media conversations. Recent success in QE stems from the use of multilingual pre-trained representations, where very large models lead to...
Preprint
Full-text available
Quality Estimation (QE) is the task of automatically predicting Machine Translation quality in the absence of reference translations, making it applicable in real-time settings, such as translating online social media conversations. Recent success in QE stems from the use of multilingual pre-trained representations, where very large models lead to...
Preprint
We present BERTGEN, a novel generative, decoder-only model which extends BERT by fusing multimodal and multilingual pretrained models VL-BERT and M-BERT, respectively. BERTGEN is auto-regressively trained for language generation tasks, namely image captioning, machine translation and multimodal machine translation, under a multitask setting. With a...
Article
Full-text available
We propose multimodal machine translation (MMT) approaches that exploit the correspondences between words and image regions. In contrast to existing work, our referential grounding method considers objects as the visual unit for grounding, rather than whole images or abstract image regions, and performs visual grounding in the source language, rath...
Article
Full-text available
Automatic generation of video descriptions in natural language, also called video captioning, aims to understand the visual content of the video and produce a natural language sentence depicting the objects and actions in the scene. This challenging integrated vision and language problem, however, has been predominantly addressed for English. The l...
Preprint
Full-text available
Data augmentation is an approach that can effectively improve the performance of multimodal machine learning. This paper introduces a generative model for data augmentation by leveraging the correlations among multiple modalities. Different from conventional data augmentation approaches that apply low level operations with deterministic heuristics,...
Preprint
Full-text available
Despite peer-reviewing being an essential component of academia since the 1600s, it has repeatedly received criticisms for lack of transparency and consistency. We posit that recent work in machine learning and explainable AI provide tools that enable insights into the decisions from a given peer review process. We start by extracting global explan...
Preprint
Full-text available
Translating text into a language unknown to the text's author, dubbed outbound translation, is a modern need for which the user experience has significant room for improvement, beyond the basic machine translation facility. We demonstrate this by showing three ways in which user confidence in the outbound translation, as well as its overall final q...
Preprint
Full-text available
Neural Machine Translation models are brittle to input noise. Current robustness techniques mostly adapt models to existing noisy texts, but these models generally fail when faced with unseen noise and their performance degrades on clean texts. In this paper, we introduce the idea of visual context to improve translation robustness against noisy te...
Preprint
This paper introduces a large-scale multimodal and multilingual dataset that aims to facilitate research on grounding words to images in their contextual usage in language. The dataset consists of images selected to unambiguously illustrate concepts expressed in sentences from movie subtitles. The dataset is a valuable resource as (i) the images ar...
Preprint
Reinforcement Learning (RL) is a powerful framework to address the discrepancy between loss functions used during training and the final evaluation metrics to be used at test time. When applied to neural Machine Translation (MT), it minimises the mismatch between the cross-entropy loss and non-differentiable evaluation metrics like BLEU. However, t...
Preprint
This paper addresses the problem of simultaneous machine translation (SiMT) by exploring two main concepts: (a) adaptive policies to learn a good trade-off between high translation quality and low latency; and (b) visual information to support this process by providing additional (visual) contextual information which may be available before the tex...
Preprint
Full-text available
Quality estimation aims to measure the quality of translated content without access to a reference translation. This is crucial for machine translation systems in real-world scenarios where high-quality translation is needed. While many approaches exist for quality estimation, they are based on supervised machine learning requiring costly human lab...
Article
Collecting textual descriptions is an especially costly task for dense video captioning, since each event in the video needs to be annotated separately and a long descriptive paragraph needs to be provided. In this paper, we investigate a way to mitigate this heavy burden and propose to leverage captions of visually similar images as auxiliary cont...
Preprint
Full-text available
Pre-trained language models have been shown to improve performance in many natural language tasks substantially. Although the early focus of such models was single language pre-training, recent advances have resulted in cross-lingual and visual pre-training methods. In this paper, we combine these two approaches to learn visually-grounded cross-lin...
Preprint
Full-text available
Conventional models for Visual Question Answering (VQA) explore deterministic approaches with various types of image features, question features, and attention mechanisms. However, there exist other modalities that can be explored in addition to image and question pairs to bring extra information to the models. In this work, we propose latent varia...
Preprint
Full-text available
Automatic generation of video descriptions in natural language, also called video captioning, aims to understand the visual content of the video and produce a natural language sentence depicting the objects and actions in the scene. This challenging integrated vision and language problem, however, has been predominantly addressed for English. The l...
Preprint
In this paper, we teach machines to understand visuals and natural language by learning the mapping between sentences and noisy video snippets without explicit annotations. Firstly, we define a self-supervised learning framework that captures the cross-modal information. A novel adversarial learning module is then introduced to explicitly handle th...
Preprint
Automatic evaluation of language generation systems is a well-studied problem in Natural Language Processing. While novel metrics are proposed every year, a few popular metrics remain as the de facto metrics to evaluate tasks such as image captioning and machine translation, despite their known limitations. This is partly due to ease of use, and pa...
Preprint
Full-text available
We present MLQE-PE, a new dataset for Machine Translation (MT) Quality Estimation (QE) and Automatic Post-Editing (APE). The dataset contains seven language pairs, with human labels for 9,000 translations per language pair in the following formats: sentence-level direct assessments and post-editing effort, and word-level good/bad labels. It also co...
Article
We present MLQE-PE, a new dataset for Machine Translation (MT) Quality Estimation (QE) and Automatic Post-Editing (APE). The dataset contains seven language pairs, with human labels for 9,000 translations per language pair in the following formats: sentence-level direct assessments and post-editing effort, and word-level good/bad labels. It also co...
Preprint
Simultaneous machine translation (SiMT) aims to translate a continuous input text stream into another language with the lowest latency and highest quality possible. The translation thus have to start with an incomplete source text, which is read progressively, creating the need for anticipation. In this paper, we seek to understand whether the addi...
Article
Full-text available
Multimodal machine translation involves drawing information from more than one modality, based on the assumption that the additional modalities will contain useful alternative views of the input data. The most prominent tasks in this area are spoken language translation, image-guided translation, and video-guided translation, which exploit audio an...
Article
Full-text available
Quality Estimation (QE) is an important component in making Machine Translation (MT) useful in real-world applications, as it is aimed to inform the user on the quality of the MT output at test time. Existing approaches require large amounts of expert annotated data, computation, and time for training. As an alternative, we devise an unsupervised a...
Conference Paper
Reliably evaluating Machine Translation (MT) through automated metrics is a long-standing problem. One of the main challenges is the fact that multiple outputs can be equally valid. Attempts to minimise this issue include metrics that relax the matching of MT output and reference strings, and the use of multiple references. The latter has been show...
Article
Full-text available
Speech recognition and machine translation have made major progress over the past decades, providing practical systems to map one language sequence to another. Although multiple modalities such as sound and video are becoming increasingly available, the state-of-the-art systems are inherently unimodal, in the sense that they take a single modality...
Preprint
Quality Estimation (QE) is an important component in making Machine Translation (MT) useful in real-world applications, as it is aimed to inform the user on the quality of the MT output at test time. Existing approaches require large amounts of expert annotated data, computation and time for training. As an alternative, we devise an unsupervised ap...
Preprint
Full-text available
In order to simplify a sentence, human editors perform multiple rewriting transformations: they split it into several shorter sentences, paraphrase words (i.e. replacing complex words or phrases by simpler synonyms), reorder components, and/or delete information deemed unnecessary. Despite these varied range of possible text alterations, current mo...
Article
In order to simplify a sentence, human editors perform multiple rewriting transformations: they split it into several shorter sentences, paraphrase words (i.e. replacing complex words or phrases by simpler synonyms), reorder components, and/or delete information deemed unnecessary. Despite these varied range of possible text alterations, current mo...
Article
Full-text available
Sentence Simplification (SS) aims to modify a sentence in order to make it easier to read and understand. In order to do so, several rewriting transformations can be performed such as replacement, reordering, and splitting. Executing these transformations while keeping sentences grammatical, preserving their main idea, and generating simpler output...
Conference Paper
Full-text available
Current Automatic Text Simplification (TS) work relies on sequence-to-sequence neural models that learn simplification operations from parallel complex-simple corpora. In this paper we address three open challenges in these approaches: (i) avoiding unnecessary transformations, (ii) determining which operations to perform, and (iii) generating simpl...