Lucia Colombo

Lucia Colombo
University of Milan | UNIMI · Department of Life Sciences

About

171
Publications
38,050
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,136
Citations

Publications

Publications (171)
Article
In spermatophytes the sporophytic (diploid) and the gametophytic (haploid) generations co-exist in ovules, and the coordination of their developmental programs is of pivotal importance for plant reproduction. To achieve efficient fertilization, the haploid female gametophyte and the diploid ovule structures must coordinate their development to form...
Article
Full-text available
In plants, small RNAs have been recognized as key genetic and epigenetic regulators of development. Small RNAs are usually 20 to 30 nucleotides in length and they control, in a sequence specific manner, the transcriptional or post-transcriptional expression of genes. In this review, we present a comprehensive overview of the most recent findings ab...
Article
Cell wall modifications are of pivotal importance during plant development. Among cell wall components, xyloglucans are the major hemicellulose polysaccharide in primary cell walls of dicots and non graminaceous monocots. They can connect the cellulose microfibril surface to affect cell wall mechanical properties. Changes in xyloglucan structure ar...
Preprint
Full-text available
The rise of data science in biology stimulates interdisciplinary collaborations to address fundamental questions. Here, we report the outcome of the first SINFONIA symposium focused on revealing the mechanisms governing plant reproductive development across biological scales. The intricate and dynamic target networks of known regulators of flower d...
Conference Paper
Full-text available
By avoiding the genome re-assortment due to meiosis and fertilization, apomixis is a naturally occurring mode of asexual reproduction in flowering plants. Due to this mechanism, the inheritance and perpetuation of the maternal genome through seed is assured. In apomictic vs. sexual Poa pratensis cDNA AFLPs revealed a different expression of a gene,...
Article
Full-text available
Nymphaeaceae are early diverging angiosperms with large flowers characterized by showy petals and stamens not clearly whorled but presenting a gradual morphological transition from the outer elements to the inner stamens. Such flower structure makes these plant species relevant for studying flower evolution. MADS-domain transcription factors are cr...
Article
Full-text available
Generally in gymnosperms pollination and fertilization events are temporally separated and the developmental processes leading the switch from ovule integument into seed coat are still unknown. The single ovule integument of Ginkgo biloba acquires the typical characteristics of the seed coat long before the fertilization event. In this study we inv...
Article
Full-text available
Seed development is under the control of complex and coordinated molecular networks required for the formation of its different components. The seed coat development largely determines final seed size and shape, in addition to playing a crucial role in protecting the embryo and promoting germination. In this study, we investigated the role of three...
Article
Full-text available
Seed size is the result of complex molecular networks controlling the development of the seed coat (of maternal origin) and the two fertilization products, the embryo and the endosperm. In this study we characterized the role of Arabidopsis thaliana MADS-domain transcription factor SEEDSTICK (STK) in seed size control. STK is known to regulate the...
Article
The establishment of the species-specific floral organ body plan involves many coordinated spatiotemporal processes, which include the perception of positional information that specifies floral meristem and floral organ founder cells, coordinated organ outgrowth coupled with the generation and maintenance of inter-organ and inter-whorl boundaries,...
Article
Full-text available
The plant hormone auxin is a fundamental regulator of organ patterning and development that regulates gene expression via the canonical AUXIN RESPONSE FACTOR (ARF) and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) combinatorial system. ARF and Aux/IAA factors interact, but at high auxin concentrations, the Aux/IAA transcriptional repressor is degraded, allo...
Article
Full-text available
In higher plants the female germline is formed from the megaspore mother cell (MMC), a single cell in the pre-meiotic ovule. Previously, it was reported that mutants in RNA dependent DNA methylation - RdDM - pathway might be involved in restricting female germline to a single nucellus cell. We show that the DRM methyltransferase double mutant drm1d...
Article
Full-text available
Fertilization and seed formation are fundamental events in the life cycle of flowering plants. The seed is a functional unit whose main purpose is to propagate the plant. The first step in seed development is the formation of male and female gametophytes and subsequent steps culminate in successful fertilization. The detailed study of this process...
Article
Full-text available
The MADS-domain transcription factor SEEDSTICK (STK) controls several aspects of plant reproduction. STK is co-expressed with CESTA (CES), a basic Helix-Loop-Helix (bHLH) transcription factor-encoding gene. CES was reported to control redundantly with the brassinosteroid positive signaling factors BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) and BEE...
Article
Full-text available
Angiosperms form the biggest group of land plants and display an astonishing diversity of floral structures. The development of the flowers greatly contributed to the evolutionary success of the angiosperms as they guarantee efficient reproduction with the help of either biotic or abiotic vectors. The female reproductive part of the flower is the g...
Article
Full-text available
Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells' structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting...
Article
Full-text available
Upon fertilization, the ovary increases in size and undergoes a complex developmental process to become a fruit. We show that cytokinins (CKs), which are required to determine ovary size before fertilization, have to be degraded to facilitate fruit growth. The expression of CKX7, which encodes a cytosolic CK-degrading enzyme, is directly positively...
Article
Full-text available
Domesticated plants are essential for agriculture and human societies. Hence, understanding the processes of domestication will be crucial as we strive for more efficient crops and improvements to plants that benefit humankind in other ways. Here, we study the ornamental plant Sinningia speciosa, and reveal that despite the incredible variety found...
Article
Full-text available
The gynoecium, the female reproductive part of the flower, is key for plant sexual reproduction. During its development, inner tissues such as the septum and the transmitting tract tissue, important for pollen germination and guidance, are formed. In Arabidopsis, several transcription factors are known to be involved in the development of these tis...
Cover Page
Full-text available
Cover: Scanning electron microscope image of an Arabidopsis thaliana fruit of the kawak mutant, revealing unfused carpels, internal medial tissues, such as ovules, and an anther-like structure fused to a carpel (left side). The image is false-coloured to indicate different tissue types and internal structures. KAWAK, a direct target of the transcri...
Article
Full-text available
Seeds derive from ovules upon fertilization and therefore the total number of ovules determines the final seed yield, a fundamental trait in crop plants. Among the factors that co-ordinate the process of ovule formation, the transcription factors CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 and the hormone cytokinin (CK) have a particularly prominent rol...
Article
Full-text available
Key message: BbrizGID1 is expressed in the nucellus of apomictic Brachiaria brizantha, previous to aposporous initial differentiation. AtGID1a overexpression triggers differentiation of Arabidopsis thaliana MMC-like cells, suggesting its involvement in ovule development. GIBBERELLIN-INSENSITIVE DWARF1 (GID1) is a gibberellin receptor previously id...
Article
Full-text available
Iron (Fe) is an essential microelement for all living organisms playing important roles in several metabolic reactions. Rice (Oryza sativa L.) is commonly cultivated in paddy fields, where Fe goes through a reduction reaction from Fe³⁺ to Fe²⁺. Since Fe²⁺ is more soluble, it can reach toxic levels inside plant cells, constituting an important targe...
Article
Full-text available
Fruits and seeds are the major food source on earth. Both derive from the gynoecium and, therefore, it is crucial to understand the mechanisms that guide the development of this organ of angiosperm species. In Arabidopsis, the gynoecium is composed of two congenitally fused carpels, where two domains: medial and lateral, can be distinguished. The m...
Data
SPT expression during gynoecium development. (A-F) Expression of SPT::GUS during gynoecium development at stage 7, 8, 9, 10, 11, and 12, respectively. Scale bars: 20 μm (A-C), 40 μm (D-F). (TIF)
Data
Phenotypes of wild-type, single, double, and triple type-B arr mutant plants. Photos of plants of 73 days old of wild-type (Col-0), arr1, arr10, arr12, arr1 arr10, arr10 arr12, arr1 arr12, and arr1 arr10 arr12. Scale bar: 3 cm. (TIF)
Data
Expression of DR5::GFP and auxin efflux PIN transporters in the gynoecium. (A-D) Expression of the transcriptional auxin response reporter DR5::GFP line in transverse sections of wild-type gynoecia at stages 8, 9, 10, and 12. (E-L) Expression of PIN translational fusions with GFP in gynoecia at stage 9 and 12: PIN1::PIN1-GFP (E, I), PIN3::PIN3-GFP...
Data
Transverse sections of stage 6–12 gynoecia of wild-type, single, double, and triple type-B arr mutants. Transverse sections of the ovary region of stage 6–12 gynoecia of wild-type, arr1, arr10, arr12, arr1 arr10, arr10 arr12, arr1 arr12, and arr1 arr10 arr12. The photo of the stage 12 gynoecium of the triple type-B arr mutant is an example of a sec...
Data
qRT-PCR of ARR1, ARR10, and ARR12 in wild-type gynoecia. Expression analysis by qRT-PCR of ARR1, ARR10, and ARR12 in wild-type dissected gynoecia. Error bars represent the SD based on three biological replicates. (TIF)
Data
SPT enables cytokinin response during gynoecium development. (A, B) Phenotypes of wild-type Ler (A) and spt-2 (B) gynoecia treated with BAP for 5 days. The photos were taken 3–4 weeks after the BAP treatment. In (B) an example is shown of a spt-2 gynoecium presenting a minor effect to BAP in the replum outgrowth phenotype (only in 12.5% of the case...
Data
In situ hybridization with sense-probe for ARR1 in the gynoecium. (A) Negative control (sense probe) for the in situ hybridization of the type-B ARR1 in a longitudinal section of a stage 12 gynoecium. Scale bar: 100 μm. (TIF)
Data
PIN3 localization during gynoecium development in different backgrounds and upon cytokinin treatment. (A-L) Localization of PIN3::PIN3-GFP in transverse sections of gynoecia at stage 7, 8, 9, and 12 of wild-type (A-D), spt-2 (E-H), and 35S::SPT (I-L). (M-R) PIN3 expression after 48 hours BAP treatment of stage 8, 9, and 12 gynoecia in wild-type (M-...
Data
TCS signal in cytokinin treated 35S::SPT x TCS::GFP gynoecia. Expression of the cytokinin response reporter TCS::GFP in transverse sections of gynoecia at stage 8 and 9 of 35S::SPT (A, B), and 35S::SPT after 48 hours of BAP treatment (C, D). Scale bars: 10 μm. (TIF)
Data
Protein-protein interaction assays of SPT with ARR proteins. (A) Yeast two-hybrid assay with SPT fused to the GAL4 DNA binding domain in combination with itself (homo-dimerization detection) and with 9 type-B ARR proteins (ARR1, ARR2, ARR10, ARR11, ARR12, ARR14, ARR18, ARR20, and ARR21), and also we performed the assay with 8 type-A ARR proteins (A...
Data
PIN1 and PIN3 localization during gynoecium development. (A-J) The localization of PIN1::PIN1-GFP during gynoecium development at stage 7, 8, 9, 10, and 12 (Longitudinal view: A-E; top view at the apex: F; transverse section in the ovary: G-J). (K-T) The localization of PIN3::PIN3-GFP during gynoecium development at stage 7, 8, 9, 10, and 12 (Longi...
Data
PIN3 is necessary for a cytokinin response and with PIN7 for correct gynoecium development. (A) Scanning electron microscopy image of a pin3-4 mutant gynoecium. (B-D) Five days BAP-treated gynoecia phenotypes (photos were taken 3–4 weeks after BAP treatment) of wild-type Col-0 with the typical overgrowth of tissue from the repla (B), pin3-4 lacking...
Article
Full-text available
The EC1 gene family of Arabidopsis thaliana comprises five members that are specifically expressed in the egg cell and redundantly control gamete fusion during double fertilization. We investigated the activity of all five EC1 promoters in promoter-deletion studies and identified SUF4 (SUPPRESSOR OF FRIGIDA 4), a C2H2 transcription factor, as a dir...
Article
The developmental program of the pistil is under the control of both auxin and cytokinin, which crosstalk converges on the regulation of the auxin carrier PIN-FORMED 1 (PIN1). Here we show that in the triple transcription factor mutant cytokinin response factor 2 (crf2) crf3 crf6 both pistil length and ovule number were reduced. PIN1 expression was...
Article
Full-text available
Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis are integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed i...
Article
Seed dispersal is an essential trait that enables colonization of new favorable habitats, ensuring species survival. In plants with dehiscent fruits, such as Arabidopsis, seed dispersal depends on two processes: the separation of the fruit valves that protect the seeds (fruit dehiscence), and the detachment of the seeds from the funiculus connectin...
Article
Here we describe an uncharacterized gene that negatively influences Arabidopsis growth and reproductive development. DRINK ME (DKM; bZIP30) is a member of the bZIP transcription factor family, and is expressed in meristematic tissues such as the inflorescence meristem (IM), floral meristem (FM), and carpel margin meristem (CMM). Altered DKM express...
Article
Full-text available
Fertilization in flowering plants requires a complex series of coordinated events involving interaction between the male and female gametophyte. We report here molecular data on one of the key events underpinning this process – the death of the receptive synergid cell and the coincident bursting of the pollen tube inside the ovule to release the sp...
Article
Full-text available
Plant meristems, like animal stem cell niches, maintain a pool of multi-potent, undifferentiated cells that divide and differentiate to give rise to organs. In Arabidopsis thaliana, the carpel margin meristem is a vital meristematic structure that generates ovules from the medial domain of the gynoecium, the female floral reproductive structure. Th...
Article
Rice is one of the main food crops in the world. In the near future, yield is expected to be under pressure due to unfavourable climatic conditions, such as increasing temperatures. Therefore, improving rice germplasm in order to guarantee rice production under harsh environmental conditions is of top priority. Although many physiological studies h...
Article
Full-text available
Abscission is the regulated process of detachment of an organ from a plant. In apple the abscission of fruits occurs during their early development to control the fruit load depending on the nutritional state of the plant. In order to control production and obtain fruits with optimal market qualities, the horticultural procedure of thinning is perf...
Article
Full-text available
Key message Overview of seed size control. Human and livestock nutrition is largely based on calories derived from seeds, in particular cereals and legumes. Unveiling the control of seed size is therefore of remarkable importance in the frame of developing new strategies for crop improvement. The networks controlling the development of the seed c...
Article
Full-text available
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they...
Article
Full-text available
The seed in the mature and dry state is metabolically inactive (quiescent) and is thus able to withstand extreme environmental conditions, such as drought and cold. Germination commences when the dry seed, shed from its parent plant, takes up water (imbibition) and ends when the root emerges through the seed coat. During seedling establishment, the...
Article
Full-text available
The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the prot...
Article
Full-text available
Background and aims: The REM (Reproductive Meristem) gene family of Arabidopsis thaliana is part of the B3 DNA-binding domain superfamily. Despite the fact that several groups have worked on the REM genes for many years, little is known about the function of this transcription factor family. This study aims to identify a set of REM genes involved...
Article
Successful plant reproduction relies on the perfect orchestration of singular processes that culminate in the product of reproduction: the seed. The floral transition, floral organ development, and fertilization are well-studied processes and the genetic regulation of the various steps is being increasingly unveiled. Initially, based predominantly...
Article
Full-text available
The four NGATHA genes (NGA) form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style, and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directi...
Article
Full-text available
In spermatophytes the ovules upon fertilization give rise to the seeds. It is essential to understand the mechanisms that control ovule number and development as they ultimately determine the final number of seeds and, thereby, the yield in crop plants. In Arabidopsis thaliana, ovules arise laterally from a meristematic tissue within the carpel ref...
Article
Many proteins such as transcription factors work cooperatively in transcriptional regulation, which is crucial for the correct development of an organism. In this review, we focus on protein–protein interactions and on protein complexes guiding carpel and fruit development in Arabidopsis, starting with the inflorescence and floral meristem initiati...
Article
Full-text available
Apple research has undergone great improvements in the last years, in both quantitative and qualitative terms. Huge amount of data are now available, especially as far as the early development and the ripening phase are concerned. Moreover, the recent release of the apple genome sequence is significantly speeding up research, allowing on one hand t...
Conference Paper
Full-text available
Seed is the key factor of crop productivity. The commercial success of a newly selected cultivar depends not only on its vegetative attributes but also on its ability to produce seeds. Breeding for seed yield and quality requires new sophisticated technologies, such as apomixis, that will allow overcoming the conventional breeding limits. Apomixis...
Poster
Seed yield and seed size regulation represents one of the major goals in the study of plant development, given the fundamental role that seeds have in plant reproduction and in food production. We use Arabidopsis thaliana as model to investigate on the transcriptional and hormonal regulation of the development of the seed coat, that is the part tha...