
A Comparative Study of Network Link Emulators
Lucas Nussbaum and Olivier Richard

Laboratoire d’Informatique de Grenoble – LIG
{Lucas.Nussbaum,Olivier.Richard}@imag.fr

Keywords: network, emulation, software, accuracy

Abstract

Between discrete event simulation and evaluation within real
networks, network emulation is a useful tool to study and
evaluate the behaviour of applications. Using a real network
as a basis to simulate another network’s characteristics, it en-
ables researchers to perform experiments in a wide range of
conditions. After an overview of the various available net-
work emulators, this paper focuses on three freely available
and widely used network link emulators: Dummynet, NIST-
Net, and the Linux Traffic Control subsystem. We start by
comparing their features, then focus on the accuracy of their
latency and bandwidth emulation, and discuss the way they
are affected by the time source of the system. We expose sev-
eral problems that cannot be ignored when using such tools.
We also outline differences in their user interfaces, such as the
interception point, and discuss possible solutions. This work
aims at providing a complete overview of the different solu-
tions for network emulation.

1. INTRODUCTION
The performance of distributed applications is often diffi-

cult to measure. Most evaluations are carried out either using
modeling and simulation, or using evaluation on real-world
systems. But both have well-known shortcomings, unfortu-
nately. Simulations depend heavily on the quality of the un-
derlying model, and modeling with accuracy can be a long
process, especially when the system being studied is a com-
plex, pre-existing application, whose internals are not known.
The opposite solution is to execute applications on experi-
mental testbeds, such as PlanetLab; instead of trying to un-
derstand how the application works, the application is exe-
cuted, and the result of its execution is then examined. But
platforms like PlanetLab provide a single configuration; it is
usually not possible to modify the platform to test the appli-
cation under different conditions (for example, different net-
work conditions), leading to results that lack generalization.

Emulation is another, intermediate solution. It consists of
executing the real application in a synthetic (simulated) en-
vironment. It allows researchers to reproduce various condi-
tions, at a very low cost. Instead of modifying the network
infrastructure, the emulation layer is configured to emulate

latency, lower bandwidth, or degraded network conditions.
Several solutions for network emulation already exist.

However, the accuracy of these tools has never been com-
pared, despite them being widely used by the community.
This work contributes a comparative study of network em-
ulators, outlining their differences, their advantages and their
problems.

The remaining of this paper is organized as follow. Sec-
tion 2 is an overview of the existing network emulation so-
lutions. In Section 3, we compare the features provided by
Dummynet, NISTNet and Linux TC/Netem. In Section 4, we
study the accuracy of the network emulation (both latency
and bandwidth emulation). Section 5 outlines differences in
the tools’ user interfaces, while Section 6 discusses an issue
with the interception point of packets with TC. Finally, Sec-
tion 7 provides directions for some future work, before we
conclude in Section 8.

2. NETWORK EMULATORS
Network emulators are not a new idea. In 1995, a WAN

emulator was used to evaluate TCP Vegas [1]. Amongst all
the emulation solutions developed since then, one can distin-
guish two kinds of network emulators:

Virtual network emulators aim at emulating a whole net-
work cloud. The description of a network topology is
supplied to the emulator, which typically uses a cluster
of computers to emulate the network. Examples of such
emulators are MicroGrid [2], Modelnet [3], Emulab [4],
EMPOWER [5], IMUNES [6], V-em [7] and eWAN [8].
However, those approaches are generally quite complex,
and their deployment outside of the laboratory which de-
veloped them is often very limited, because they involve
a non-trivial setup phase.

Network link emulators are more simple. They delay or
drop packets coming in or going out of a specific net-
work interface to match the desired network characteris-
tics (latency, packet loss and bandwidth). Delayline [9]
is a user-level library providing such features. The Ohio
Network Emulator [10] runs on Solaris and is no longer
maintained. Dummynet [11] runs on FreeBSD and is
integrated with FreeBSD firewall IPFW. NISTNet [12]
was initially developed for Linux 2.4 and was recently
ported to Linux 2.6. Linux 2.6 also provides Netem [13],

in
ria

-0
04

25
61

3,
 v

er
si

on
 1

 -
22

 O
ct

 2
00

9
Author manuscript, published in "Communications and Networking Simulation Symposium (CNS'09) (2009)"

http://hal.inria.fr/inria-00425613
http://hal.archives-ouvertes.fr

a network emulation facility built into Linux’s Traffic
Control (TC) subsystem. A network emulator named
hxbt [14] is also available in OpenSolaris. Finally, hard-
ware solutions exist, such as GtrcNET-1 [15] (using an
FPGA) or the products from Anué [16].

In the remainder of this work, we focus on Dummynet,
NISTNet and TC/Netem, for three main reasons:

• Firstly, those three solutions are of production quality,
and are no longer prototypes. They are ready to be used
by researchers ;

• Secondly, they are freely available on operating systems
(Linux and FreeBSD) that are commonly available in
laboratories ;

• Finally, they are already being used by the research com-
munity, either directly, or integrated into virtual network
emulators. For example, Emulab uses Dummynet on its
FreeBSD nodes and Linux/TC on its Linux nodes, while
V-em uses NISTNet.

3. FEATURES
Dummynet, NISTNet and TC/Netem use the same princi-

ple. They capture incoming or outgoing packets, and use a set
of rules and queues to store the packets, until they determine
that the packet can be released to the operating system (in the
case of incoming packets) or to the network (in the case of
outgoing packets). However, their implementations and fea-
tures differ.

Table 1 presents the features of Dummynet, NISTNet, and
TC/Netem. NISTNet and Netem have very similar features,
and actually share some code, but their design is totally dif-
ferent. While NISTNet is built as a standalone module and
relies on the real-time clock for timing (which is normally
only used to keep track of time when a computer is powered
off), Netem is tightly integrated within the Linux Traffic Con-
trol subsystem (usually used to enforce quality of service in-
side networks), and relies on the same timing source as does
the rest of the kernel. Also, Netem is distributed with Linux,
while NISTNet is distributed separately. NISTNet is currently
only available for versions of Linux lower than 2.6.14 (we
successfully used it on Linux 2.6.13.5), but we ported it to
Linux 2.6.261.

Dummynet uses a totally different code base, and has been
integrated into FreeBSD since FreeBSD 4. Its main advantage
over NISTNet and Netem is that it works on both incoming
and outgoing packets. However, Dummynet doesn’t allow to
emulate degraded network conditions (packet duplication or
corruption).

1Our patch is available on http://perso.ens-lyon.fr/lucas.nussbaum/
#nistnet.

4. PERFORMANCE EVALUATION
In this section, we study the performance of Dummynet,

NISTNet and Linux/TC. We investigate how closely the emu-
lated network’s characteristics match the parameters provided
by the user. For given latency and bandwidth parameters, we
measure the resulting latency and bandwidth on the emulated
network.

4.1. Experimental setup

Cisco Catalyst 6509 Switch

10.0.0.1 10.0.1.110.0.0.2 10.0.1.2

Node 1 Node 2Router

Figure 1. Experimental setup

The following experiments all use the same network and
system configuration shown in Figure 1. The platform con-
sists of 3 nodes (Dual-Opteron 2.0 GHz with 2 GB of RAM)
of the GridExplorer cluster (part of the french nation-wide
project Grid’5000) are used. The Router is configured to
route packets between Node 1 and Node 2. Nodes 1 and 2
are running Linux 2.6.26, while the Router uses Linux 2.6.22
or 2.6.26 (for TC/Netem), Linux 2.6.26 (for NISTNet), or
FreeBSD 6.1 or 7.0 (for Dummynet). Network cards are dual-
port Broadcom BCM5780 Gigabit Ethernet controllers inte-
grated in the nodes’ motherboard. Without configuring net-
work emulation on the router, we measured a maximum band-
width of 943 Mbps and a Round Trip Time (RTT) of about
180 µs between nodes 1 and 2.

4.2. Time source and accuracy of latency emu-
lation

The entire focus of the industry is on bandwidth,
but the true killer is latency.

Prof. M. Satyanarayanan
Keynote at ACM Mobicom ’96

Latency emulation is an important aspect of network em-
ulation. On today’s networks, most of the latency is often
caused directly by physical constants such as the speed of
light in optical fiber, and can’t be expected to be improved in
the near future. How applications deal with latency is increas-
ingly important for performance, since the available band-
width keeps increasing.

in
ria

-0
04

25
61

3,
 v

er
si

on
 1

 -
22

 O
ct

 2
00

9

Table 1. Features of Dummynet, NISTNet, and TC/Netem
Dummynet NISTNet TC/Netem

Availability Included in FreeBSD Available for Linux 2.4 and 2.6
(< 2.6.14), patch available for
more recent versions

Included in Linux 2.6

Time resolution system clock (up to 10 KHz) Real time clock system clock (up to 1 KHz) or
high resolution timers

Interception point Input and output Input only Output only
Latency Yes, constant value Yes, with optionally correlated

jitter following uniform, nor-
mal, Pareto, or normal+Pareto
distributions

Yes, with optionally correlated
jitter following uniform, nor-
mal, Pareto, or normal+Pareto
distributions

BW limitation Yes, delay to add to packets
is computed when they enter
Dummynet

Yes, delay to add to packets
is computed when they enter
NISTNet

Yes, using the Token Bucket
Filter from TC

Packet drop Yes, but without correlation Yes, optionally correlated Yes, optionally correlated
Packet reordering No Yes, optionally correlated Yes, optionally correlated
Packet duplication No Yes, optionally correlated Yes, optionally correlated
Packet corruption No Yes, optionally correlated Yes, optionally correlated

The accuracy of the emulation depends heavily on the
time source used by the software. While NISTNet uses the
Real Time clock configured at 8192 Hz, both Dummynet
and Netem use the same timers as the rest of the kernel. On
FreeBSD (Dummynet), the timer interrupt frequency is con-
figured by the HZ variable of the kernel configuration, whose
default value is 100 Hz.

The situation is different on Linux. In older kernel versions
(until Linux 2.6.22 on i386 and 2.6.24 on x86 64), Netem
was using the timer interrupts (configured at 250 Hz by de-
fault), like Dummynet on FreeBSD. But in addition to being
examined at each timer interrupt, Netem’s queue was also ex-
amined each time a packet entered Netem, which, with im-
portant traffic, could hide problems caused by a low timer
frequency.

In newer kernel versions, Netem uses a new subsystem
called High Resolution Timers [17], allowing to obtain a
much more precise timing of interrupts.

We evaluate those different solutions by measuring the
RTT over time, by sending pings with a high frequency. If the
frequency of timer interrupts is not high enough, we would
observe variations in the measured RTT. Since packets can
only be released by the emulator when a timer interrupt oc-
curs, they might be released slightly too early, or slightly too
late, depending on how the rounding will happen. This will
cause variations in the emulated latency.

The accuracy of standard ping implementations, which use
gettimeofday() to measure the time, was not sufficient
for our purposes. We modified a ping implementation to use
the CPU Timestamp Counter (RDTSC assembler instruction),
to achieve both high measurement frequency (10-20 KHz)

and microsecond precision.
We measured the latency over time between nodes 1 and

2 (Figure 1) when configuring the emulators to delay packets
from node 1 to node 2 for 10 ms, and evaluated the following
configurations for the router:

• Linux 2.6.22 with Linux/TC on x86 64, using timer in-
terrupts, with a frequency of 100 Hz, 250 Hz (the default
value on Linux) and 1000 Hz ;

• Linux 2.6.26 with Linux/TC on x86 64, using High
Resolution Timers. We also verified that changing the
timer interrupts frequency (100 Hz, 250 Hz, 1000 Hz)
didn’t change our results with this configuration ;

• Linux 2.6.26 with NISTNet ;

• FreeBSD 7.0, with a frequency of 100 Hz, 1 KHz, and
10 KHz. For some experiments, we also compared the
results with FreeBSD 6.1.

Figures 2 and 3 show the results for all of those configura-
tions. The configurations are split in 3 groups, each providing
similar results, to ease comparisons. For each configuration,
the plot on the left (Figure 2) gives the evolution of latency
over time, measured using pings sent with a very high fre-
quency, while the plot on the right (Figure 3) gives the distri-
bution function of latency, measured with pings sent with a
random interval.

Several configurations exhibit a sawtooth behaviour, which
can easily be explained: since packets can only be dequeued
when a timer interrupt happens, the duration of their stay

in
ria

-0
04

25
61

3,
 v

er
si

on
 1

 -
22

 O
ct

 2
00

9

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

E
m

ul
at

ed
 la

te
nc

y
(m

s)

Time (ms)

group 1

FreeBSD 7.0, 100 Hz
Linux 2.6.22, 100 Hz
Linux 2.6.22, 250 Hz

10 ms

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0 0.5 1 1.5 2 2.5 3 3.5 4

E
m

ul
at

ed
 la

te
nc

y
(m

s)

Time (ms)

group 2

FreeBSD 7.0, 1kHz
FreeBSD 7.0, 10kHz

Linux 2.6.22, 1 kHz
10ms

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 0 0.5 1 1.5 2 2.5 3 3.5 4

E
m

ul
at

ed
 la

te
nc

y
(m

s)

Time (ms)

group 3

Linux 2.6.26, 100 Hz
Linux 2.6.26, NISTNet
FreeBSD 6.1, 10 kHz

10ms

Figure 2. Evolution over time of latency emulated by the
router node, for pings sent from node1 to node2. The emu-
lated latency varies over time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

F
(x

)

Emulated latency (ms)

group 1

FreeBSD 7.0, 100 Hz
Linux 2.6.22, 100 Hz
Linux 2.6.22, 250 Hz

 0

 0.2

 0.4

 0.6

 0.8

 1

 9 9.5 10 10.5 11 11.5 12 12.5 13

F
(x

)

Emulated latency (ms)

group 2

FreeBSD 7.0, 1kHz
FreeBSD 7.0, 10kHz

Linux 2.6.22, 1 kHz

 0

 0.2

 0.4

 0.6

 0.8

 1

 10.1 10.15 10.2 10.25 10.3 10.35 10.4 10.45 10.5

F
(x

)

Emulated latency (ms)

group 3

Linux 2.6.26, 100 Hz
Linux 2.6.26, NISTNet
FreeBSD 6.1, 10 kHz

Figure 3. Latency emulation. Empirical cumulative defini-
tion function of emulated latencies, for packets sent at ran-
dom intervals.

in
ria

-0
04

25
61

3,
 v

er
si

on
 1

 -
22

 O
ct

 2
00

9

in the emulator’s queue will depend on their arrival time.
Packets arriving long before the next timer interrupt will stay
longer in the queue than packets arriving just before a timer
interrupt.

This sawtooth behaviour could create a bias in experimen-
tal results. At network-level, equipments (routers, switchers)
might not be able to handle a sudden burst of packets, and
cause packet drops. At application-level, those bursts of pack-
ets will increase the need for large buffers, and might desyn-
chronize processes that would otherwise be synchronized.

With Linux 2.6.22 and FreeBSD 7.0, one can clearly see
the influence of the timer frequency. Increasing the frequency
makes the emulation more accurate. With a low frequency
(100 Hz or 250 Hz), the variations of latency are very impor-
tant. For example, on Linux, and with a clock configured at
100 Hz, the emulated latency varies between 13 ms and 30 ms
when the user configures a latency of 10 ms.

With FreeBSD 7.0, one can also see that the accuracy
doesn’t improve when the timer frequency is changed from
1 KHz to 10 KHz. With FreeBSD 6.1 (Figure 2, group 3),
it is not the case. A frequency of 10 KHz provides latency
emulation that is 10 times more precise than with a clock at
1 KHz.

Because of differences in algorithms used to emulate la-
tency, one can also see that the emulated latency is always
higher than the one configured with Linux TC. On the con-
trary, with Dummynet, it is lower than the configured latency
most of the time.

Finally, 3 solutions provide reasonable performance (most
of the remaining difference between the emulated latency and
the configured latency can be explained by the physical la-
tency of the experiment’s network):

• NISTNet, because it doesn’t use the same timer inter-
rupts as the rest of the system, but a clock configured at
8192 Hz ;

• FreeBSD 6.1 configured with a timer frequency of
10 KHz ;

• Linux with High Resolution Timers.

However, increasing the interrupt frequency with NIST-
Net and FreeBSD 6.1 is not cost-free, because it implies that
the interrupt handling routine is executed much more often,
causing useless context switchs between userspace and ker-
nelspace, and cache trashing.

We used a simple CPU-intensive program (an extremely
simple calculation with no memory pressure - Ackermann’s
function - is performed 50 billion times) to show the influ-
ence of the timer frequency on performance. The execution
times of this program on FreeBSD using different timer fre-
quency settings are detailed in Table 2. At 10 KHz, one can

Table 2. Average execution time of a CPU-intensive pro-
gram on FreeBSD using different timer interrupt frequency
settings.

HZ value Execution time Overhead
100 Hz 81.5s
1000 Hz 81.7s 0.2%

10000 Hz 84.2s 3.3%

see a 3.3% slowdown in the system’s speed, which, in some
circumstances, could become a problem.

It is also worth noting that NISTNet suffers from the same
problem, even if it is using a separate clock for timing. Af-
ter loading the NISTNet kernel module, the execution of the
same program took 86.8s (overhead of 6.3%).

High Resolution Timers don’t suffer from the same prob-
lems. When they are enabled, but not used, they don’t slow
down the rest of the system. However, when they are used,
they increase the number of interrupts. Since they are more
precise, packets won’t be sent in groups, but separately, with
a different timer interrupt for each packet.

4.3. Bandwidth limitation
Bandwidth limitation is the other important aspect of net-

work emulation. Many of today’s network links have very
limited bandwidth, or an asymmetric bandwidth, such as
broadband or 3G networks. Most experimental testbeds don’t
include systems hosted on such connections, so it is important
for researchers to be able to emulate such links.

The implementation of bandwidth limitation differs in
network emulators. While NISTNet and Dummynet simply
compute the delay to add to a specific packet based on the
configured bandwidth and the current state of the queue, TC
uses a Token-Bucket algorithm to shape traffic.

In this experiment, we compared the desired rate with the
one measured using iperf. Using iperf adds a small bias
to the measurement, because iperf measures the available
bandwidth using a TCP stream, while the bandwidth limita-
tion sets the bandwidth available for IP packets. The exper-
iment was carried out on Ethernet, thus the interface MTU
(Maximum Transmission Unit) was set to 1500 bytes. The IP
and TCP headers are using 52 bytes, so the measured band-
width was corrected by 3.6% to include the IP and TCP head-
ers.

Figures 4 and 5 compares the corrected measured band-
width using Dummynet (with a timer interrupt frequency of
10 KHz), NISTNet, and TC/Netem (with Linux 2.6.26). Dif-
ferences between the achieved bandwidth are limited, but
Dummynet and NISTNet are slightly more accurate than TC.
When looking more closely at the results when the desired
bandwidth is high (between 500 Mbps and 1 Gbps, second

in
ria

-0
04

25
61

3,
 v

er
si

on
 1

 -
22

 O
ct

 2
00

9

100kbps

1Mbps

10Mbps

100Mbps

500Mbps
800Mbps1Gbps

10
0k

bp
s

1M
bp

s

10
M

bp
s

10
0M

bp
s

50
0M

bp
s

80
0M

bp
s

1G
bp

s

m
ea

su
re

d
ba

nd
w

id
th

desired bandwidth

Ideal emulator
Dummynet

NistNet
TC

500Mbps

800Mbps

1Gbps

50
0M

bp
s

80
0M

bp
s

1G
bp

s

m
ea

su
re

d
ba

nd
w

id
th

desired bandwidth

Ideal emulator
Dummynet

NistNet
TC

Figure 4. Measured bandwidth when the bandwidth config-
ured in the emulator varies between 100 kbps et 1 Gbps (log-
arithmic scale, first graph), then between 500 Mbps et 1 Gbps
(second graph)

 80

 85

 90

 95

 100

 105

 110

10
0k

bp
s

1M
bp

s

10
M

bp
s

10
0M

bp
s

50
0M

bp
s

80
0M

bp
s

1G
bp

s

di
ffe

re
nc

e
be

tw
ee

n
m

ea
su

re
d

an
d

de
si

re
d

ba
nd

w
id

th
s

(%
)

desired bandwidth

Ideal emulator
Dummynet

NistNet
TC

Figure 5. Difference between measured bandwidth, and
bandwidth configured in the emulator

graph of Figure 4), one can see that Dummynet didn’t allow
us to achieve the desired bandwidth.

Bandwidth limitation also suffers from the problem de-
scribed in Section 4.2.. The frequency of timer interrupts
will cause the emulated traffic to be bursty. Data will not
go through the emulation layer continuously, but by larger
amount of data when the emulator is given the opportunity to
send data. With Dummynet and NISTNet, the emulator only
sends packets to the network when a timer interrupt occurs,
leading to important burstiness. As an example, to limit the
bandwidth to 100 Mbps with a timer frequency of 1 KHz,
100 Kbit of data (or 8.33 ethernet frames of 1500 bytes) will
have to be transmitted at each timer interrupt. Also, if, on av-
erage, the emulator has to transmit 1.5 frames per timer inter-
rupt, it will alternate between sending 1 frame and 2 frames,
leading to unrealistic traffic.

This could create a bias in measurements if the packets are
used to test congestion control mechanisms, for example. In-
creasing the frequency of the timer source would reduce the
problems. Linux TC uses another approach to alleviate those
problems. Instead of only sending frames during timer in-
terrupts, it also checks if some frames should be sent when
data is received by the emulator. This allows it to send data
much more frequently, especially under heavy traffic, but re-
quires that the emulator uses a more precise source to com-
pute time, like the CPU’s TimeStamp Counter. Dummynet
currently uses the jiffies counter (number of timer interrupt
since the sytem booted) for all the computations, so it’s not
possible to get sub-jiffie precision.

Also, it is worth noting that, when using Linux TC with
High Resolution Timers, this problem doesn’t occur.

Length of the waiting queue
Another problem related to the frequency of interrupts is

the size of the queue used by the emulator to store packets un-
til they are sent. To be able to achieve the desired bandwidth,
the size of the queue must meet the following condition:

queue size≥ emulated bandwidth∗ interrupt f requency

Otherwise, the emulator won’t be able to suddenly receive
a large number of packets, and to send them on the network
one by one, to achieve the configured bandwidth.

This problem is particularly important with FreeBSD, be-
cause the maximum size of the queue doesn’t allow one to
emulate networks with a large bandwidth with the default
timer frequency (100 Hz): the maximum size of the queue is
100 packets, limiting the emulated bandwidth to 120 Mbit/s
in the most favorable case (all packets in the queue are 1500-
byte packets). This problem disappears when the interrupt
frequency is increased.

in
ria

-0
04

25
61

3,
 v

er
si

on
 1

 -
22

 O
ct

 2
00

9

Configuration of TC’s Token Bucket Filter
The Token Bucket Filter used with TC to limit the band-

width is also a source of discrepancies between the configured
rate and the measured rate. Since its original goal was to be
used for providing Quality of Service (QoS) inside networks,
it uses a complex algorithm. This algorithm allows bursts of
packets to go through at a rate faster than the configured rate
; if the line is idle, there is no need to delay a very short but
very intensive connection. This is of course not a good idea
with network emulation, but a work-around exists with the
peakrate parameter, that adds a second TBF with a very
small bucket, to avoid bursting.

However, this second token bucket adds complexity to the
configuration of the Token Bucket Filter. This makes it very
difficult to determine settings that will be emulated at the de-
sired bandwidth. By contrast, configuration of Dummynet or
NISTNet is easier. It is important that one verifies that the
settings are correct before conducting the experiment.

5. USER INTERFACES
While the performance and the accuracy of network emu-

lators are important, their usability is also an important aspect
to consider.

Both Dummynet and NISTNet use a rule-based configu-
ration, similar to the configuration of firewalls, which make
them easy to understand, especially for users already familiar
with firewall configurations. However, they lack support for
complex hierarchical sets of rules, which could be a problem
if the user is trying to emulate a complex network topology.

Linux TC uses another approach. Its configuration is done
with a hierarchical set of qdiscs (queueing disciplines) and
classes. It is more powerful, but also more difficult to under-
stand.

6. INTERCEPTION POINT
One important advantage of Dummynet over NISTNet and

TC is that it can capture both incoming and outgoing packets.
NISTNet only allows emulation of incoming packets, while
TC only allows emulation of outgoing packets, which is log-
ical since it was designed as a traffic shaper, not as an emu-
lator. However, in many cases, it is necessary to perform em-
ulation of incoming packets as well, for example if the user
wants to perform emulation of the system where the applica-
tion is running (without using an intermediate router).

A solution exists for TC with the ifb device (Intermediate
Functional Block), which is a dummy (software-only) net-
work device. It is possible to redirect all incoming packets to
the ifb device, and to apply emulation parameters when pack-
ets exit the ifb device. Figure 6 shows how to apply 50 ms
of latency to incoming packets.

However, one can question the overhead caused by such a
convoluted solution.

initialize ifb
modprobe ifb
ifconfig ifb0 up

add an ingress qdisc to process
incoming packets
tc qdisc add dev eth0 ingress

redirect everything to ifb0
tc filter add dev eth0 parent ffff:\
protocol ip prio 10\
u32 match ip src 0.0.0.0/0 flowid ffff:\
action mirred egress redirect dev ifb0

set up netem on ifb0
tc qdisc add dev ifb0 root\
netem delay 50ms

Figure 6. Using the ifb dummy device to apply emulation
parameters on incoming packets

Using a GtrcNET-1, an FPGA-based hardware network
emulator and measurement tool, we measured the time taken
by packets to traverse a computer acting as a router. In the
first case, no TC configuration was used. In the second case,
an IFB device was added, and incoming packets were redi-
rected to it, but the IFB device didn’t perform any emulation.
Figure 7 shows that the difference between the two cases is
minor (about 5.2 µs), and probably negligible in most cases.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 140 150 160 170 180 190 200 210 220

Measured latency (us)

Without IFB
With IFB

Figure 7. ECDF of the traversal time of a computer acting
as a router, with and without redirecting incoming packets to
an IFB device

The CPU overhead is unfortunately more important. Under
very heavy network load (1 Gbps, small UDP packets gen-
erated using iperf), our test system showed that the CPU
was used about 40% of the time without IFB. When IFB was
added, it increased to about 50%. This could be a problem

in
ria

-0
04

25
61

3,
 v

er
si

on
 1

 -
22

 O
ct

 2
00

9

when the application is running on the same node as the emu-
lator, since increased CPU usage of the emulator might affect
the application’s performance.

7. FUTURE WORK
One aspect that was voluntarily ignored by this study is

the cost of network emulation on the router. If the router is
dedicated to network emulation, this is unlikely to become a
problem. However, in many cases, it is interesting to execute
the application under study directly on the sytem on which
network emulation takes place. In that case, network emula-
tion could affect the results significantly.

Secondly, for some experiments, it might be necessary to
configure many concurrent queues (for example, on a router
emulating the network links of a high number of systems).
The performance of network emulators might become a prob-
lem when used to emulate a high number of different links.
In particular, the algorithm for matching packets and queues
will then be of high importance, and should be examined.

8. CONCLUSION
Network emulators allow one to easily perform experi-

ments under various network conditions, enabling researchers
to evaluate their algorithms in different environments. How-
ever, the fact that different solutions exist, and that they had
never been compared before, limited their widespread use.

This work focuses on three network link emulators: Dum-
mynet, NISTNet and the Linux Traffic Control (TC) subsys-
tem, which are freely available in widely used operating sys-
tems. Those three emulators have also been used as building
blocks for large-scale emulation platforms like Emulab. We
contribute a detailed comparison of those tools, including a
study of the accuracy of latency and bandwidth emulation.
Our work pinpoints several some issues. First, latency emu-
lation exhibits a sawtooth behaviour that could create a bias
in experiments. A high-frequency timer source mitigates this
problem, but increasing the timer frequency causes an over-
head which might be a problem in some experiments. We
demonstrate how recent changes in the Linux kernel (high
resolution timers) allow to improve that situation. Second, we
describe how bandwidth emulation, while being of reason-
able quality in all three emulators, also suffers from problems.
Dummynet doesn’t allow one to achieve very high emulated
bandwidth, and the timer frequency might lead to burstiness
if the emulated bandwidth is important, leading to unrealistic
traffic.

Finally, we provide a set of configurations that, for sev-
eral reasons, don’t exhibit some of those problems. It is im-
portant that users are aware of those problems, and validate
their emulators’ settings before performing experiments. Net-
work emulators are powerful tools, but should not be treated
as black boxes.

REFERENCES
[1] Jong Suk Ahn, Peter B. Danzig, Zhen Liu, and Limin Yan.

Evaluation of tcp vegas: emulation and experiment. SIG-
COMM Comput. Commun. Rev., 25(4), 1995.

[2] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang,
K. Taura, and A. Chien. The MicroGrid: a scientific tool for
modeling computational grids. In Supercomputing ’00: Pro-
ceedings of the 2000 ACM/IEEE conference on Supercomput-
ing, 2000.

[3] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan,
Dejan Kostic, Jeff Chase, and David Becker. Scalability and
accuracy in a large-scale network emulator. In OSDI ’02, 2002.

[4] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi
Guruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Ab-
hijeet Joglekar. An integrated experimental environment for
distributed systems and networks. SIGOPS Oper. Syst. Rev.,
36(SI), 2002.

[5] Pei Zheng and Lionel M. Ni. Empower: A cluster architecture
supporting network emulation. IEEE Trans. Parallel Distrib.
Syst., 15(7), 2004.

[6] M. Zec and M. Mikuc. Operating system support for inte-
grated network emulation in IMUNES. In Proceedings of the
1st Workshop on Operating System and Architectural Support
for the on demand IT InfraStructure, 2004.

[7] George Apostolopoulos and Constantinos Hassapis. V-em:
A cluster of virtual machines for robust, detailed, and high-
performance network emulation. In MASCOTS ’06, 2006.

[8] P. Vicat-Blanc Primet, R. Takano, Y. Kodama, T. Kudoh,
O. Gluck, and C. Otal. Large scale gigabit emulated testbed
for grid transport evaluation. In PFLDnet 2006, 2006.

[9] David B. Ingham and Graham D. Parrington. Delayline: A
wide-area network emulation tool. Computing Systems, 7(3),
1994.

[10] Mark Allman, Adam Caldwell, and Shawn Ostermann. ONE:
The ohio network emulator. Technical Report TR-19972, Ohio
University, August 1997.

[11] Luigi Rizzo. Dummynet: a simple approach to the evaluation
of network protocols. ACM Computer Communication Review,
27(1), 1997.

[12] Mark Carson and Darrin Santay. NIST Net: a Linux-based
network emulation tool. SIGCOMM Comput. Commun. Rev.,
33(3), 2003.

[13] Stephen Hemminger. Network emulation with NetEm. In
linux.conf.au 2005, 2005.

[14] Hxbt: WAN emulator for solaris. http://www.opensolaris.
org/os/community/networking/readme.hxbt.txt.

[15] Y. Kodama, T. Kudoh, R. Takano, H. Sato, O. Tatebe, and
S. Sekiguchi. Gnet-1: gigabit ethernet network testbed. In
CLUSTER ’04, 2004.

[16] Anué systems. http://www.anuesystems.com.

[17] Thomas Gleixner and Douglas Niehaus. Hrtimers and beyond:
Transforming the linux time subsystems. In Proceedings of the
Ottawa Linux Symposium, 2006.

in
ria

-0
04

25
61

3,
 v

er
si

on
 1

 -
22

 O
ct

 2
00

9

